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We have observed an effect known as a quantum eraser, using a setup similar to one previously em-
ployed to demonstrate a violation of Bell’s inequalities. In this effect, an interfering system is first ren-
dered incoherent by making the alternate Feynman paths which contribute to the overall process distin-
guishable; with our apparatus this is achieved by placing a half wave plate in one arm of a Hong-Ou-
Mandel interferometer so as to rotate the polarization of the light in that arm by 90°. This adds informa-
tion to the system, in that polarization is a new parameter which serves to label the path of a given pho-
ton, even after a recombining beam splitter. The quantum “eraser” removes this information from the
state vector, after the output port of the interferometer, but in time to cause interference effects to reap-
pear upon coincidence detection. For this purpose, we use two polarizers in front of our detectors. We
present experimental results showing how the degree of erasure (which determines the visibility of the in-
terference) depends on the relative orientation of the polarizers, along with theoretical curves. In addi-
tion, we show how this procedure may do more than merely erase, in that the act of “pasting together”
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two previously distinguishable paths can introduce a new relative phase between them.

PACS number(s): 03.65.Bz, 42.50.Wm, 42.50.Dv

I. INTRODUCTION

Interference is arguably the most fundamental effect in
quantum mechanics, the Young’s two-slit experiment be-
ing the canonical manifestation of complementarity. As
discussed by Bohr in his classic dialogue with Einstein, if
one tries to measure the momentum of the recoiling slits
to determine which slit the particle (e.g., photon, elec-
tron, atom, etc.) traversed, then one will observe particle-
like behavior, and no interference (wavelike behavior)
will arise. In a variant of this example, Feynman pro-
posed to “watch” the passage of an electron through a
particular slit by placing a light source immediately after
the slits and scattering photons off the electron [1]. Even
if one does not observe the scattered light, the electron
interference will be washed out (whenever the light is
scattered sufficiently to carry unambiguous information
about which slit was traversed).

This loss of interference is commonly interpreted as
arising from uncontrollable, irreversible interactions of
the interfering system with the environment, which often
takes the form of a macroscopic apparatus [2]. The re-
sulting measurement “reduces” the wave function of the
interfering system, including any phase information car-
ried by the particle, thereby eliminating the possibility of
interference. In Feynman’s example, scattering light off
the electron changes its center-of-mass wave function in
an uncontrollable manner, removing the phase coherence
between the two paths. While it is true that many mea-
surements are of this sort, there are situations where the
measurement process need not be so uncontrollable. In
these cases it is more helpful to view the loss of coherence
as due to an entanglement of the system wave function
with that of the measuring apparatus [3]. We will show
below how this destroys interference. We can also under-
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stand all of these results in terms of Feynman’s rules for
calculating probabilities: (i) Probability amplitudes of in-
distinguishable paths are summed, then absolute squared,
to yield the probability; this leads to interference terms.
(ii) Probabilities of distinguishable paths are summed,
yielding no interference. Thus it is the distinguishability
of alternative paths which prevents interference. When
information exists about which way (welcher Weg) the
particle went, the paths are distinguishable, and no in-
terference is possible. Interference may be regained, how-
ever, if one somehow manages to “erase” the distinguish-
ing information. This is the central concept of the quan-
tum eraser [4]. A nice review article on this and the re-
lated ideas of complementarity recently appeared in Ref.
[5].
Scully et al. [6] discussed a simple experiment to see
this effect, in which an atom is sent through a Stern-
Gerlach interferometer [7]. Upon measurement of the
atom’s passage through one arm of the interferometer,
the interference is made to vanish. This is true even if the
measuring apparatus does not change the spin state of the
atom, or affect the center-of-mass part of its wave func-
tion. Unfortunately, detailed calculations of the pro-
posed experiment made clear that it would probably not
be feasible in practice, due to the experimental difficulty
of controlling the fields to the degree necessary to observe
interference, even in the absence of a welcher Weg detec-
tor [8,9]. Another proposal using a two-slit type interfer-
ence of neutrons, with micromaser cavities as welcher
Weg detectors was also deemed very difficult [10]. To
date, the most promising of the proposed experiments on
particles involve the interference manifested in the quan-
tum beat phenomenon [10,11]. However, in addition to
also being rather difficult, though possibly feasible, these
experiments suffer the conceptual disadvantage that there
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are not actually spatially distinct paths as in the double-
slit versions. A somewhat different scheme with photons
using optical parametric amplifiers as welcher Weg detec-
tors was also recently proposed [12]. However, only par-
tial erasure is possible, and even then the practical obsta-
cle of lack of near-unit efficiency photon detectors must
be overcome.

