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Order-a corrections to the decay rate of orthopositronium in the Fried-Yennie gauge
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The order-a correction to the decay rate of orthopositronium is obtained using the Fried-Yennie
gauge. The result (ma7/e ) [—1.987 84(11)] is consistent with but more accurate than the results of
previous evaluations.

PACS number(s): 36.10.Dr, 12.20.Ds

I. INTRODUCTION

The orthopositronium decay rate is of current interest
because recent high-precision measurements [1,2],

I,'„,=7.0514(14) ps

I',„,=7.0482(16) ps

are in apparent disagreement with the theoretical predic-
tion. Orthopositronium decays primarily to three pho-
tons. The lowest-order expression for the rate [3,4],

I Lo= (n —9)ma= 2

study of bound states). We believe that the Fried-Yennie
gauge will be useful for the calculation of the order-a
corrections. Our present work helps lay the foundation
for such a calculation.

II. METHOD AND LOWEST-ORDER RESULT

The expression for the rest-frame decay rate of ortho-
positronium into three photons is
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The discrepancy is 0.0099(16)ps, which is 6.2 times the
experimental uncertainty [using the experimental results
of Eq. (2)]. This discrepancy corresponds to a value of 50
for X since ma /~ =0.00020 ps '. A calculation of the
order-a correction X is clearly required.

In this work we present a higher-precision calculation
of the order-a correction to the orthopositronium decay
rate using the Fried-Yennie gauge. The Fried-Yennie-
gauge photon propagator is [16]

—1 „k"k
DN = g""+2 (5)

This gauge is of interest because it has a relatively simple
covariant structure (convenient for multiloop graphs),
and it is well behaved in the infrared (convenient for the

was first obtained by Ore and Powell [5]. Order-a and
a ln(1/a) corrections were calculated by several authors,
with the result [6—15]

Here M=2W is the orthopositronium mass, P=(2W, O)
is the (rest-frame) orthopositronium energy-momentum
vector, k, is the energy-momentum vector of the ith
final-state photon with k; =co; = ~lt,. ~, e; is the polariza-
tion vector of the ith final-state photon, e is the ortho-
positronium polarization vector, and (d k)'=d k/(2n )

is the photon-integration measure. The decay amplitude
JR has contributions from all the graphs in Fig. 1. The
graph of Fig. 1(a) gives the lowest-order decay rate, and
the rest contribute order-a corrections to the lowest-
order rate.

Energy-momentum conservation and symmetry con-
siderations can be used to reduce the phase-space integral
from nine to two dimensions. The energy-momentum-
conserving 5 function enforces the conditions

28 =co&+co2+co»

O=k, +k~+k3,

(7a)

(7b)

and immediately reduces the dimensionality from nine to
five. Physically, the three-momenta of the final-state pho-
tons all lie in a plane. Three Euler angles describe the
orientation of that plane in space. By rotational syrnme-
try the spin-averaged differential decay rate is indepen-
dent of these Euler angles, so they can be integrated out.
Two degrees of freedom remain to describe the relative
orientation of the photons in the decay plane. These two
variables can be taken to be the energies of two of the
photons since the angles between photons are given in
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(a) (b) (c)

FIG. 1. Graphs contributing to the decay rate of orthopositronium. (a) is the lowest-order graph which leads to the Ore and

Powell result [Eq. (3)] for the lowest-order decay rate. (b)-(g) represent order-a corrections: (b) self-energy, (c) outer vertex, (d) inner

vertex, (e) double vertex, (f) subtracted binding diagram, and (g) annihilation. The subtracted binding diagram involves the difference

between a Fried-Yennie gauge photon and a reference photon.

terms of the energies. The relation is An approximation to the reference wave function that is
sufficient for order-a work is

2 2 2
Xk X XJ.

