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Polarizahilities of two-electron positive ions and Rydberg levels of lithium
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We have carried out precision calculations of various second-order sums for the two-electron positive
ions Li+, Be +, and B'+. These have the form g~ (Oi V iN ) (N i V ~0) l(E„—Eo)", where k = 1,2,3. The

perturbation V is in each case a multipole-potential term, and for k = 1 the sum corresponds to the usual

definition of multipole polarizability. The initial state 0 and the intermediate states X are constructed
from two-particle Hylleraas basis sets of the appropriate symmetry and angular momentum. Although
the set N does not contain any true continuum functions, the pseudostates represent the continuum very

well, and excellent convergence is obtained. These two-body quantities are then used to evaluate the en-

ergy levels of three-electron systems in high Rydberg states by the asymptotic-optical-potential method

previously used for two-electron systems, retaining all terms up to order x . The results are good, but

they can be still further improved by including higher-order terms, which will require multiple summa-

tion over intermediate states.

PACS number(s): 31.20.—d, 31.50.+w

I. INTRODUCTION TO LITHIUMLIKE
RYDBERG STATES

The pseudostate summation method has proven to be
very successful in the evaluation of second-order sums [1]
for a variety of interesting processes, including two-
photon transitions and van der Waals coefficients. Mul-
tipole polarizabilities are defined in terms of second-order
sums too, and they are likely to be accurately obtainable
in the same way. Recently, the usefulness of asymptotic
expansions of the interaction between the Rydberg elec-
tron and the core electron in highly excited states of heli-
um has been reemphasized [2]. For this kind of analysis
it is necessary to know a variety of parameters describing
the core, including its multipole polarizabilities and other
quantities expressible as weighted sums over complete
sets of states. In the case of heliumlike systems the core
is hydrogenic, and all such sums can be obtained exactly
and analytically [3]. The next more complicated system
is the three-electron atom or ion with two electrons in a
spherical core and one in a high Rydberg state. Here the
core polarizability cannot be obtained exactly, but the
analysis is otherwise the same. We are motivated by our
interest in such lithiumlike states to compute some of the
relevant properties of the two-electron core.

In this paper we are interested only in second-order
sums over a single complete set; it is consistent with this
limitation to represent the interaction between valence
electron and core in terms of the following optical poten-
tial:

a, 6Pi —az
U(x) = — +

X X

where a& and a2 are dipole and quadrupole polarizabili-
ties, respectively, and P, is the first nonadiabatic
coefficient (all to be defined below). The first-order shift
in the energy of any hydrogenic valence electron with
quantun numbers N and L due to this potential is

b, t
—J d x +N„(x)U(x)+NL(x) .

The main result of this paper is to calculate sets of these
coefficients for the ground states of the isoelectronic
series Li+, Be +, and B +, and to evaluate some fine-
structure intervals in the case of Li.

We begin by writing the Hamiltonian for the system
consisting of three electrons of unit mass and a nucleus of
mass M and charge Z. We assume that electron number
3 is the valence electron and is much further from the nu-
cleus than the other two. Then with energy in rydbergs
the Hamiltonian is

2 2 2 1H= —V —V —V — V—2
2 3 M M

2Z 2Z
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2Z 2 2 2

P1,2 m(r1, 2 rM)

r, +r2+MrM
M+2

(4)

Here m —=M/(M + 1) is the reduced mass of one electron
and the nucleus, while m' =—(M+2)/(M+3) is the re-
duced mass of the valence electron and the core. Then
we can write the unperturbed Hamiltonian of the two-
electron core, in reduced Rydberg units R =m% (A is
the Rydberg constant) as

The next step is to change to scaled, semi-Jacobi variables
describing, respectively, the location of the center of mass
in the laboratory frame, the positions of the two core
electrons relative to the nucleus, and the position of the
valence electron (3) relative to the center of mass of the
two-electron core. These are

1+r2+ r3+ MrM

M+3
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H = —V' —V —EV' .T — — +2 2 2Z 2Z 2

P1
%'u=e ' ' g Cjkp1P2P12+[(1,2)~(2, 1)) .

i,j,k
(10)

where K =2/(M + 1 ), while the Hamiltonian for the
valence electron, in the same units, is