As described below, we have performed a comparative-
ly simple experiment involving the interference of pho-
tons, which we believe demonstrates all the salient
features of the quantum-eraser phenomenon [13]. The
welcher Weg information is stored in the polarization
states of the photons, which are made distinguishable by
means of a half wave plate. The erasure is performed by
means of polarizers placed before the detectors. In Sec.
II we briefly describe our setup and the two-photon light
source in our system. The nonclassical interference effect
we employ is reviewed in Sec. III, introducing the neces-
sary quantum-field-theory formalism. The loss of this in-
terference is investigated theoretically in Sec. IV, and ex-
perimental results are shown. A simple derivation of the
quantum-eraser effect is presented in Sec. V, as are exper-
imental results. We show that not only is it possible to
recover interference, but also to change the form of the
interference pattern. A comparison of our experiment
with the various proposals is made in Sec. VI, along with
a discussion of its relation to some Bell’s inequalities ex-
periments and other two-photon experiments. The main
results are summarized in Sec. VII. Throughout we will
try to explain the phenomena both at an intuitive level
using Feynman’s rules, and also at a more formal level,
using the established quantum field-theoretic approach to
photodetection and correlation.

II. EXPERIMENTAL SETUP

A schematic of our apparatus is shown in Fig. 1.
Highly correlated pairs of photons are produced in a non-
linear crystal via the process of spontaneous parametric
down-conversion of a uv pump beam, generated by an
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argon-ion laser. The x'?) nonlinear medium is a 10-cm-

long potassium dihydrogen phosphate (KDP) crystal,
with the direction of the optic axis cut at 53° with respect
to the end faces, for type-I phase matching. The 351.1-
nm pump photons are spontaneously “split” into conju-
gate photons (conventionally denoted “signal” and
“idler”), which are horizontally polarized. With irises (2
mm diameter) and filters (10 nm bandwidth) at our detec-
tors, we select out the nearly degenerate pairs at 702.2
nm. Each detector consists of an RCA C30902S
avalanche photodiode (APD) cooled to —18°C, whose
output is fed into an EG&G-Ortec Model 583 constant
fraction discriminator.

This particular light source has been well studied, and
has been used previously in other investigations of funda-
mental quantum optical phenomena [14]. In one such
configuration, the Hong-Ou-Mandel interferometer [Fig.
2(a)], the two correlated photons are brought back to-
gether by means of two mirrors, so that they impinge
simultaneously on the surface of a translatable beam
splitter [15]. We measure singles and coincidence rates at
the output ports (using a Stanford Research Systems
SR400 Gated Photon Counter). As explained in the fol-
lowing section, if the beam splitter is placed such that the
two photons reach it essentially simultaneously (.e.,
within their coherence times), interference will result, in
such a way that both photons always exit the same port
of the beam splitter. Thus a null in the coincidence rate
appears as the path length of one of the arms is slowly
scanned, even though the singles rates remain unchanged.
The width of the dip [ =40 um full width at half max-
imum (FWHM)] is determined by the filters in front of
the detectors. In practice, it was preferable to vary the
relative path length using an “optical trombone” in one
arm of the interferometer, thus avoiding the problem of
lateral walkoff associated with translating the recombin-
ing beam splitter directly. (One can show that dispersive
effects of the trombone prism have essentially no effect on
the interference dip [16].) Translation of the prism was
effected by a Burleigh Inchworm piezoelectric motion
system; a Heidenhain optical encoder yielded a position
resolution of 0.1 um.
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FIG. 1. Schematic of experiment to observe quantum eraser. D1 and D2 are avalanche photodiodes, P1 and P2 are polarizers, F1
and F2 are bandpass filters, and HWP is a half wave plate whose optic axis is at an angle ¢/2 to the horizontal polarization of the

down-converted beams.
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FIG. 2. (a) Simplified setup for a Hong-Ou-Mandel interferometer. (b) Feynman paths for coincidence detection.

