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Newly developed methods for finding the semiclassical or WKB eigenvalues and eigenfunctions for
vector wave fields are applied to spinning particles moving in central potentials subject to spin-orbit
forces. The new methods are like the familiar Bohr-Sommerfeld or Einstein-Brillouin-Keller quantiza-
tion methods for scalar wave fields, but involve additional issues relating to Berry s phase, gauge struc-
tures, and monopolelike singularities. All these extra issues occur in the asymptotics of spin-orbit cou-

pling. The role of angular momentum and conservation laws is particularly interesting, due to the role

played by gauge fields in the classical-quantum correspondence. The work presented is a contribution to
ongoing semiclassical studies of shell structure in nuclei and other fermion systems such as metal clus-

ters, as well as an example of the general methods of semiclassical vector wave quantization.

PACS number(s): 03.65.Sq, 03.40.Kf, 21.10.Ma, 02.40.+m

I. INTRODUCTION

This paper contains a study of Bohr-Sommerfeld (i.e.,
semiclassical, WKB, Einstein-Brillouin-Keller, or torus)
quantization for a vector wave field in several spatial di-
mensions. The wave field considered is the (2s+1}-
component spinor wave function for a particle of spin s
subject to spin-orbit forces. The necessary theory for
Bohr-Sommerfeld vector wave quantization has only re-
cently been brought to a satisfactory condition, in the
sense of possessing the same geometrical clarity and
elegance as Bohr-Sommerfeld quantization for scalar
wave fields. The new theory involves a number of ele-
ments not present in the case of scalar waves, including
Berry's phase, gauge structures, monopolelike singulari-
ties, and mode conversion (or Landau-Zener transitions).
All these elements except mode conversion are important
in the present study of spin-orbit interactions. Therefore
part of the significance of this work is that it is an explicit
example, worked out in full detail, of the new techniques
of vector wave quantization.

A second point of significance of this work is that it is
part of a series of studies investigating the role of classi-
cal periodic orbits in organizing and explaining the shell
structure of many-particle fermion systems, such as nu-
clei and metal clusters. Such studies are necessarily semi-
classical in nature, and the present work shows explicitly
how certain semiclassical methods can be extended to
spinning particles with significant spin interactions (we
have worked specifically on spin-orbit effects in nucleons,
but generalizations are easy}.

Semiclassical or WKB techniques have long been ap-
plied to vector wave equations, and many specific exam-
ples from many areas of physics have been worked out.
The subject was treated from a fairly general standpoint
in 1975 by Bernstein [1], who dealt with general linear
wave equations, both differential and integral, in any
number of spatial dimensions. Bernstein derived the gen-
eralizations of the Hamilton-Jacobi and amplitude trans-
port equations, familiar in scalar WKB theory, in a form

appropriate for vector wave equations. Bernstein did not,
however, consider the problem of Bohr-Sommerfeld
quantization. This prob1em was later considered in one
dimension by Berk and Pfirsch [2] and in one and several
dimensions by Yabana and Horiuchi [3]. These authors
found a quantization condition for one-dimensional prob-
lems, but had diSculty in generalizing it to more than
one dimension. Furthermore, the one-dimensional quant-
ization condition lacked the elegance and geometrical
simplicity of the analogous quantization condition for
scalar waves. Yabana and Horiuchi recognized the im-
portance of Berry's phase in vector wave propagation,
but did not incorporate it into the quantization condition
in a fully symmetrical way.

A real breakthrough in the problem of semiclassical
quantization of vector wave fields was made by Kuratsuji
and Iida [4], who approached the subject from the stand-
point of path integrals rather than WKB theory. This
approach has the advantage that it quickly leads to the
realization that Berry's phase must be incorporated into
the symplectic form in the classical phase space, from
which point it influences not only the phase of the wave
function (a fairly obvious conclusion), but also the classi-
cal dynamics of the rays, the definitions of the fundamen-
tal Poisson brackets, and the meaning of Lagrangian
manifolds in phase space. In our opinion, this is the most
significant and nontrivial feature of Bohr-Sommerfeld
vector wave quantization, which distinguishes it from the
scalar case. Kuratsuji and Iida made several studies of
the quantization condition, from the standpoint of a path
integral and coherent-state formalism. Regrettably, our
own recent papers [5] on this subject have not given
proper credit to their important work.

Parallel developments seem to have been made by
mathematicians, who have studied U(n) bundles and con-
nections over Lagrangian manifolds. We are particularly
aware of the work of Karasev [6], who treats many of the
same subjects as Kuratsuji and Iida and ourselves. This
work is somewhat technical for nonmathematicians, so it
is dif5cult for us to evaluate it, nor are we aware of any
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physical applications. But in many respects it does seem
to reach equivalent conclusions.

Our own contribution to the subject of vector wave
quantization proceeds from the standpoint of WKB
theory. In our work [5] we rediscovered the modified
symplectic form of Kuratsuji and Iida, and also explored
such things as amplitude determinants, explicit formulas
for wave functions, gauge invariance, and monopolelike
singularities. All these features make their appearance in
the present study of spin-orbit interactions. We also pro-
vided a critique of the older WKB approaches of Bern-
stein, showing why they make it difficult to formulate a
quantization condition, and we developed new ap-
proaches to the WKB analysis, based on the Wigner
function, that circumvent the difficulties.

In some respects the comparison of our work with that
of Kuratsuji and Iida is not straightforward, since it in-
volves the translation of results from path-integral and
coherent-state theory into those of WKB theory. In par-
ticular, there is an extra first-order term in our ray Ham-
iltonian (denoted in A, ,z in Ref. [5]), which is not mani-
festly evident in the results of Kuratsuji and Iida. This
extra term was not new with us, but was present already
in Bernstein's theory [1]. It was later transformed into
Poisson bracket form by Kaufman, Ye, and Hui [7], and
further examined by Yabana and Horiuchi [3]. This term
is of the same order of magnitude as the Maslov terms
and the Berry's-phase terms, and is absolutely necessary
to get the correct eigenvalues, as the calculations of this
paper show. Recently Fukui [8] has made progress in
reconciling the two approaches, concentrating especially
on the extra term in question.

Our motivation for examining spin-orbit effects derives
from a series of earlier studies of the semiclassical behav-
ior of nucleons in various model nuclear potentials. The
first of these is a paper by Carbonell, Brut, Arview, and
Touchard [9], which examines spherically symmetric nu-
clear potentials from a classical and semiclassical stand-
point. This was followed by a study by the same authors
of oblate and prolate potentials [10], and by Frisk and
Arvieu [11] on rotating potentials.

Part of the motivation for these studies was to use clas-
sical periodic orbits as a tool for understanding shell
structure in nuclei, including deformed and rotating nu-
clei which typically exhibit a mixture of regular and
chaotic behavior in their classical dynamics. The role of
periodic orbits in shell structure is an old one, for which
a basic reference is Bohr and Mottelson [12]. The theory
seems first to have been developed from a deep stand-
point in the work of Balian and Bloch [13], although at
the time of their work the distinction between regular
and chaotic classical dynamics was not fully appreciated,
and Berry's phase was not appreciated at all. Since that
time the subject has been developed by a number of au-
thors, including Strutinskii and Magner [14], Frisk [15],
and others. This theory has also been applied to prob-
lems outside of nuclear physics, such as in the recent
work by Nishioka [16] on metal clusters. Most of these
studies have dealt with the scalar Schrodinger equation
and have neglected spin; an exception is some early work
by Balian and Bloch, on which we will comment below.

More recently, Arvieu, Rozmej, and Ploszajczak [17]
have incorporated spin-orbit effects into their models of
nuclear potentials by treating the spin as a classical vec-
tor confined to a sphere of constant radius. In this
manner one can construct classical models and study
periodic orbits, order, and chaos, etc. However, in treat-
ing the spin classically, one is in effect assuming that the
spin quantum number is large; the fact that in reality it is
not large presumably introduces errors that are larger
than the usual ones expected in semiclassical theories. It
is not clear whether these errors are important or not but
treating the spin variable as a continuum is certainly one
approach to incorporating spin in semiclassical theories.
It is to be contrasted with the approach taken in this pa-
per, in which the spin variables are retained in discrete
form and the spin quantum number is not assumed to be
large.