cos(8; ) =
2x;x

(8)
%(p) =(2m )5(pc)(2m )'~

0 ere
0 P(p) . (10)

where 8; is the angle between photon i and photon j,
photon k is the third photon, and x; =co;/W is the nor-
malized energy of photon i. On taking, for example, x

&

and x3 as the remaining variables, one has that [10]

Here

( )
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%e use a bound-state formalism having an exactly
soluble reference problem that contains the main physics
of the Coulombic binding [17]. The positronium wave
function that appears in Fig. 1 is this reference wave
function. It satisfies the reference bound-state equation
shown in Fig. 2. The order-a calculation is not sensitive
to the details of the particular reference problem used.

is the nonrelativistic ground-state wave function with

y =ma/2, and

P,=P(x=0)=(y'i )'" (12)

is the value of that wave function at contact. The mass of
the reference bound state is 2 W=2m [1—(y/m ) ]'~ .

The lowest-order decay rate is obtained from the graph
of Fig. 1(a). With the momentum and polarization labels
as in Fig. 3, the decay amplitude is

l
JKLQ f (dp)' g tr ( ieye (—3)). . . ( ieye ~2—~)

cr E-S3 [y ,'P+p+k ~3)
———m]

l
X

[ (
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—
~
)4 (p }

p (~) m
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where (dp)'=d p/(2m. ) . The sum is over the six permutations a of the three final-state photons. The po integral can
be done immediately by use of the 5 function in the wave function. The three momentum p is kept small (of order y) by
the wave function, and can be ignored (to lowest order) when compared to P and the photon momenta which have
scales set by the electron mass. The p integral becomes simply

f( 'p}'
(ipl'+y'}'

Using the approximations

(14)

(15a)

( —,'P —k,. ) —m = —2m x, ,

and the identity e =4+a one has

(15b)



7776 ADKINS, SALAHUDDIN, AND SCHALM 45

3 0(2)
JKLo= —isa g tr yE 131(

—yR 131+1)ye 121(yR 111+1)ye 111
eS X&X

3

0 o".e
(16)

where R; =N —K; with N=(1,0) and K, =k;/W. Use of this decay amplitude in Eq. (9) gives the lowest-order decay
rate. We performed the polarization sums by

g ~pev gI v ~

and the spin average by

0 ere 0 (re
lX 0 0

—[ —( I+yQ)yE ] 8 [ —( I+yQ)yE ]

=
—,', [(I+yo)y ]'[(I+yo)y ]( gp+—N Np), (18)

since E has only spatial components. The resulting traces were done using REDUCE [18]. We found it convenient to
delay doing one of the permutation-symmetrization sums until the end using the group property

g F(o ) g G(~)= g F(cr ) g G(err) (19)

For the averaged and summed amplitude squared we obtained

m2a'

3 2
Xa(])X~(3) 7XO(])X~(3)+28X~(])xg(3) 20X~(])

4x a(3) + 16x a(31 20xa(31+ 8)

1 3 3 2 2 2 2
Xa121( X a(1)Xa13) X a(1) X a(11Xa(31 X a11)X (3)a+ X a(1)

e, , e, , e, e (XIX2X3 } a~S,

(20)

The lowest-order decay rate was found by integrating one
term of the permutation sum (since the phase space itself
is symmetric in the final-state photons). The result is
given in Eq. (3).

BD ~LO+BD (22)

in a way that will be made explicit shortly. So, one has

JN LQ +JKsE +JH Ov +JR IV +JRDV

III. ORDER-a CORRECTIONS +A,BDI+A, „+ (23)

The various order-a corrections to the decay amplitude
give rise to order-a corrections to the decay rate. After
taking into account the exact cancellation between the
lowest-order process [Fig. 1(a)] and the subtraction tertn
in the binding diagram (BD) [the second term in Fig.
1(f)], which follows from the reference bound-state equa-
tion of Fig. 2, one has