III. HONG-OU-MANDEL INTERFERENCE

One can explain the coincidence null at zero path-
length difference using the Feynman rules for calculating
probabilities. The two indistinguishable processes [Fig.
2(b)] which lead to coincidence detection in the above set-
up are both photons being reflected at the beam splitter
and both photons being transmitted. For simplicity, sup-
pose we have a 50:50 beam splitter, and choose the ampli-
tude transmission coefficient to be real. The Feynman
amplitudes are then r Xr and ¢ X¢, and the probability of
a coincidence detection is

2

i i 1 1

= X + V3 X V3

= X 2:
P.=|rXr+tXxt| NV ReRYS

0,

(1)

where the factors of i come from the phase shift upon
reflection at a beam splitter. When the path-length
difference is greater than the coherence length of the pho-
tons (i.e., when the photon wave packets no longer over-
lap at the beam splitter), there is no such cancellation
effect and coincidence events occur one half of the time,
since each photon individually has a 50% chance of being
reflected or transmitted.

More formally, we write the wave function after the
beam splitter in terms of Fock states:

|¢)Ax=o=%[|1112)+”2102>+i|0122>*|1112>]

=é[|2lo,_>+|0122)] : 2)
where the subscripts denote the propagation modes to the
two detectors, and the subscript of |¢) indicates zero
path-length difference. As discussed in earlier works
[14-17], the conjugate photons actually have a relatively
broadband frequency distribution, which is determined in
practice by irises and filters in front of the detectors.
However, since we operate near degeneracy, and since we
are considering zero path-length difference, this generali-
zation is an unnecessary complication for our purposes.
According to the standard theory of photodetection and
photon correlation [18], the coincidence counting rate is
given by the fourth-order correlation function

Pch(Z)(tl,tZ;t27tl)
=(P B\ DEST ()ES () BV (e )ly) 3)

where, omitting irrelevant normalization constants, the
positive- and negative-frequency field operators are

defined in terms of creation and annihilation operators as

iwt

E[Pt))= [doaw)e

and 4)

ot

ET)= [doafwee™ (j=1,2).

We have neglected polarization for the moment, which is
justified because the photons are both horizontally polar-
ized, and our detectors are polarization independent. At
zero path-length difference the integrals over frequency
contribute only an overall normalization factor [19]. We
can then understand the essence of the measurement de-
scribed by Eq. (3) by considering the reduced operator
formed by creation and annihilation operators for the
two detector modes: ﬁc,,edzafagazal. Clearly, ﬁc,,ed
gives zero when it operates on |/),, -, as given in Eq.
(2).

When the path-length difference is greater than the
coherence length of the down-converted photons
(Ax >>7.), the “transmission-transmission” and
“reflection-reflection” coincidence possibilities are in
principle distinguishable, so they do not interfere. In this
limit, we find

P(Ax>>7,)~ %( L1,I8, el 141,)

it 5 1
+T< 1112|Pc,red|1112>= 2 .
(The reduction by a factor of 2 reflects the fact that we
are only considering coincidence counts, not cases where
both photons go to the same detector.)

This demonstrates the coincidence dip at zero path-
length difference to the beam splitter. Note that the
singles rate at either detector, given by
P, ~G(t;;))=C(Y|E;7(t;)E; " (1,)|), does not show
this dependence on path-length difference. It has been
shown that as long as the visibility of the coincidence dip
is greater than 50%, no semiclassical field theory can ac-
count for the observed interference [20].