2+ 2(Z —2)Hp„= —
q V„+

where q—=m'/m =1+K2/2. The three-electron unper-
turbed wave function, an eigenfunction of Hp +Hp„,
clearly has the form of the product of a heliumlike and a
shielded hydrogenic wave function. The interaction po-
tential has the form

V=2q +1 1

fp1 +—gp21 I
x fp2+g p—11

The pseudostate method [1] uses a set of normalizable
functions to approximate the complete set represented by
lN& in Eq. (9). In our case, these have the Hylleraas
form as well, but with angular momentum 1 or 2 for the
dipole or quadrupole terms of Eq. (8), respectively. That
is, for L =1,

Vj, = —cos(8,2/2)( f+f )2)I+ —sin(8, 2/2)( f f)$—,
'

where
—&rs ~+&u2) i

' kf(p1,p2 p12} e pl g C jkp1pj2P'12
i,j,k

j(P1 P2 P12} f(P2 Pl P12} .

where

Z (Z —2}+
Ix+g(P1+P2) I

(M+1)q 1

(M+2) (1+K/2 —K /2)

Similarly, for L =2 we have

%D = (f+1}[—Sz++'1/3 cos(8,2)2)z+ ]

+v'3 sin(8, 2)(f f)2)z-
+(g +g )[—cos(8,2)2)z++ ~32)22+ ],

where

(12)

(M+2) 2
-»i+»2» 2 (1) i ' kf(P1P2 P12} e P2 X C jkplf41'2

l,j,k

+ [P1P2(P1.x)+PzP2(P2 x)

—Ktu P2(w x)]+ (8)

where w=p&+p2, and where we have kept terms up to
first order in K. From these two terms in 1/x we can
construct the first two terms in the optical potential
shown in Eq. (1).

We are interested in the case of x »p; and make an ex-
pansion in Legendre polynomials in the usual way,

r

2 K(Z —2}
X

-~&~i+5~2) (2) i '
kg(P1 P2 P12} P1P2 g CJkpl&12'

i,j,k

j(P1~P2&P12) f(P2&pl&P12) &

f(P1 P2 P12} g (P2 Pl P12}

The rotational harmonics 2) appearing here were defined
by Bhatia and Temkin [4]. Using these forms, we obtain
variational wave functions for the initial 'S state and the
set of intermediate pseudostates for each value of Z from
3 through 5. These are then inserted in Eq. (9) along with
the corresponding variational energies to obtain the
quantities of interest.

II. SECOND-ORDER PERTURBATION CALCULATIONS

We now wish to use the potential V, in its multipole
form [Eq. (8)], in second-order perturbation theory.
From Ref. [2] the appropriate definitions are

&olu;lx&&xlv;lo&

(E„—E, )'

&olu, lx&&flu, lo&

(EN —Eo }'

(In addition, we will evaluate coefficients, y;, with cubic
denominators, which may be of interest later on. } Here
we let the potential in Eq. (8} be V=u1/x +v2/x and
will insert these coefficients in Eq. (1) to derive the optical
potential. For the two-electron isoelectronic series the
ground state 0 wi11 have the Hylleraas form

III. RESULTS OF THE PERTURBATION
CALCULATIONS

In Table I we show the convergence of the dipole po-
larizability of Li+ with respect to the expansion length of
the S-wave ground state and the number of P-wave inter-
mediate pseudostates. The convergence is seen to be very
rapid, and it improves with increasing Z. In Table II the
results for the three sums of interest (for both dipole and
quadrupole) are listed for Z =3,4, 5. These are very simi-
lar to the previous results [5], some of which have been
obtained by perturbation methods similar to the present
one, while others have used variational techniques.
Better results are usually obtained when correlations are
explicitly included in the wave functions, although the
Hartree method gives fairly good values as well. As usu-
al, much of the present work was prefigured by Drake
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TABLE I. Convergence of the dipole polarizability of the

ground state of 'Li+ with respect to the parameters N, (the ex-

pansion length of the ground state) and X (the number of inter-

mediate pseudostates). Mass polarization is included in the

Hamiltonian, and the factor 1+K from Eq. (8) is also present.
Interval Energy shift (MHz)

TABLE III. Fine-structure energy shifts in the N = 10 mani-
fold of Li. Dipole and quadrupole terms are included up to
x as described in the text, and the leading relativistic term is
also included.