There are other semiclassical treatments of spin-orbit
effects in the literature. One is by Balian and Bloch [18],
who treated the spatial or orbital variables by semiclassi-
cal means, while retaining the discrete nature of the spin
variables. This is exactly as in this paper. Balian and
Bloch recognized that their approximations implied an
adiabatic motion of the spin variables, which are driven
by the slow classical variables describing the orbital dy-
namics. They developed semiclassical expansions for the
energy-dependent Green's function, proceeding by an
amplitude-phase representation for the wave function,
much as in a special case of Bernstein's theory [1]. They
did not consider the problem of Bohr-Sommerfeld quanti-
zation (except insofar as it is implicitly contained in the
poles of the Green's function).

Another aspect of the problem was treated by Balazs
and Pauli [19], who used the Wigner function, general-
ized into a matrix in the spin coordinates, to compute
various quantities of interest for spin- —, particles. In par-
ticular, they studied spin-orbit effects in central-force po-
tentials, as in this paper. These authors carried out most
of their calculations in terms of the exact eigenfunctions
for the spherically symmetric case, but at the end intro-
duced semiclassical (Thomas-Fermi) approximations and
discussed variational principles. One of their results was
the discovery of two classical Auids governed by two clas-
sical Hamiltonians, much as we will also find in our cal-
culations below. Balazs and Pauli did not consider the
Bohr-Sommerfeld quantization problem.

In this paper we consider spin-orbit effects in central
potentials, and derive explicit results both for eigenvalues
and eigenfunctions. The calculation is in a sense a
"straightforward" application of the methods of Ref. [5],
in that no new general principles are introduced. But the
analysis takes a number of surprising twists and turns, ul-
timately reinforcing our belief in the fundamental impor-
tance of Berry's phase and the modified symplectic struc-
ture of Kuratsuji and Iida. We will show that both the

eigen values and the eigenfunctions computed by our
theory are the correct asymptotic forms of the exact solu-
tions. Our theory for the wave functions, in particular,
automatically generates the correct asymptotics of the
spherical harmonics and the Clebsch-Gordan coefficients.

The example we study in this paper is integrable, so it
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presents nothing new from the standpoint of chaos
theory. But chaotic systems have been discussed in Ref.
[5], in which we showed that they present no more (or
less) difficulty than in the case of scalar waves. If the
spherically symmetric potential of this paper is replaced
by an axially symmetric one, then chaotic orbits do arise.
We have performed calculations for this case, and have
derived the noncanonical symplectic form and studied
the classical dynamics. We have found in these studies
that mode conversion (nonadiabatic spin flips) are impor-
tant, and this discovery has led us to examine multidi-
mensional mode conversion or Landau-Zener transitions
from a general standpoint. A preliminary report on this
work is given in Ref. [20]. These calculations on axially
symmetric potentials are of greater importance for real
nuclear problems than the spherically symmetric poten-
tials studied in this paper, and we will report on them at
greater length in the future.

There are some obvious questions that arise when one
considers what must be involved in a semiclassical treat-
ment of spin-orbit coupling, comparing to what is known
in the standard semiclassical treatment of (spinless)
central-force motion. For example, for spinless particles,
the classical orbits lie in planes perpendicular to the clas-
sical angular-momentum vector L. But with spin-orbit
effects included, the quantum operator L is not con-
served; only J is conserved. Does this mean that the clas-
sical orbits no longer lie in a plane? And concerning J, is
there a conserved classical vector which corresponds to
it? These questions and others like them cannot even be
properly addressed without an appreciation for the role
of Berry's phase in the semiclassical mechanics of vector
waves. Therefore we will let the following analysis speak
for itself, mentioning only that the study of conserved
quantities in general and angular momentum in particu-
lar is one of the most interesting aspects of the following
calculation.

II. ELEMENTS OF THE CALCULATION

We consider a particle of spin s governed by the quan-
tum Hamiltonian

2
H= +V(r)+f(r)L S,

2M
(2.1)

[S,,S, ] =e;JkSk (2.2)

(without the fi}. We will generally use Latin indices i,j,k,
etc., which run over 1,2,3, to index vectors in
configuration space. In atomic problems, one would nor-
mally take

1 d V

c
(2.3)

but for the purposes of this paper f(r) need not be
specified.

In the asymptotic analysis of the Hamiltonian of Eq.

where M is the mass, where the potential V is spherically
symmetric, where L=rXp, and where S is the vector of
dimensionless spin operators, satisfying the commutation
relations,

2

D &= +V(r) E5 &+—f(r}(L S) ~ .
2M

(2.4)

In this equation, r,p, L, etc. , are classical quantities.
Similarly, D &

in Eq. (2.4) is a component of a
(2s + 1)X (2s + 1) Hermitian matrix D which is a func-
tion of (r,p); thus, D=D(r, p) is a field of Hermitian ma-
trices over the six-dimensional classical phase space.
Throughout this paper, we use Greek indices to run over—s, . . . , +s, representing spinors. We sum over repeat-
ed indices, as in Eq. (2.4), with the exception of the polar-
ization indices to be introduced momentarily.

In this paper we treat the WKB expansion as a devel-
oprnent in A, which is straightforwardly carried out as de-
tailed in Ref. [5], with one exception. The exception is
that we treat the spin-orbit term in the Harniltonian of
Eq. (2.1) as of order fi, just like the kinetic and potential
energies, in spite of the fact that fi occurs in f (r), as
shown in Eq. (2.3). We justify this approach by noting
that spin-orbit effects are considered large in nuclear
problems, and also by arguing that there is no harm from
a purely mathematical standpoint in treating all the
terms of the Hamiltonian as of the same order. A similar
approach was taken by Balian and Bloch [18); it allows us
to circumvent the difficulties associated with a dispersion
tensor which is degenerate at lowest order.

To proceed with the semiclassical analysis, we require
the eigenvalues A,0"' and eigenvectors ~'"' of the disper-
sion matrix D &, where p is a polarization index (in the
terminology and notation of Ref. [5]). That is,

(~) g(p)&(p)aP+P 0 +a (2.5)

Polarization indices are placed in parentheses to em-
phasize that they distinguish the eigenvalues and eigen-
vectors, and are not spinor indices. For example, for
fixed value of p, ~'"' is a spinor, with components ~'"'.
(This distinction is partly phychological, because some-
times a polarization index can be interpreted as a spinor

(2.1), we will assume that the typical wavelength of the
spatial part of the wave function is small in comparison
to the scale length of the system. Apart from the fact
that the wave function has several components (namely,
2s + 1), this is the usual WKB assumption. It is
equivalent to assuming that the spatial quantum numbers
(n, 1,m ) are large in comparison to unity, and, in particu-
lar, large in comparison to the spin quantum number s,
which we treat as of order unity. On the other hand,
WKB theory often gives good results even when its nomi-
nal conditions of validity are breaking down, so, even
when quantum numbers are small, we can hope that our
results will be better than just qualitative.

Following the program presented in Ref. [5], we write
the wave equation in the form 8/=0, where D =8 E, —
and we regard both D and 8 as (2s+1)X(2s+1) ma-
trices of orbital operators (E stands for E times the spi-
nor identity matrix). We use carets to emphasize that
operators are being referred to, not classical functions.
Next we use the Weyl correspondence to transcribe these
orbital operators into their symbols or classical counter-
parts, and obtain the dispersion matrix,
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index, and will be so written. It depends on which aspect
we wish to emphasize. )

Since the first major term in Eq. (2.4) is already diago-
nal, the problem of determining the eigenvalues and
eigenvectors of D & reduces to finding those of L S. In
the theory of Berry's phase [21], a popular model prob-
lem is that of the adiabatic evolution of a spinning parti-
cle in a time-dependent magnetic field, for which the
Hamiltonian is proportional to B-S. Therefore with B re-
placed by L, most of the known results for this standard
problem can be applied to our calculation. These stan-
dard results have been collected and organized in Appen-
dix A; it turns out we will need all of them.