(5)

IV. LOSS OF INTERFERENCE

In the spirit of the Feynman two-slit experiment, we
ask if one can perform a ‘“measurement” on the photons
which will yield which-way information. Of course, we
could place an APD or photomultiplier directly in one of
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the input arms of the interferometer, but then lack of
coincidence is a trivial consequence. We consider instead
what happens when a half wave plate at an angle ¢ /2 to
the horizontal is inserted into one input arm of the inter-
ferometer, as depicted in Fig. 1 (and we adjust the trom-
bone to compensate for the optical path length of the
wave plate). The polarization of the photon in that arm
is then rotated by ¢, making the two Feynman paths par-
tially distinguishable, thereby reducing the amount of in-
terference. The degree to which the interference is lost
depends on the angle ¢, and is calculated below. In the
extreme case (¢/2=45°) the polarization states of the
two different photons reaching the beam splitter are or-
thogonal. The two paths are now completely distinguish-
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able and the amplitudes are squared before being
summed. The result: no interference. These effects are
shown in Fig. 3(a).

In terms of our earlier formalism, we have entangled
the number-state basis wave function with polarization
information:

[¥) sx=0=2[I1,1,)® |H,(H +¢),)

where the notation H; indicates that the photon reaching

detector j is horizontally polarized, and (H +¢); indi-
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FIG. 3. (a) Profile of interference dip in coincidence rate for three wave plate orientations. (Accidental coincidences have been
subtracted, and rates far from dip have been normalized to the same value.) Note that the interference effect is seen to vanish when
the wave plate is at 45°, i.e., when the input ports to the beam splitter are made distinguishable. (b) Visibility as a function of half
wave plate angle. The solid line is a fit to theory, with maximum visibility as the free parameter. The experimental points do not lie
exactly on the same curve because slight fluctuations in alignment affect the visibility.
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cates that the photon is polarized at an angle ¢ to the
horizontal. We have already omitted the kets in which
both photons go to the same detector, since we are in-
terested here in coincidence rates. We introduce the fol-
lowing simplified notation:

|9) axco=2L111F ) — |17 +215)] | (6b)
1
pr = t ot - t
Pora= 2 a0, 820,010, = 2 @01
ApA=H,V ApA,=HV

=(ala,)al4,)=

Using the expansion |1¥%¢)=[1¥)cos¢+|1])sing, we
find

P (0)~<¢|P’c,red|¢>Ax =0 %Sln2¢ . (8)
When the path-length difference is greater than the pho-

ton coherence length, the calculation of the coincidence
rate proceeds as before:

1 S
P.(Ax >>7,)=~ Z< 9P, 15151 +4)

4
+4 a (U0 8|P; 1H+e1d) = 9)

N{'—

The visibility of the dip, defined as V={P.(Ax
>>7,)—P.(Ax =0)} /P.(Ax >>7.), has the form cos’¢.
The experimental demonstration of this relationship is
shown in Fig. 3(b). The lack of perfect visibility even at
¢=0 results from imperfect alignment of the system, so
that the signal and idler modes leaving the beam splitter
are already somewhat distinguishable, regardless of their
polarization.

Following Scully, Shea, and McCullen [6], one can also
approach the loss of interference in terms of the density
matrix. When the photon-propagation states are entan-
gled with the polarization states, the density matrix of
the system is enlarged. It still represents a pure state,
however, with the quantum coherence of the entangle-
ment manifested in the off-diagonal matrix elements. The
“collapse” to a mixed state occurs when we trace over the
polarization degrees of freedom, i.e., when we detect the
final propagation direction of the photons irrespective of
their polarization. In this case the reduced density matrix
has only diagonal elements, because the polarization
states |H; ) and |¥;) (which are essentially the “environ-
ment” for our purposes) are orthogonal. This is precisely
the method of decoherence recently discussed by Zurek,
although he focused on an environment which was either
“uncontrollable” or possessed a large number of degrees
of freedom [21]. In either case, the process is effectively
irreversible, which is certainly not the case in our experi-
ment, as we shall see presently.
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To account for polarization, the field operators may
now _be generalized to the vector operators
4;=8;y€;y+8;y€;,y and 3,=8; y€; y +8; y€; y, where
€,y and €; , are orthonormal polarization vectors (asso-
ciated with detector index j =1,2) in the horizontal and
vertical directions, respectively. The new reduced opera-

tor relevant for coincidence counting is then

t
a2,1,92,1,

(al Hal H+al Val V)(aZ HaZ H+a2 VaZ V) @)