35
56
84

120

50 70 95 125

0.192483 81 0.192483 02 0.192482 72 0.192482 75
0.192 485 91 0.192484 91 0.192 484 83 0.192484 71
0.192486 47 0.192485 47 0.192485 36 0.192485 28

0.192486 64 0.192 485 61 0.192485 51 0.192 485 42

10G-10H
10H-10I
10I-10K
10K-10L
10L-10M

340.62+ 1.18
109.361+0.153
42.816+0.028
19.480+0.006

10.0097+0.0015

[6], whose results for a, and P, are almost as accurate as
the present ones.

IV. RYDBERG STATES OF LITHIUM

In Table III the fine-structure splittings for this case are
shown, and these might be measurable by the techniques
of Ref. [7]; if so it will be necessary to improve our accu-
racy by adding higher terms in 1/x as well as additional

TABLE II. Adiabatic and nonadiabatic polarizabilities for
three isoelectronic systems. Mass polarization is included only
in the Li dipole case, but the factor 1+K(Z —2) is included in
all the dipole results. Numbers in square brackets denote
powers of 10.

System

(X l

Pi
Xl
CX2

13~

y2

Li+

0.192 485
0.035 29
6.806[—3]
0.11389
0.016 68
2.584[—3]

B 2+

0.052 282
4.919[—3]
4.847[—4]
0.015 32
1.132[—3]
8.819[—5]

B3+

0.019651
1.125[—3]
6.723 [—5]
3.427[—3]
1.524[—4]
7.136[—6]

We are particularly interested here in very precise
values for the splitting between levels of high L in the
same X manifold; these have been measured in helium
with exquisite precision [7], and similar measurements
should be practical in lithium as well. As a first approxi-
mation, we have calculated the splittings for N =10 in
Li, using the results of Table II for a„P„and a2. Since

only the first two terms in the expansion of the optical
potential have been computed [Eq. (1)],we use the follow-
ing conservative expression for the energy shift h(NL)
away from the unperturbed energy —R /N:

6(NL ) =R [(V4+ —,
' V6 )+—,

'
V6 ],

where R =R(1—K/2) =3.289 584 678 X 109 MHz, for
Li, and where V4 and V6 are the expectation values of

the two terms in Eq. (1) to be evaluated analytically using
expressions like those given by Bockasten [8]. At this
level of accuracy it is necessary to include a relativistic
correction whose L-dependent part is [2,9]

R'
N (L+—,')

where R'=a R =1.751749X10 MHz . (14)

relativistic corrections. Note that a, must be known to
an accuracy of at least 1 X 10 to be consistent with the
estimates of error given here.

A recent calculation [10] of the lower-lying Rydberg
states of lithium is in the same spirit as the present work.
A polarized-orbital ansatz is used there to represent the
distortion of the atomic core by the valence electron, but
the asymptotic expansion is not made. For this reason it
is possible to treat S, P, and D states numerically. Never-
theless, the values of the polarizabilities and the nonadia-
batic coefficients are calculated only in the Hartree-Fock
approximation for the two-electron core and are not as
good as the present ones. Agreement with experiment is
obtained but not to the accuracy we need for the higher
states. The Casimir effect for a multielec-
tron core system and a Rydberg electron has been dis-
cussed recently [11], and estimates have been made for
the three-electron systems of interest here.

V. CONCLUSIONS

We have presented the results of a systematic calcula-
tion of polarization-type sum rules for two-electron
isoelectronic systems, obtained by representing the inter-
mediate states by discrete pseudostates. Convergence is
generally good and improves (as expected) with increas-
ing nuclear charge as correlation decreases in impor-
tance. The results for Li+ are used to calculate splittings
in high Rydberg states of Li; even with the limited ex-
pansion (up to x ) used here to represent the nonrela-
tivistic optical potential, the accuracy for the 10L-10M
transition is about 1.S kHz. We hope that this work will

encourage experimental measurement of these splittings
and a further analysis of the theory of relativistic and re-
tardation effects.

We are now in the final stages of a series of similar cal-
culations for the polarizabilities of the helium atom,
which converge rather more slowly. Still more difficult is
the negative hydrogen ion (H ); it is of interest in the
study of excited states of the "molecule" PsH [12]. Final-
ly, we are also computing the polarizabilities of the posi-
tronium ion (Ps ). These last two require many more
terms in the expansions, and will also benefit from extra-
polation techniques [13].
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