The eigenvalues are immediate; they are given by

2

Ag~'(r, p) = + V(r) E+p—Lf (r), (2.6)

A, ,p = i rt [~, A0],— ,

and where A. &2 has no name and is given by

(2.7}

where p= —s, . . . , +s, and where L = ~L~. The disper-
sion tensor is degenerate on the surface L =0, which is
the mode-conversion surface [we will not worry about
any possible vanishings of f (r)]. This surface has codi-
mension 2 or dimension 4 in phase space, in spite of the
fact that the vanishing of L requires the simultaneous
vanishing of the three components of L, for these three
components are not independent when L=O. (Alterna-
tively, we can have L=O only if r and p are parallel.
This implies four free parameters. ) In this paper we will
stay away from the mode-conversion surface, i.e., we will
assume L %0, so that the asymptotic expansion developed
in Ref. [5] will be valid. This is also in accordance with
the assumptions discussed earlier, i.e., that the spatial
quantum numbers are large. In any case, we note that
the degeneracy of the dispersion matrix at L=O is
(2s + 1)-fold; for s )—,', this is not a generic degeneracy.

The eigenvectors ~'"' of D & are determined in the usu-
al way in the theory of Berry's phase by using rotation
operators, as discussed in Appendix A. We write
I =L/L and (8, , $& ) for the spherical angles of L or /, and
regard r'"' as a function of either (e&,P&) or 1 or L or
{r,p) by progressively lifting from the unit I sphere to L
space to the full phase space. In the two gauges discussed
in Appendix A, north standard gauge and south standard
gauge, the monopole string lies, respectively, at the south
and north poles of the unit 1 sphere. When lifted into
phase space, the monopole string is the surface specified
by L=L,z, with L, (0 or L, &0, depending on the
gauge. These surfaces have codimension 2 or dimension
4 in the phase space, the same as the mode-conversion
surface. We will henceforth drop the polarization index
(p) on A, and r and other quantities which depend on it, it
being understood that we are working with a definite po-
larization p.

In the theory developed in Ref. [5], the eigenvalue iL0 is
only the lowest-order term in the classical Hamiltonian
corresponding to a given polarization. The first-order
correction is written AA, , =iri{A,,p+A, ,2), where A, ,p is the
Berry's phase term,

l —(D p
—
A,()5 p)[r*,vp]

. . (2.8)

In these expressions, the curly bracket is the Poisson
bracket.

In our problem the Berry's phase contribution to the
Hamiltonian vanishes, for the eigenvectors v. depend only
on the angular momentum L, and the eigenvalue A,0 given
in Eq. (2.6}, being rotationally symmetric, Poisson com-
mutes with L. Another way to say this is that since L is
constant along the orbits generated by A,Q, the eigenvector
~(L) is also constant, so there is no transport on the unit
l sphere, and no accumulated Berry's phase. We will re-
turn later to the implications of this fact.

As for A, ,2, it is gauge invariant, as noted on general
grounds in Ref. [5], so it must be possible to compute it
without knowing explicit forms for ~ in some gauge.
Such indeed is the case. Once again we call on the fact
that ~ depends only on L, to write

87 Gap
[ra&rp] e(jkL; gL gLj k

(2.9}

and we use Eq. (A22) for the derivatives. The result in-
volves the vector potential A(L), which represents
Berry's 1-form on angular-momentum space, and is
therefore gauge dependent. But when we contract this
with either 5 &

or D &, the gauge-dependent terms drop
out, and we are left with

A )2= —,
' f (r)[p —s(s + 1)] . (2.10}

The details of this calculation are summarized in Appen-
dix B.

Altogether, we have obtained the following classical
Hamiltonian describing the evolution of the rays in phase
space for polarization p:

H(rp) = + V(r)+f (r) pL+ —
[JM

—s(s + 1)]2M 2

(2.11)

p=j —l . (2.13)

This shows that the polarization index is essentially a la-
bel for the total angular momentum j, given a value of

where we have set A(r, p) =H(r, p) —E, and where the
classical H depends implicitly on (p}.

A physical interpretation of the polarization index p is
obtained if we compare this result with the result of an
exact quantum treatment of Eq. (2.1}, in which we set
J=L+AS and restrict to a subspace of constant j and l.
In this case the spin-orbit term takes the form,

f(r)L S=—,
' ifi(rr)[j(j +I)—l(1+1)—s(s+1)] . (2.12)

On the other hand, standard analysis in scalar (one-
component) WKB theory [22] for spherically symmetric
problems leads us to expect that L is quantized according
to L = (I +—,

' )R; substituting this into Eq. (2.11}and com-

paring with Eq. (2.12), we find that the two results agree
exactly if we take
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the orbital angular momentum I. Furthermore, the range
of values on IM is exactly the correct one for the coupling
J=L+AS, i.e., p= —s, . . . , +s implies

j =I —s, . . . , I +s. This calculation also shows that the
correction term A, ,2 to the ray Hamiltonian, which was
not appreciated in earlier multicomponent WKB theories
[1],is essential to get the correct eigenvalues.

III. DO WE NEED BERRY'S PHASE
OR NONCANONICAL COORDINATESY

z,' =z, —ifi~t[r, z, }, (3.1)

where (for the present problem) a =1, . . . , 6. The new,
primed coordinates are noncanonical, but they have a
number of advantages over the unprimed, canonical coor-
dinates, such as the fact that the Berry's phase term in
the ray Hamiltonian vanishes when the Hamiltonian is
expressed in terms of them. This causes the ray Hamil-
tonian to be gauge invariant, as discussed in Ref. [5]. In
fact, the original motivation for introducing the non-
canonical coordinates z' was to get rid of the Berry's
phase term, in order to obtain a ray Hamiltonian that is
gauge invariant.

In the present problem, however, the Berry's phase
term in the ray Hamiltonian has already vanished, as not-
ed below Eq. (2.8), so the ray Hamiltonian is gauge in-
variant even in the canonical coordinates z =(r,p). This
fact is an ideosyncracy of the present problem and does
not hold generally (for example, A, ,~ does not vanish in
the Stern-Gerlach problem discussed in Ref. [5]). Never-
theless, since our ray Hamiltonian is already gauge in-
variant, we are led to question whether we really need to
bother with Berry's phase or noncanonical coordinates,
as detailed in Ref. [5]. That is, the ray Hamiltonian in
Eq. (2.11) describes the evolution of a single polarization

p and can be thought of as the symbol of a wave operator
for a scalar-wave equation; therefore it seems logical sim-

ply to solve the Hamilton-Jacobi equation corresponding
to Eq. (2.11}in canonical coordinates and to construct ei-
genvalues and eigenfunctions in the usual way.