V. QUANTUM ERASER

The essence of the quantum eraser can be understood
relatively easily now in Feynman’s language of distingui-
shability. As we have seen, with the half wave plate at
45°(¢=90") the two paths leading to coincidence detec-
tion (“reflection-reflection” and “transmission-
transmission”) are distinguishable; they leave the light in
each port in a different polarization state. For this
reason, their probabilities are to be added incoherently,
and there is no interference term. What if one could erase
the information carried by the polarization, thus making
the final states indistinguishable? This is precisely what
happens when one places polarizers oriented at 45° to the
horizontal in both output ports of the interferometer.
(See Fig. 1.)

Both paths can lead to coincidence detection, and to
the same final state. Therefore their probability ampli-
tudes are added, thus reviving the Hong-Ou-Mandel in-
terference dip at equal path length. Note that the inser-
tion of a polarizer in only one of the output ports is
insufficient to erase the distinguishability of the final
states, because the photon in the other port still possesses
welcher Weg information. Hence the only effect of a sin-
gle polarizer is to reduce both the singles and the coin-
cidence count rate by half.

The editing accomplished with two polarizers is not
limited to erasure, as can be motivated by the following
observation. Regardless of the rest of the system, the
light in port 2 can always be broken up into its orthogo-
nal polarization components. But we just saw that with
both P1 and P2 at 45° the interference dip reappeared
(albeit attenuated by a factor of 4). Furthermore, we ar-
gued that the coincidence profile with polarizer P1 at 45°
and P2 not in place was a flat line. It is clear then that if
P1 is placed at 45° and P2 is placed at —45°, instead of a
dip, a peak centered at zero path-length difference will
now appear. These theoretical results are presented in
Fig. 4(a) and our data in Fig. 4(b). As shown below, this
is merely a specific instance of a more general property of
the two-photon state emitted by the interferometer. (It
should be noted that the possibility of producing a peak
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at zero path-length difference greatly aids the alignment
process for the Hong-Ou-Mandel interferometer.)

We now present a simplified analysis, limiting our-
selves to the case $=90°. A more complete calculation is
presented in the Appendix. The output of the inter-
ferometer is given by a special case of the entangled state

100
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in Eq. (6b):
lp0))y=1[[11]) —[111i) ], (10)

where we have again dropped terms which could not lead
to coincidence counts. Detection of a photon at one port
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FIG. 4. (a) Theoretical curves showing how two polarizers at appropriately chosen angles can erase distinguishability, restoring an
interference pattern. (b) Experimental data and scaled theoretical curves (adjusted to fit observed visibility of 91%) with polarizer 1
at 45° and polarizer 2 at various angles. Far from the dip, there is no interference and the angle is irrelevant. At the dip, the nonlocal
collapse of the polarization of photon 2 causes us to observe sinusoidal variation as predicted in Eq. (13). [Normalization is the same

as in Fig. 3(a).]
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FIG. 5. Plot of coincidence rate vs relative angle of polarizers 1 and 2, corrected for accidentals. The smooth curve is a fit to

theory, with visibility as a free parameter.

with no polarizer collapses the remote photon into a
mixed state with half polarized horizontally and half po-
larized vertically. However, if a linear polarizer is placed
at an angle 6, to the horizontal in output port 1, a detec-
tion event at detector 1 corresponds to a von Neumann
projection in the subspace corresponding to that port
onto the state vector |6, )=(|1¥)cos6, + |1} )sinb,). We

are left with a pure state for the conjugate photon:

(0,19) ax—0=3(113)cos8, — |15 )sin6;) . (1
Examining output port 2 with another polarizer, we ob-
serve that the light in this mode is polarized orthogonal
to 6,; the probability amplitude is
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FIG. 6. Erasure also occurs, but in a somewhat different fashion, if the two polarizers are kept at the same angle and scanned to-
wards 45°. With perfect visibility, the absolute angle would affect only the count rates far from the dip (clearly, at 0° or 90° no coin-
cidences can ever be observed), and a total null would be observed at the dip because the two photons in the “singlet” state of Eq. (10)
are always orthogonal. (The data are normalized to singles and corrected for accidentals.)
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(0,019 o —o=1({1%|cos6,+ ( 1}]sind,)
X (1Y) cos8; — 14 )sing,)
= 1(sinf,c0s0, — cosB,sinb,)
=Lsin(6,—6,) . (12)
Thus
P (0)=|(6,6,|¢) s, —o|*=1sin*(6,—6,) . (13)

Hence the interference dip can be revived, but depending
on the relative angle of the polarizers (see Fig. 5), it may
be phase shifted and thus reappear as a peak, or any in-
termediate form. [Equation (13) may be recognized as a
typical prediction of quantum theory when applied to
certain tests of Bell’s inequalities. This is hardly a coin-
cidence, for the same nonlocal effect is responsible for
both phenomena. We will discuss the relationship be-
tween our quantum-eraser experiment and similar Bell’s
inequalities experiments in Sec. VI.]

On the other hand, when the path-length difference is
great compared with the coherence length of the photons,
the probabilities for the two different paths leading to
coincident detection add incoherently regardless of any
polarizers:

P.(Ax >>71.)=~[1(0,6,|181)) 12+ |1(6,6,|1}14) |2
= 1{cos?0,sin’6, +sin’6,cos’6, }
=1{sin¥0,—6,)+sinX(6,+6,)} . (14)

This varies with absolute angle, in contrast to Eq. (13),
since horizontal and vertical components act indepen-
dently (see Fig. 6).

VI. DISCUSSION

The relationship between our experiment and other
proposed quantum-eraser schemes is rather subtle. For
comparison, we will focus on a particular proposal by
Scully, Englert, and Walther [22], in which excited atoms
are made to interfere in a two-slit—type geometry. A mi-
cromaser cavity is placed in each of the interfering paths,
and prepared so that an atom passing through will decay
with near certainty, leaving a photon in the cavity. For
certain initial states of the cavity fields (i.e., number
states), the extra photon from the decay constitutes
welcher Weg information, and the first- order interference
effect (fringes visible in singles detection of the atoms) is
washed out. By allowing the cavity fields to subsequently
interfere at a suitably placed detector, quantum erasure
may be accomplished. However, as the authors stressed,
this erasure is fundamentally a second-order
phenomenon, in that the fringes can only be seen by
correlating the photon counts with data stored elsewhere.
In principle the decision of whether or not to erase could
be postponed indefinitely, even beyond the time of detec-
tion of the atoms.

Our experiment differs somewhat from this proposal in
that the basic Hong-Ou-Mandel interference effect is in-
trinsically a second-order, quantum-mechanical effect.
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That is, fringes are never visible in singles detection, and
coincidence fringe visibility above 50% defies semiclassi-
cal explanation. While this puts the pre- and post-eraser
fringes on the same footing, it has a disadvantage in that
the distinguishing information we add and then erase is
carried by the same photons which are to interfere. We
maintain that this difference is not as fundamental as it
may first appear. Although our photons themselves carry
the information describing which trajectory they took,
they do so only via their polarization vectors. We erase
the information after they have already left the inter-
ferometer, and without affecting their center-of-mass
wave function. In both Scully, Englert, and Walther’s
proposal and the present experiment, the measurement of
which-way information consists of coupling the interfer-
ing particle’s spatial wave function to the disjoint Hilbert
space describing the welcher Weg detection system (e.g.,
micromaser cavities or photon polarization space). While
this does not affect the spatial wave function, it does en-
large the Hilbert space in which it resides. It is the en-
largement of the Hilbert space through entanglement,
and subsequent reduction, which is the central feature of
the quantum eraser.