~SE+~OV+~IV+~DV+~BD+~ A +

and

IJItl'= IJItLQI +2 «[(~LQ) (~sE+"~ov+Ji4Iv+~Dv

+JRBD~+At „)]+
(24)

The decay rate has corresponding contributions

r=r„+r„+r„+r„+r,+I, +r, +
where the terms are the self-energy (SE), outer-vertex
(OV), inner-vertex (IV), double-vertex (DV), binding-
diagram (BD}, and the annihilation (A} contributions.
Now the (unsubtracted) binding-diagram amplitude ABD
has in it the lowest-order amplitude lp+p

~~ TP+p —kl

(25)

~~-TP+p+k3

-r P+p

FIG. 2. The reference homogeneous bound-state equation.
FIG. 3. The lowest-order orthopositronium decay diagram

with momentum and polarization labels.
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CXJK»= —isa. — g tr X„' „„6S 0

P3 P2 P)X 6g 3 )6vi; 2)~g 1) &
(26)

If we write the amplitude for one of the contributions as

&'&m

k, , e,
&P+e

4 P+E kl

1l- y P +E+ k3

-4P+e

rp+p

ye-p P ~m

then the corresponding decay-rate correction is

ma 1 1r = , f dx f dx T,
77- 48 0 ~-+& x,x2x3

(27)

FIG. 4. The binding diagram with momentUm and polariza-
tion labels.

where

T= g x (3) —,'tr[y '"(—yR (3)+1)
o ES3

Xy (yR ())+1)y (1+y )j ]

(28}X —,
' tr[Xe „„(1+y) y~](g,p 1)I 1)I—p)

Since the phase space is symmetric under permutations of
the final-state photons, it is not necessary to symmetrize
in both JM, Lo and JK», so for JM,» we used 3! times the
term specified by the identity permutation (r=I).

The binding diagram requires the greatest care in eval-
uation. The (unsubtracted) binding diagram with
momentum assignments is pictured in Fig. 4. The corre-
sponding amplitude is

JR&D=(3!)f (dl)'(dp)' tr ( iey")—, ( icy—e3)

l l
X( iey—e2), ( ieye)—), I

( iey"—)%'(p)

l (I —p )3(I—p ),+2
(I —p)' ( I —p )'

After doing the p integral this can be written as

(29)

JRBD= —ia m (3!) (d p)' (dl)"
(~p~2+y ) (I —p) [(I——,'P) —m ][(I+—,'P) —m ]

T

triLK( I} (I —P )g( I —P )
X gz„+2

where p =(O, p) and (dl)" =d I /(i m ) =(4m)3(dl )'/i . The trace a. nd denominator factors are

(30)

tr "(I)=tr y"[y(l —
—,'P)+m ]ye3[y(l —

—,'P+k3)+m ]ye2[y(I+ —,'P —k, )+m ]ye)

X [y(l+ —,'P)+m ]y" (31)

Z(l)=[(l —
—,'P+k3) —m ][(I+,'P —k, )

—m —]. (32}

The I integral in Eq. (30) is sensitive in the infrared. If the usual approximations ~p ~
~0, W —m ~0 were made in the

l integral it would diverge. The separation of the lowest-order term comes from writing

A,K I A.K 0 A.K 0
Z( I) Z(0) Z( I) Z(0)

+ [tr~"(I)—tr" (0)]+ [Z(0)—Z(l) ] (33)

The second term vanishes as l ~0, and so the I integral there can be carried through after making the usual appro»ma-
tions. This contributes a part of the JKBD' term in Eq. (22). The first term in Eq. (33) is proportional to the lowest-order

amplitude
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tr~~(0)
tl yE3( y—R 3 + 1 }ye&(yR, + 1 )ye,Z 0 x)x3

It makes a contribution to the decay amplitude of

0 crt
(34)

lolo1+2
(l —p)'