The results of doing this are that one does obtain the
correct eigenvalues, but the multiplicities are wrong and
the wave functions, even though they correspond to a
definite and complete set of quantum numbers, are gauge
dependent. A proper understanding of the latter two de-
fects in the calculation requires both Berry's phase and
the noncanonical coordinates z', and provides a consider-
able reinforcement for their importance in multicom-
ponent WKB theory, even in a problem such as this one,
for which A, ,~=0. We will now proceed with the stan-
dard WKB analysis of Eq. (2.11) in canonical coordi-
nates, initially taking a somewhat devil s advocate point

In Ref. [5] considerable attention was given to the fact
that the total ray Hamiltonian A, is in general gauge
dependent because of the Berry's phase term

ir—[r,lp]. In particular, it was argued that a
proper understanding of the gauge invariance of both ei-
genvalues and eigenfunctions requires the introduction of
a new set of phase-space coordinates z'=(r', p'), defined
in terms of the old set z = (r, p) by

of view, and show finally what goes wrong and why.
The Hamiltonian in Eq. (2.11) is integrable, and the

corresponding Hamilton-Jacobi equation is separable in
spherical coordinates. The calculation of the solution
S(r) of the Hamilton-Jacobi equation, the actions I;, and
the eigenvalues proceeds much as in any textbook exam-
ple of central-force motion. In particular, the invariant
tori are level sets in phase space of the commuting con-
stants of motion (H,L,L, ), and the basis contours I;,
around which the actions are computed according to

1
Ii I.p dr

277
(3.2)

dt3
= [r,L, ] =zXr,

dp
dt3

=[p,L, ] =zXp,
(3.3)

where t3 is not time but just the parameter of the orbits.
These orbits are just rotations about the z axis, as shown
by the general solution,

r(t3 ) =R (z, t3 )rp, p(t3 ) =R (z, t3 )pp, (3.4)

are the contours on the torus obtained by holding all but
one of the coordinates (r, 6,$) at a time fixed. We will
call these contours (I „,I'e, I &), and the corresponding
actions (I„,I&,I&). The actions are quantized according
to I; = (n; +m; /4)fi, where n; is the quantum number and

m; is the Maslov index [23], the Hamiltonian is expressed
as a function of the actions, and the energy eigenvalues
result. It is a standard calculation in EBK or torus
quantization [24,25].

For the moment, however, we do not need the explicit
form of the solution S(r) of the Hamilton-Jacobi equa-
tion, and a slightly different approach to the computation
of the eigenvalues has several advantages. Our approach
will differ from the usual one in that we will use different
basis contours on the 3-torus than (I „,I &, I &). We begin
by noting that (H, L,L, } Poisson commute with one
another, so that their level sets in phase space are La-
grangian invariant tori, in accordance with a theorem
proved by Arnold [26]. (This theorem is really a modern
version of a theorem due to Liouville, which is discussed
by Whittaker [27]. It is the basis for what we called the
Liouville method of solving the Hamilton-Jacobi equa-
tion in Ref. [5].) Next, we note that the orbits in phase
space created by treating each of the observables
(H, L,L, ) as a Hamiltonian lie on the tori, because all
three observables are constants of each other's Qows.
Therefore if any of these orbits forms a closed curve, it
can be used to construct a basis contour on the torus on
which it lies. From the basis contours, actions and eigen-
values can be computed, just as above, but without hav-
ing to deal directly with the Hamilton-Jacobi equation.
We will now carry out these calculations in a little detail,
because similar calculations will be needed in Sec. [5], in
the less familiar context of noncanonical coordinates.

One basis contour can be obtained from the orbits gen-
erated by L, =z.(r Xp). These orbits are the solutions of
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where R(z, t3) represents the rotation in axis-angle form
(i.e., z is the axis and t3 is the angle). Therefore after
elapsed parameter t3 =2m. , any one of these orbits traces
out a closed contour on the torus, for which we write I 3.
The corresponding action is easily computed by Eq. (3.2},

dr(t3)
I3 — p t3 dt32~ o dt3

dt ' M
= [r,H] = +pf(r)l Xr,

dp =[p H]

V'(r)+f'(r) pL+ —[p —s(s+1)]
r 2

+pf (r)1 Xp, (3.9)

2~
z (rXp)dt3=L, ,2' 0

(3.5)

since L, is constant along its own orbits and comes out of
the integral. When we rotate about the z axis, both 8 and
r are held constant, and only P varies; therefore the con-
tour I 3 is the same as the contour I

&
which emerges

from the Hamilton-Jacobi equation. Similarly, the ac-
tions satisfy I& =I3=L, .

Similarly, the observable L also generates orbits
which are closed curves in phase space. Now Hamilton's
equations are

where t =t, is time. The motion is not purelyyotential
motion because of the terms involving l X r and 1 Xp, but
the orbit as seen in configuration space does lie in a plane
perpendicular to L. The orbit is not, in general, closed,
and so does not by itself form a basis contour on the torus
in phase space. Such a basis contour can be constructed,
however, by combining the H evolution with the L evo-
lution, which by Eq. (3.7) consists of rotations in the
plane of the orbit. In particular, by combining these two
evolutions, we can cause the direction of r to remain con-
stant, while only its magnitude r varies. The resulting
contour I

&
is the same as the contour I „resulting from a

separation of the Hamilton-Jacobi equation. The variable
r satisfies equations of motion that can be derived from
the effective radial Hamiltonian,

dt2
= [r,L ] =2LXr=2LI Xr,

dt2
= {p,L ] =2LXp=2LI Xp,

(3.6)
1 L

H„d(r,p„)= p„+ + V(r)
r

+f(r) pL+ —[p, —s(s+1)]
2

(3.10)

r(t2)=R(1, 2Lt2)ro, p(t2)=R(1, 2Ltz)po . (3.7)

where t2 is not time but just the parameter of the L or-
bits. Since [L,L ] =O, L and 1 are constant along the L
orbits, and the solution consists of rotations about the l
axis by angle 2Lt2,

The final action I, =I„ is just (1/2m)fp, dr, com. puted in
the usual way for one dimensional problems. It cannot
be obtained in explicit form without knowing the func-
tional forms of V(r) and f (r).

The actions are quantized according to

Therefore after elapsed parameter t2=m. /L, any one of
these orbits forms a closed contour on the torus, for
which we write I z. The corresponding action is

Ii =I„=(n —1 —
—,
' )fi,

I2 = Is+ ~I~ =L = (1 +—,
' )fi,

I3 =I&=L,=m A,

(3.11)

dr(tz)
I2 = f p(&2) dr&

277 0 dt2

J 2L dt~=L .2' 0
(3.g)

During the L evolution, the variable P increases mono-
tonically if L, &0 and decreases monotonically if L, (0,
the variable 6 oscillates between its turning points, and
the variable r is held fixed. Therefore we have
I =I &+I &

if L, )0 and I =I 0
—I

&
if L, (0. These

equations relate the basis contour I 2 to those which
occur in the separation of the Hamilton-Jacobi equation.
Similarly, the actions satisfy I2 =I8+ ~I& ~, or

To obtain a final basis contour, we examine the orbits
of H, which are described by Hamilton s equations in the
usual sense,

where the Maslov indices are determined by counting
turning points, and where the quantum numbers (n, l, rn)
have been defined so as to agree with the usual notation
in the case of the spinless hydrogen atom, i.e., when
V(r) = k/r, f—(r) =0. The energy eigenvalues are
determined by expressing the Hamiltonian as a function
of the quantized actions; the Hamiltonian turns out to be
independent of I3, so the energy levels E„& are indepen-
dent of m. Of course, the energy levels do depend on the
polarization index p, which is a parameter of the Hamil-
tonian, and which by Eq. (2.13) can be regarded as just
another notation for the total angular-momentum quan-
tum number j. To emphasize this dependence, we can
also write the energy levels as E„'& ' or E„J&.

Furthermore, the energy levels so determined are the
correct semiclassical energy levels for the original quan-
tum Hamiltonian of Eq. (2.1). We can say this without
knowing the functional form of V(r} or f (r) and without
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having any prior multicomponent WKB theory to fall
back on, because the original quantum Hamiltonian in
Eq. (2.1) is separable, and can be reduced to a scalar
(one-component) radial equation. To do this, we choose
quantum numbers (j,l, m. ), where rnj is the quantum
number of J„and we write the exact eigenfunction of the
Hamiltonian in Eq. (2.1}in the form,

X(8,$)(l, m —a, s, a~j, m ), (3.12}

—L ~L, &+L, (3.14)

and because of the quantized values of the actions L and
L, given in Eq. (3.11),we have m = —1, . . . , + t, for a to-
tal of 21+1 values. This is exactly as in any textbook
treatment of any central-force problem by scalar WKB
theory, but it is unfortunately incorrect for the spin-orbit
problem, for which the degeneracy of Ej ( is
2j + 1=2(l +p)+ l.