It is useful to consider a slight gedanken variant of our
experiment, which is in principle identical to it. We em-
ploy polarizing beam splitters, rather than simple polariz-
ers, so that both polarizations may be detected. A com-
puter then stores in one file the times of photon detection
events (regardless of polarization), and in another file the
polarizations of the detected photons. (Note that by
making a polarization-insensitive quantum nondemoli-
tion measurement before the polarizers, one could delay
the choice of polarizer orientations until after the coin-
cident detection measurement.) Varying the orientation
of the polarizing beam splitter then affects only the
second file, and not the first; no interference is discernible
in the first file until the data are correlated with that in
the other file. As this may be performed long after the
data are originally stored, we have a ‘“delayed-choice”
version of the quantum eraser.

Zajonc et al. have recently discussed two experiments
in connection with the quantum eraser [23]. One of the
experiments, while certainly a remarkable demonstration
of complementarity, differs fundamentally from the
quantum-eraser proposal in that it is entirely a first-order,
not a second-order, interference effect. Detection events
are never correlated with measurements on the “environ-
ment,” and no delayed-choice version would be possible,
even in principle. Their other result involves an interfer-
ence effect which exists only in coincidence detection, as
in our own experiment. The “ ‘delicate’ change” which
leads both to distinguishability and to erasure in their ex-
ample is the removal and reinsertion of a beam splitter in-
side the interferometer [24]. In this sense, it is not a
quantum eraser since it is the structure of the interferom-
eter itself, and not just the structure of the detection
scheme, which determines once and for all the presence
or absence of interference fringes.

Some of the results presented here have been observed
previously by other researchers, in the context of nonlo-
cal correlations and Einstein-Podolsky-Rosen experi-
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ments [25,26]. Our goal was to shift some of the focus to
the phenomenon of quantum erasure, which is another
striking aspect of quantum entanglement. The central
element in many, if not most, tests of Bell’s inequalities to
date is the singlet state of the correlated photons [27].
Although our photons are not produced in such a state in
the down-conversion process, it arises when their polar-
ization states are entangled with their propagation modes
(i.e., lower or upper arm) [28]. From this perspective, the
quantum eraser and the Bell-type tests are just different
approaches to investigating and understanding the char-
acter of the entangled states. One might then argue that
some of the previous Bell-type tests were the first
quantum-eraser results. However, we believe that it is
important to demonstrate the loss of interference before
reviving it, an aspect that, to our knowledge, has not
been covered in any Bell-type experiments. Furthermore,
the general goals of the two viewpoints differ. While the
Bell’s inequalities experiments seen to disprove the reality
of local hidden variable models, the quantum eraser
stresses the loss of coherence through entanglement with
the “environment,” and the possibility of recovering that
coherence in certain circumstances.

VII. CONCLUSIONS

The quantum eraser offers an alternative perspective
on interference and loss of quantum coherence in terms
of (in)distinguishability of paths. Alternate paths are
made distinguishable by correlating them to the ‘“‘envi-
ronment.” Depending on how we reduce the resulting
enlarged Hilbert space, we may opt to retain welcher Weg
information and have no interference, or to reestablish in-
distinguishability and interference. We may make this
choice long after the original interfering system has been
detected, by correlating that data with the results of par-
ticular measurements on the environment with which the
system was entangled. Of course, this demands that the
coherence of the relevant environmental states be main-
tained.

Proposed experiments using atoms or neutrons, while
intellectually engaging in principle, are at best very
difficult in practice. We have seen that it is possible to
demonstrate the essential features of the quantum eraser
using a comparatively simple arrangement involving the
correlated photons produced in spontaneous parametric
down-conversion. The interference normally present

B (O He) =[17+0) (114611 +9)
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when the two photons are superposed at a beam splitter
was made to vanish when the alternate processes leading
to coincidence counts were made distinguishable. For
this purpose a half wave plate in one arm of the inter-
ferometer served to entangle the photon spatial wave
function with the polarization subspace. Using polarizers
at the output, it was then possible to restore interference,
and even to alter its form.