3 = ALo 3 =Jato 1 3 . (35)
a a

2

JN. (d p)' (dl)"
(IpI +y ) (1—p} [(l ,'P—) ——m ][(l+ ,'P) ——m ]

a 3, 8my em
(d p )'

2 2
arctan

(Ipl'+y')' Il I y

This term, naively of order a, is in fact of order one and
contains the lowest-order amplitude. The approach to
the binding diagram used here was worked out by Tomo-
zawa [19]. More details are given in the Appendix. The
—3(a/n. )JRLo in Eq. (35) is the other part of the JM&D'

term in Eq. (22). It is interesting to note that in covariant
gauges other than the Fried- Yennie gauge an anomalous-
ly large contribution of order a ln(a)JKLo appears here.

The correction amplitude Af, sD' is the sum of two
parts: —3(a/~)JK„o from Eq. (35), and the contribution
of the second term of Eq. (33). This last mentioned con-
tribution was evaluated numerically [18,20]. It is the sum
of two parts associated with the g„„and the 2k„k, /k
terms in the Fried-Yennie gauge propagator, called re-
spectively the Feynrnan part and the gauge part. The
Feynman part has been evaluated previously [9—11].
This integral is finite in the infrared, yet diScult to evalu-
ate. When done with Feynman parameters, the six-
dimensional integral is unstable as discussed by Caswell,
Lepage, and Sapirstein [9]. They had to impose cutoffs
and perform an extrapolation procedure in order to ob-
tain a result. When done by poles, there is a five-
dimensional integral to do: over the magnitude and an-
gles of I and the two-dimensional phase space. Terms
with a numerator of the form l k; diverge as Il I

—+0 un-

less the angular integrals are done first. However, in a
Monte Carlo integration routine, the integrals are all
done together, and points with small l

I
are hit that are

not cancelled by corresponding points with the same
small Il but different angles. The problem terms are el-
iminated by averaging over the directions specified by I
and —l [11],or by symmetrizing over final-state photons.
We used the latter procedure. Our result for the Feyn-

man part ofJN, is,

7I',= [
—1.125 03( 10)] . (36)

The gauge part was done using Feynman parameters. It
1s

7I,= [0.364460(16}] . (37)

The net result is

I aD. = —6—I'Lo+ [
—0.760 57(10)]

[ —1.92004(10)] .
772

(38)

7

I = [ —0.689419(14)] .
~2

(39)

The rest of the order-a corrections were easier to ob-
tain since they do not contain pieces having anomalously
low order. They were all done using Feynman parame-
ters. The results are shown in Table I. The self-energy
and vertex corrections required knowledge of the renor-
malized one-loop self-energy and vertex functions in the
Fried- Yennie gauge [21]. The self-energy and outer-
vertex contributions to the decay rate were obtained
analytically [22]. The inner-vertex contribution was ob-
tained through a four-dimensional numeral integration.
The double-vertex contribution has a Feynman piece and
a gauge piece. The result of the five-dimensional numeri-
cal integration for the Feynman piece was

TABLE I. These numbers, multiplied by ma /m or by (a/m)I zo, give the order-a corrections to
the orthopositronium decay rate.

Graph

SE
OV
IV
DV
BD'
A

Contribution
(units of ma /~ )

—0.007 1329
0.732 9864
0.167 881 3(10)

—0.804 253(15)
—1.92004(10)
—0.157 280( 12)

Contribution
[units of (a/n. )1 LQ]

—0.036 911 1

3.793 033 6
0.868 747(6)

—4.161 82(8)
—9.935 8(6)
—0.813 89(7)

Total —1.987 84( 11) —10.286 6(6)
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Dimensional regularization was used in the annihilation
contribution to regulate the would-be ultraviolet diver-
gence, which disappeared after symmetrization over per-
mutations of the final-state photons. Of course, the an-
nihilation contribution is independent of gauge. Our re-
sult is consistent with the trend of previous evaluations
[6,7,9,10,23].