The reason we have obtained the wrong multiplicities
has to do with monopole strings, i.e., the singularities in
phase space of the eigenvectors r'"'(r, p). Although these
eigenvectors have appeared nowhere so far in our semi-
classical analysis of the Hamiltonian in Eq. (2.11), never-
theless they were involved in the derivation of that Ham-
iltonian, in which one of the assumptions made was that
the amplitude of the WKB wave function, including the

where a is a spinor index (not summed}, where the Dirac
bracket is a Clebsch-Gordan coefficient in the form
(j,m, j2m 2 ~ j3m 3 ), and where Y&~ is a spherical har-
monic. Substituting this into the original quantum Ham-
iltonian in Eq. (2.1) and separating variables, we find a ra-
dial Schrodinger equation for 4,

(3.13)

in which P„d is exactly the same as in Eq. (3.10},except
that it is reinterpreted as a quantum operator on radial
wave functions with p„= iABl—dr, and the constants L,
L 2, and p are replaced, respectively, by (1 +—,

' )A,

l(l+1)fi, and j—l. This radial Schrodinger equation
can be subjected to a one-dimensional WKB analysis,
which leads to exactly the same energy levels E &„dis-
cussed in the preceding paragraph, apart from the
difference between (l+ —,') and l(1+1). This latter
difference is the usual one that arises in treating radial
equations [22,28]; it is of relative order fi and can there-
fore be considered outside the scope of standard WKB
theory, although it is usually agreed that (1+—,') gives
better answers.

Although the semiclassical analysis presented so far
does give the correct semiclassical eigenvalues E„&, it
does not give the correct multiplicities of the degenerate
levels. Multiplicities are determined in a semiclassical
analysis by counting the number of invariant quantized
tori which have a given energy. In the present case, since
the energies do not depend on the quantum number m,
we must count the allowed m values. Because of the clas-
sical inequality

f (r)=r (r, p)B(r)e' "", (3.15)

where p=p(r}=VS(r), and where 8 (r) is the scalar am-
plitude. The action function S(r) is determined by solv-
ing the Hamilton-Jacobi equation for the Hamiltonian of
Eq. (2.11), either by separation of variables or some other
method. The action function is parametrized by the
torus in question, which in turn is specified by the actions
I=(I„I2,I3), and may more properly be written S(r, I).
For given values of I, i.e., for a given torus, S is gauge in-
variant, since the Hamiltonian of Eq. (2.11) is gauge in-
variant due to the vanishing of the Berry's phase term
A, ,~. Therefore the amplitude, which is given by

1/2
8 S(r, I)

BrBI
(3.16}8(r}=

is also gauge invariant.
We see that the only gauge-dependent contribution to

the wave function comes from ~, which transforms ac-
cording to ~ ~e'~~, where g is the gauge scalar. As dis-

eigenvector ~, was slowly varying. Unfortunately, this as-
sumption is not valid near a monopole string, where ~ is
rapidly varying, and therefore the invariant tori which
are close to the monopole string cannot be used to con-
struct valid wave functions. This means that the count of
linearly independent wave functions of a given energy,
i.e., the multiplicity of the energy level, cannot be deter-
mined from an inequality such as Eq. (3.14), because
some of the tori in the range m = —1, . . . , +1do lie close
to the monopole string. For example, in north standard
gauge, the m values near —I cannot be trusted, because
the string lies at the south pole of the unit I sphere; and
in south standard gauge, the m values near +1 cannot be
trusted, because the string lies at the north pole.

But now one is likely to object that this cannot be the
true explanation for the incorrect multiplicity, because
the monopole string can be placed anywhere we want by
means of a gauge transformation. For example, why do
we not construct wave functions over the northern hemi-
sphere, i.e., for positive-m values, using north standard
gauge, and over the southern hemisphere, i.e., for
negative-m values, using south standard gauge? We can
overlap a little at the equator, so that some tori are
represented in both gauges. It would then seem that we
still have 2l+1 linearly independent wave functions,
which again is the wrong answer.

The flaw in this counterargument is that the wave
function associated with a given torus depends not only
on that torus, but also on the gauge. Therefore when we
overlap at the equator, using two gauges for some tori,
then the two wave functions corresponding to a given
torus will not be the same, even to within a multiplicative
factor. Therefore the count of linearly independent wave
functions is not the same as the count of tori. (Actually,
there is a certain important sense, to be explained later,
in which even the count of tori is not what it seems, i.e.,
2l+1.)

Let us examine the gauge dependence of the WKB
wave functions more closely. As shown in Ref. [5], the
wave functions have the form,
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cussed in Appendix A, both ~ and g depend essentially
only on I, but can be lifted into functions of L or (r,p).
The function r (r, p) in Eq. (3.15) is such a lift. There-
fore as we let (r, p) move around on the invariant torus,
the eiyenvector r (r, p) will change only if I changes. In
fact, I does change as we move around on the torus, but
not as much as one might expect, given that the torus is
three dimensional. For it turns out that I is constant
along two directions on the torus, and varies only in the
third. The three directions in question are those specified
by the flows of (H, L,L, ) given, respectively, by Eqs.
(3.9), (3.6), and (3.3). Along the L flow and the H flow, I
is constant because L is constant, since {L,L j =0 and
{L,H j =0. Therefore r is also constant along these
flows. Along the L, flow, however, L is not constant, but
rather satisfies

dL
dt3

={L,L, j =zXL . (3.17)

L,

Therefore along the L, flow on the torus, the vector I
traces out a small circle of constant latitude, as illustrated
in Fig. 1.

In Ref. [5] it was pointed out that in a general two-
component WKB problem, there is a mapping from any
N-dimensional Lagrangian manifold onto the Poincare
sphere, where N is the number of degrees of freedom,
given by any specific eigenvector of the dispersion matrix
computed over the Lagrangian manifold. In the generic
case, we expect this mapping to cover a one-dimensional
region of the Poincare sphere if N=l, and a two-
dimensional region if N 2. In the spin-orbit problem,
we have N=3, but the mapping only covers a one-
dimensional region. This is a reflection of the fact that
the spin-orbit problem is not generic.

In any case, since the eigenvector v is not constant as
we move around on the torus, different parts of the torus
can be subjected to different changes of phase under a
gauge transformation. Therefore the wave function g (r)
of Eq. (3.15) also suffers different changes of phase at
different spatial points, and a gauge transformation trans-
forms g (r) into a new function, which is generally
linearly independent of the old one. This substantiates
our earlier claim that the count of linearly independent

wave functions is not necessarily or obviously the same as
the count of tori.

But now another question arises. A given torus corre-
sponds to definite values of the quantum numbers (n jim),
which form a complete set and should therefore specify a
definite physical state. How then can the wave function
be gauge dependent? We might expect the wave function
to suffer an overall change of phase under a gauge trans-
formation, but not to be changed into a linearly indepen-
dent function.

A little thought causes us to be suspicious of the quan-
turn number m, corresponding to the operator L„since
we know that in the exact quantum Hamiltonian of Eg.
(2.1) L, is not conserved, nor is any other component L.
It is only the total angular momentum J=L+fiS which is
conserved. But the classical Hamiltonian of Eq. (2.11),
representing a single polarization, does satisfy the classi-
cal equation {L,Hj =0. How, then, is the conserved
operator J represented within the semiclassical descrip-
tion of a single polarization? And how are the noncon-
served operators L and S represented, if at all? In partic-
ular, is the operator L represented by the classical vector
L=rXp? Finally, how is it that we seem to find semi-
classically a simultaneous eigenstate of (H,J,L,L, ),
when E, does not commute with 8? We turn now to a
closer examination of these questions, which will greatly
reinforce our belief in the general importance of Berry's
phase and the noncanonical coordinates discussed in Ref.
[5]

IV. CONSERVED QUANTITIES
AND ANGULAR MOMENTUM

In scalar WKB theory, the relatconshcp between the
classical and quantum expressions for conserved quanti-
ties is straightforward. That is, if P is an operator which
commutes with the Hamiltonian P, [P,B]=0, then the
corresponding Weyl symbols F(r, p ),H (r, p ) satisfy
{F,H j =0 with a relative error of 0 (A' ).