One of the things the quantum eraser teaches us is that
the state involved in interference is the ftotal physical
state, which in addition to photon spatial wave functions
may include photon polarization, or even distant atoms
with which the photons have interacted. In all realiza-
tions of the quantum eraser, the “magic” comes about
through entangling the interfering system with some oth-
er degrees of freedom. The eraser “meddles” with the in-
terference only via this entanglement, regardless of
whether the extra information is stored in states of re-
mote atoms or in the polarization components of the pho-
tonic wave functions. The process allows the introduc-
tion of an arbitrary phase between different components
of the entangled state; in this sense, the phenomenon is
better described as quantum editing.
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APPENDIX

As a preliminary to the general calculation of the
quantum eraser effect, with arbitrary orientations of the
half wave plate, polarizer P1, and polarizer P2, we write
the effective projection operator for a polarizer at an an-
gle 0 to the horizontal, placed along the path correspond-
ing to the propagation mode index j:

Py j(0)=[15+0) (17 *9|
=(|1{")cos6+ 1] )sin0)({ 1¥|cos6+(1/]sin6) ,
(A1)

pol,j

where we are considering only the effect on single-photon
states. It will be useful to consider the effect of this
operator on a state of arbitrary polarization:

=(11])cos6+ 1] )sin0)({ 1¥|coso+ 1/sin6)(|17)cosg+ | 1/)sing)

=[1f")[cosB(cosb cosg +sinf sing) ]+ |1 ) [sinB(cos6 cosp +sinf sing)] .

(A2)

For example, we can then examine the rate of single-event detection for a single-photon state, horizontally polarized,

passed through a polarizer:

P,=GV(t;0)=(P|E (DB 1)|p)

~(17|B,, ()@} ay +a}a,)P,, ;(6)]17) =cos*0+cos?sin0=cos?0 ,

(A3)
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which is the result expected from Malus’s law.

We now show that using a single polarizer, before detector D1 for instance, is not enough to revive the interference
dip. Using the reduced coincidence detection operator from Eq. (7), and the entangled state of the photons from (6b),

we have

Pc(O)z('plppol,l(gl)pc,red,ﬁpol,l(el)|¢>Ax =0

H+6,, , H+6
=L =g L @] pay g el ey y)

H+6,, , H+6
X(a;,HaZ,H+a;,VaZ,V)|11 D e — i ) )

= Lsin?¢(cos*0+2 cos?0 sin’0 +sin*0) = Lsin’¢ .

(A4)

We see immediately that for $=90°, when the two paths are maximally distinguishable there is no null in coincidence

for any orientation of a single polarizer at the output.

We turn now to the general case with two polarizers set at arbitrary angles 6, and 6,.

Pc(o)z(wlﬁpol,l(el)ﬁpol,z(ez)ﬁc,redlﬁpol,Z(GZ)ﬁpol,l(91)|¢>Ax =0

H+6 H+86 H+6.
=1 e — e 1y Oy T

(15 NGy, tal e )

H+6 H+6 H+6
X (@) gy g8l 8, )15 L D O T DA ey — [ 1H e ]

Using Eq. (A2), one can expand |4 5, —g=P 1 2(6,)P 0 1(6))|¥/) o, . After simplifying algebra one finds
|9) ax == 1715 ) cosb,cos8,sin(8, — 8, )sing + || 11} ) sinb;sinb,sin(6,— 6, )sind

+[1#1) ) cosB,sinb,sin(8, — 6, )sing + | 1]14 ) sin@,cosB,sin( 0, — 6, )sing .

It then follows that
P(0)= (PP, s’ |$) sx—o=sin’¢sinX(6,—6,) ,

which is the more general case of Eq. (13).
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FIG. 1. Schematic of experiment to observe quantum eraser. D1 and D2 are avalanche photodiodes, P1 and P2 are polarizers, F1
and F2 are bandpass filters, and HWP is a half wave plate whose optic axis is at an angle ¢/2 to the horizontal polarization of the
down-converted beams.