We have chosen to write the order-a correction as
ma /vr times a number instead of I to(a/n)ti. mes a
number since the first seems more natural. The two con-
tributions that are known analytically, I sE and I'ov, [22],
have the form ma /H times a term of polylogarithmic
degree three or four [24,25]. It is artificial to separate out
a factor of m —9 from these terms.

IV. CONCLUSION

subsets of graphs that contribute to this decay: those
without an internal annihilation to a single photon [Figs.
1(a}—1(f)], and the one with [Fig. 1(g)]. The total order-a
contribution of the first set (the nonannihilation "NA"
set) is

I NA= [
—1.83056(10)], (42)

of which the binding diagram part is

I qo'= [—1.92004(10}].
~2

(43)

The binding diagram contributes 105%%uo of the total. The
OV and DV contributions are also sizable, 38% and 42%
of the BD' contribution in magnitude. The annihilation
diagram contributes

Our result for the order-a correction to the orthoposi-
tronium decay rate is given in the bottom row of Table I.
It is

I „= [—0. 157280(12)], (44)

[ 1.987 84(11)] I to[ 10 2866(6)] . (40)

ma'
I =7.038 236(10) ps '+ X+

7r3
(41)

The increased precision of the order-a correction does
nothing to resolve the apparent discrepancy with experi-
ment.

The binding diagram makes the largest contribution to
the order-a correction. There are two gauge-invariant

Our result is more precise that the earlier result in Eq. (4)
mostly because of an improved value for the Feynman
part of the subtracted-binding diagram. The present pre-
diction for the decay rate is

only 8% of the binding diagram part. These results sug-
gest that one place to look for large contributions to the
order-a corrections is in graphs containing binding pho-
tons.
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APPENDIX

In this appendix we give some of the details of the in-
tegration leading up to Eq. (35). The loop integral

—W IoIo
B(p)= (dl)". . . 1+2

(1—p) [(I——,'P) —m ][(1+—,'P) —m ] (I —p)
(Al)

where p =0 can be done using Feynman parameters. In
parametric form, with

Now h tends to be small in bound states, so we can use
the identity

h =(1—x)(p('+7',
H=x(1 —2u) W +h, (A2b)

arctan( W&x /h ) =——arctan &h /x
1

2 W
(A4)

one has

B(p)=W'f dx f du —+2(1—x)
o o H H

to pick out the leading term of B(p}. One can express
B(p) as

T

B(p)=f dx —+R(p)W
o v'hx 2

= f dx arctan( W&x/h )+W (1—x)W
&hx h+xW

~W
Ipl r

arctan +R (p), (A5)

(A3) where the remainder is
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R(p)= f dx arctan V'h/x +
—W 1 (1—x)W
&hx W h+xW

(A6)

f dx &h/x+ = —1.
&hx x

(A7)

One might be tempted to use the smallness of h to ap-
proximate R (p) as

—8' 1Ri(p)= I dx arctan &h/x
&hx 8

arctan(s)
radii' ipse /W +s

arctan(s) y&it' arctan(s)

ipse /W +s o ipi2/W2+s

= —2+in + (A8)
W

where
Indeed, for ~p ~

=y the integrand of R (p) is within 1% of
—1 for 0.05+x ~ 1. However, for very small x the in-
tegrand differs sharply from —1. A correct evaluation of
the first term in R(p) is

s = &h/x=1
W

We have used the formula [24]

(A9)

arctan(s) 1 . 1
ds Li2 ——

L&21+ 2

—1
1 1

1+1/a+lna ln
a 1 —1/a a4

(1+lna )+01 1

a
(A 10)

with a = W/~p~ to evaluate the first integral in Eq. (A8). The second term in R (p) is unexceptional:

R2(p) = dx = —1 —ln +(1—x)w ~p~ +y
h +x8'

In all, one has

(A 1 1)

R(p)=Ri(p)+R2(p)= —3 . (A12)
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