In multicomponent WKB theory, however, things are
more complicated. Let us for the moment forget about
the spin-orbit problem and speak in general terms, using
the notation of Ref. [5]. We also restore polarization in-
dices for the time being. Writing the wave equation in
the form Dl(t=0 or 8 &/&=0, where D is a matrix of or-
bital operators with components 5 &, we will regard
another matrix of orbital operators F to be a conserved
quantity if [F,D]=0, i.e.,

F„D D„F„=0 . — (4.1)

=L

When we apply multicomponent WKB theory, D is diag-
onalized by a unitary matrix of orbital operators U,

g(1)

U DU=A= k(2)

FIG. 1. The angular-momentum vector L is not constant on
the invariant torus specified by fixed values of L„L,and 0,
but rather traces out a small circle of constant latitude, since L
does not commute with L, .

=(a diagonal matrix) . (4.2)

The individual polarizations then evolve according to the
operators A,

'"' on the diagonal of A. Evidently, the effect
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of the transformation of Eq. (4.2) is to block diagonalize
the wave operator D, much as is done in applications of
group theory to quantum mechanics, except that here
semiclassical methods are used to determine U.

Now we ask, can the action of F be represented by
some operator, say, f "', within the subspace consisting
of a single polarization p? The answer will be yes if F
does not mix polarizations, i.e., if F is diagonalized by the
same U as D itself,

(&)

U FU= f(2)

=a diagonal matrix . (4.3)

J'p=E;5 p+fiS'p, (4.5)

where the hat denotes an orbital operator, and where the
superscript position of i has no significance except visual
esthetics. The hat is omitted on S, because its com-
ponents are just numbers. We conjugate this with U,
writing the result in the form,

U J;U=U f;U+iiiU S;U=E;I—U [U,E;]+A'U S;U,

(4.6)

where I is the spinor identity matrix.
To see if this is diagonal, we transcribe the three terms

on the right-hand side, each of which is a matrix of orbit-
al operators, to their corresponding matrices of Weyl
symbols. The pv component of the first term is

Ti„=L;5„ (4.7)

where T, stands for "term 1," and where L; is the com-
ponent of the classical angular-momentum vector rXp,
in the same notation as in Secs. II and III. This term is
already diagonal. In the second term on the right-hand
side of Eq. (4.6) we use the Moyal formula (see Appendix
A of Ref. [5]) to write

T2„„= i AU~„[ U~„,L, ] = —ihr~"' [r~"',—L, ]

where we drop terms of order A, use U „=~'"' as ex-
plained in Ref. [5], and finally use the fact that 7 depends
only on L to compute the Poisson bracket. Next we sub-
stitute Eq. (A22} into this and use the fact that
(L.SH'"'=vLr'"' and the orthogonality relation for the
eigenvectors,

Then we can conjugate Eq. (4.1) with U to show that

[f(P) g(P)] 0 (4.4}

i.e., that the operator f "' on the diagonal is a conserved
operator within its polarization. This can be transcribed
into symbols, giving [f'"',A, '"'] =0, exactly as in scalar
WKB theory.

Let us now return to the spin-orbit problem, and apply
these ideas to the total angular momentum, identifying F
with a component J; of J. That is, we write

(p)o (v)
a a pv~ (4.9)

to obtain

T~„„=Pi(A'"'XL), 5„„+i' 5„„

g(r(P)tS r(v)) (4.10}

J|P)—J(P)(r p)

=L 1+ ~ +RA(~)XL.
L

(4.12)

Thus we see that the total angular momentum J is diago-
nalized by the same U as D, and that it does not mix po-
larizations; it therefore has a representative or symbol in
the phase spaces of each of the polarizations, which is
given by Eq. (4.12).

If we subject the orbital or spin angular momentum to
the same analysis, we easily see that neither of these is di-
agonalized by U [the result for the spin is already given
in Eq. (4.11)]. Therefore neither orbital nor spin angular
momentum can be represented in the subspace of a given
polarization, and neither has a symbol on those sub-
spaces. In particular, the classical vector L=r Xp is not
the symbol of the orbital angular momentum op-erator. If
we ask what function in the classical phase space
represents the quantum orbital angular-momentum
operator L, the answer is that there is no such function.
The subsequent analysis of this problem cannot be under-
stood unless this point is kept in mind; the classical vec-
tor L=r X p must not be interpreted as the symbol of the
quantum angular-momentum operator L.

These conclusions alleviate some of our worries of Sec.
III about seeming to find a simultaneous eigenstate of 8
and E, when these operators do not commute, for now
we see that L, =z.(r Xp) is not the symbol of the opera-
tor representing the quantum Z, within a given polariza-
tion. But if this is so, then what operator does L, corre-
spond to in the original quantum system? We can answer
this by reversing the symbol correspondence. We let P'

p
be the matrix of orbital operators corresponding to the
operator whose symbol is L; within each polarization (in-
dependent of p). Then we have

where A'"' is Berry's vector potential on angular-
momentum space as in Appendix A. Finally, the symbol
matrix of the third term on the right-hand side in Eq.
(4.6) is given by

T3„„=Pi(r'"'S r'"'} (4.11)

Adding these up, we find that the two terms which are
not diagonal, occurring in T2 and T3, cancel one another,
leaving a diagonal result which we write in the form
J &'5„„. The function J "' is the symbol of the operator
representing the ith component of the total angular
momentum within polarization subspace p. Reverting to
three-vector notation, we have
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P.', =y O.„E,(0,„)'

=L,S.,+y [O.„,L, ](0~„)' . (4.13)

place if the Berry's phase term in the Hamiltonian had
not misled us by vanishing.

F't3=(L;5 is+AS' p)

L;
(L S) (+Pie; I,L.$ r'"'Ak"'rI'' .

L
(4.14)

This operator is more easily understood in terms of its
symbol, which we compute using the same techniques as
before. We find

V. GAUGE-INVARIANT EIGENVALUES
AND MULTIPLICITIES

z,' =z, —A' A. [ L,z, ] (5.1)

The noncanonical but gauge-invariant coordinates
z' = (r', p') are given in terms of the canonical coordinates
z=(r, p) by Eq. (3.1), in which we can expand the Pois-
son bracket and express the result in terms of the vector
potential A on angular-momentum space [defined in Eq.
(A10)]. We find

The first term in this equation is the symbol of J'&, but,
overall, the o erator F' (i.e., the matrix of operators with
components '

&) is not simple. This operator does com-
mute with D, however, within errors of order A, so at
least we see that we were indeed constructing simultane-
ous eigenstates of commuting operators in Sec. III, even
if the labeling was misleading. But the most striking
thing about Eq. (4.14) is the third term, which is gauge
dependent. This shows that the symbol L, =z (rXp),
which apparently is gauge invariant, actually represents
an operator which is gauge dependent. This explains why
we found gauge-dependent wave functions in Sec. III, in
spite of having a complete set of quantum numbers, for
when one of the operators whose eigenfunctions we are
computing is itself gauge dependent, then naturally the
eigenfunctions are gauge dependent also.

Conversely, we have found that the gauge-invariant
operator J„when restricted to a subspace of a given po-
larization, is represented by a symbol which is gauge
dependent, as shown in Eq. (4.12). Thus we Pnd that
when canonical coordinates (r, p) are used on the classical
phase space, gauge-invariant operators have gauge-
dependent symbols, and gauge-invariant symbols corre-
spond to gauge dependen-t operators. The reason for this,
as discussed in Ref. [5], is that the canonical coordinates
(r, p) are themselves, in an important sense, gauge depen-
dent; one must use the coordinates (r', p'), which are
given in Eq. (3.1) and which represent covariant deriva-
tive operations, if one wishes to avoid a gauge depen-
dence which is hidden in the coordination themselves.

Although we have resolved many of the difficulties that
arose in Sec. III when we attempted to use canonical
coordinates and standard Hamilton-Jacobi methods to
construct semiclassical eigenvalues and eigenfunctions,
nevertheless we still have not determined the correct mul-
tiplicities, nor have we found gauge-invariant wave func-
tions. The general difficulty has been that Berry's phase,
although it does not contribute to the Hamiltonian, is
still present in the problem, since Berry's 1-form on phase
space, gs =ir dr, does not vanish. It may vanish along
the Hamiltonian Aow, but it does not vanish in other
directions in phase space, and in particular does not van-
ish in all directions on the invariant torus. Therefore we
now embrace the philosophy promoted in Ref. [5] of us-

ing noncanonical but gauge-invariant coordinates for the
semiclassical analysis, as we might have done in the first

or

r'=r+A A Xr,
p'=p+A A Xp,

(5.2)

where we have once again dropped the polarization in-
dices. The transformation between unprimed and primed
coordinates is an 0 (A') rotation which leaves magnitudes
unchanged, so we can write r'=~r'~=~r~=r and
p'=~p'~=~p~=p. The small angle of rotation is gauge
dependent. Furthermore, we define the vector,

L'=r' Xp'= L+A A XL, (5.3)

J(r', p') =L' 1+ pA
L

(5.4)

showing that the gauge-invariant operator J is represent-
ed by a gauge-invariant symbol in the primed coordi-
nates. Notice that J is parallel to L', but has a di6'erent

magnitude.
We now construct the fundamental objects necessary

for doing classical mechanics in noncanonical coordi-
nates, beginning with the symplectic 1-form. In our
primed coordinates, the symplectic 1-form is give&i by
g=g, +figs, where the canonical part g, is p'. dr', and
where gs is given by Eqs. (A8) —(A10). The total sym-

plectic 1-form is

which is just a convenient notation (in particular, it is to
be noted that neither L nor L' is the symbol of any kind
of orbital angular-momentum operator). Again, because
the transformation is just a rotation, we have
L'= IL'f = ILI =I..

Since the Hamiltonian of Eq. (2.11) depends only on
the magnitudes r, p, and L, it has the same functional
form in both the primed and unprimed coordinates. This
is as it must be, since in the general case the transforma-
tion from z to z' kills the Berry's phase term in the Ham-
iltonian and leaves the other terms in the same functional
form, and since in the present case the Berry's phase term
is absent from the outset.

The total angular momentum J is represented within a
polarization by the symbol given in Eq. (4.12), which is a
gauge-dependent expression. But when we transform to
the primed coordinates, neglecting terms of order A, we
find
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(=p' d r'+ A' A( L').d L' . (5.5) The result can be expressed in term of J, given by Eq.
(5.4). We find

This is the differential form which is integrated around
closed contours to compute action integrals.

From the 1-form we derive the total symplectic 2-form,
Q=dg,

Q =Q, +A'Q z =dp,
' h dr —

E, kL",'dL ' h dL k, (5.6)pA

2L

where we use Eq. (A24) for the curl of A. By expanding
out the dL's, this can be written

Q=M; dp h, dr',

where the 3 X 3 symmetric matrix M is given by

(5.7)

p
MJJ 5gJ +

3 Lg LJ ~

L
(5.8)

0 —M
Qb M 0 (5.9)

in the ordering z, =(r', p'), a = 1, . . . , 6.
From this we determine the matrix of fundamental

Poisson brackets J,b, which is the inverse of Q,b, as ex-
plained in Appendix B of Ref. [5]. We carry out the in-
version exactly (not truncating at order A'), so that impor-
tant identities such as the Jacobi identity will be exact.
%'e have

J,b=
0 M

—M ' 0
(5.10)

where

(M '); =5; — L L'.
L'(L+ja) ' ' (5.11)

The components J,b are the fundamental Poisson brack-
ets themselves, which are otherwise expressed by

[r,', r'j = [p,',.p'j =0, [r,',p' j =(M '),,
or by

(5.12)

If we write Q= —,'Q, bdz,
'

hdzb, expressing Q in terms of
its component matrix on phase space, then we have

[J Jjj=«jkJk (5.15)

so that it is the total angular momentum of the quantum
problem, expressed in terms of a symbol on the phase
space of a single polarization, which does form an SO(3)
Lie algebra. Thus, it is J, not L or L', which generates
classical rotations.

The total angular momentum generates rotations in all
the proper senses, as we see from the additional Poisson
bracket relations,

[r,',J, j =eijkrk,

[pi ~ j j ijkpk

[L,Jj j =eijkLk .

(5.16)

dp = [p',J, j =zxp' .
3

(5.17}

The orbits are rotations about z, exactly as in Eq. (3.4),
with period t3=2m. . Now, however, we use the non-
canonical expression for the symplectic 1-form, given in
Eq. (5.5), to compute the action I3. We have

We now consider the problem of determining the semi-
classical eigenvalues of the Hamiltonian H of Eq. (2.11),
using the Liouville method in noncanonical coordinates.
To begin we require three gauge-invariant observables
which commute with one another and with H. Gauge-
invariant observables which commute with H include J,
L', J, L, and H itself. We select the observables
(H,J,J, ) for the involutive set. By the Liouville-Arnold
theorem, the level sets of these observables in phase space
are 3-tori, and, as in Sec. III, we determine basis contours
on the tori by examining the Qows generated by these ob-
servables. An important difference is that now we use the
noncanonical Poisson bracket of Eq. (5.13) to compute
the equations of motion.

The Qow equations for J, are

d I'

dt3
= [r',J, j =z Xr',

Br,
'

Bp,
'. Bp,

'
dr,

' (5.13) I = 1 2~, dr'+A'A dL'
dt

2~ o dt3 dt3
(5.18)

where f and g are any two functions of (r', p'}.
We can now use Eq. (5.13) to compute Poisson brack-

ets among various gauge-invariant expressions of interest.
The components of L' are a good place to begin. After
some algebra, we find

L
i j j L+ 6

EigkLk
p

(5.14)

This shows that the components of L' do not generate an
SO(3) Lie algebra, and therefore their Hamiltonian flows
are not rotations on the phase space of a given polariza-
tion. But the relation [L',L j =0 follows easily from Eq.
(5.14}, and shows that we can multiply both sides by
(1+jjAIL) and bring the L inside the Poisson bracket.

The first term in the integrand is L,', which can be pulled
out of the integral since [L,',J, j =0. The second term is
the loop integral of the vector potential A around a small
circle on the sphere in angular-momentum space, as
shown in Fig. 1, since we have

dL'
dt3

=[L',J, j=zXL' . (5.19)

I3 =L,' y fi(1 cosei ) =J, —pA—. —(5.20)

Therefore the second term gives —pA times the solid an-
gle of the cap containing the north pole. Altogether, we
have
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The flow equations for J are

I r 2

dt's
=Ir', J ] =2JXr',

occurs, is not due to the Maslov index.
Any function of the actions is also quantized. In par-

ticular, by Eq. (5.4) we have

dp = [p', J ] =2JXp',
2

(5.21) J =L +pA,

so the quantized values of J are

(5.25)

which are rotations in the plane perpendicular to J with
period t2=vr/J, very much as in Eq. (3.7). The second
action is

2 2

(5.22)

in which the second term vanishes, since
d L'/dt~ =

[ L',J ] =0. By Eq. (5.21), the first term in the
integrand is 2J I.'=2JL, which is constant along the J
flow and can be taken out of the integral. Altogether we
have

(5.23)

I, =(n —1 —
—,')A,

I2=L =(1+—,')A,

I3=J,—p.fi=(m, .—p)I .

(5.24)

The quantum numbers n and I are as in Eq. (3.11),but m.
is new. The Maslov index for the action I3 is zero, be-
cause there are no turning points in the motion of Eq.
(5.17}, and the quantum number of I3 is m —p, an in-
teger. But if s is half-integral, then so will be p and there-
fore also mj. This is of course what we expect, but we
notice that the half-integral quantization of J„when it

the same answer as in Sec. III.
To find the final basis contour and action, we begin by

computing the equations of motion for H itself in the
primed coordinates. As noted earlier, the functional
form of H is the same in both the unprimed and primed
coordinates, and when we use the Poisson bracket of Eq.
(5.13) to compute the equations of motion, we find that
the second term of Eq. (5.11) does not contribute. There-
fore the equations of motion also have the same function-
al form in the primed coordinates as in the unprimed
coordinates, which is shown in Eq. (3.9). As before, the
final basis contour on the torus is a combination of the H
flow and the J flow, and the final action is given by
I, =(1/2m)(t)p„dr, exactly as in Sec. III.

We see that of the three actions, only I3=J,—pfi
differs in this calculation from what it was in Sec. III
(where we had I3=L, ). The two calculations give
different results because they are based on different tori;
the calculation of Sec. III was not wrong, but it was
based on a torus which was gauge dependent (since L, it-
self is gauge dependent}. In this section, however, our
torus is a level set of (H,J,J, ) and is gauge invariant.
The reason there is more than one invariant torus for a
given energy is that the spin-orbit problem is degenerate,
both classically and quantum mechanically.

In any case, we can now quantize the actions. We as-
sign quantum numbers (n, I, m }according to

J=(j+—,
' )A', (5.26)

VI. SEMICLASSICAL WAVE FUNCTIONS

We will now calculate the semiclassical wave functions
of the Hamiltonian of Eq. (2.1) for arbitrary values of the
spin s. To do this it is advisable first to familiarize oneself
with the standard calculation for the scalar case s =0,
which is summarized in Appendix C.

The multicomponent WKB wave function has the gen-
eral form

iS& (r)/R —i vb 7I/2
lP (r)=yB~(r)7. (r, p„)e

b

(6.1)

which is the multicomponent generalization of Eq. (C15)
and which is discussed in detail in Ref. [5]. Here

where we have "discovered" the relation j =1+@ [that
is, without having to call on the exact quantum solution,
as we did in writing down Eq. (2.13)]. Then, from the
classical inequality —J~J, ~ +J, we obtain
mj = —j, . . . , +j, for a total of 2j +1 values. Thus, the
tori, when represented and counted in the noncanonical
(r', p') coordinates, give the correct multiplicities for the
energy levels. There are no worries about monopole
strings, since the strings are gauge dependent, and the
coordinates (r', p') are gauge invariant.

We really have 2j + 1 quantized tori for a given energy
level, as is clearly shown in the gauge-invariant coordi-
nates (r', p'). But since the transformation to the gauge-
dependent coordinates (r, p) always has a singularity
somewhere in phase space, the representation of those
tori near the singularity in terms of the coordinates (r, p)
cannot be trusted. From an invariant geometrical stand-
point, we have to say that the phase space itself has no
singularities, and that it is foliated into invariant tori ex-
actly as the phase space in any integrable scalar WKB
problem. But this fact is obscured by using the gauge-
dependent coordinates (r, p).

This calculation reveals an important genera1 fact
which was not pointed out in Ref. [5], namely, that the
singularities associated with monopole strings only ap-
pear when canonical coordinates are used, and disappear
when the gauge-invariant, noncanonical coordinates are
used. This is because the monopole strings themselves
are gauge dependent, and cannot therefore appear when
gauge-invari'ant coordinates are used.

Because the radial action I„=I, is exactly the same as
in the canonical calculation of Sec. III, the energy levels
determined here are also the same as there, and, in partic-
ular, they agree with a standard semiclassical treatment
of the radial wave equation. Altogether, we have deter-
mined both the correct energy levels and the correct mul-
tiplicities by working in the noncanonical coordinates.
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L,
J,=L, +A p +z.(AXL) (6.2)

where A= A(L) is the vector potential for Berry's phase
in angular-momentum space, as discussed in Appendix A.

The only gauges we will use are north standard gauge
and south standard gauge, which we will distinguish by
setting 0 =+1 and cr= —I, respectively, where 0 is a
code to indicate the gauge. Then by Eqs. (A30) and
(A33), we have

p(cos8I —o )
A(L)

L sinl9I
(6.3)

which we cross with L=LI to obtain

z ( A X L)=p( o —cos8I ) . (6.4)
A A A

Here it is important to remember that the triad (1,8I,pl )

is attached to the tip of the vector L, and is not the same
as the triad (r, 8,$) which is attached to the tip of the
vector r. Combining Eqs. (6.2) and (6.4), we have

pb
=VS&(r) and the other notation is explained below Eq.

(C15). We will now work out the pieces of this wave
function for the problem at hand.

We work in the phase space of a given polarization p,
and generally suppress polarization indices. We will also
generally suppress the quantum the quantum number j,
since if I is given and p is understood, then j follows by
j =l+p. The invariant tori in the given phase space are
the level sets of (H,J,J, ) or of (I&,I2,I3 )

=(I„,L,J,—pA), which are quantized according to Eq.
(5.24). To compute the wave functions, we must use the
gauge-dependent coordinates (r, p), in terms of which the
tori have gauge-dependent representations. Actually, as
we have seen, the expressions for both H and L in terms
of (r, p) are gauge invariant, so only that for J, is gauge
dependent. To express J, as a function of (r, p), we com-
bine Eqs. (5.3) and (5.4) and neglect terms of order A to
obtain

81 =a, PI =y —
m /2, (6.7)

as is clear geometrically from Fig. 2.
Denoting the branches of pz by a + sign as in Appen-

dix C, we write y+, Pi+, co+, g+, and ~+ for various quan-
tities of interest (the angles co and g are defined in Fig. 2,
and discussed in Appendix C). The sign is not necessary
on ~=HI, because both orbits in Fig. 3 have the same in-

clination. By the geometry illustrated in Figs. 2 and 3,
we have

0i-+Pi+ =20 (6.8)

where (() is the azimuthal angle at which the wave func-
tion P(r, 8,$) is to be evaluated, i.e., of the point P in the
figures. As for the eigenvector r, we can use Eqs. (A34)
and (A35) to write

&y =& (8I,ply)=e d „(81)
i(crp —a)p(g ( ) (6.9)

particular, 8 factors into a radial and an angular part,
8 =8„8n, as shown in Eqs. (C16)—(Cl8).

Next we consider the eigenvectors ~. In a general
problem in multicomponent WKB theory, there are as
many branches b to the eigenvector ~ as there are to the
action S, because r(r, p } is evaluated at p =VS&. In the
present problem, however, the four branches of S dis-
cussed below Eq. (C4) correspond to only two branches of
~, since ~ depends only on L. That is, according to Eqs.
(C3) and (C4), I. has the same two branches as Ps, and is
independent of the branch for p„.

The two branches of pe correspond to two orbits, and
the two values of L are perpendicular to their respective
orbital planes. The physical situation is illustrated in
Figs. 2 and 3. The spherical angles (8&,gi) of either of
the vectors L are related to the inclination ~ and longi-
tude of ascending node y of the corresponding orbit by

J,=L, +o.pfi, (6.5)

which is the desired expression for J, in terms of (r,p).
In this equation, the gauge dependence of L, cancels that
of o.pR, to give the gauge invariant J,. Thus we see that
L, is invariant on any quantized torus, although its value,

L, =(mj op}fi, — (6.6)

is gauge dependent.
In spite of this gauge dependence, the torus is still a

level set of (H, L,L, ). Therefore if we pick one of our
gauges, then we can compute the action function
S =S,+Sz+S& exactly as in Appendix C, except that we
use Eq. (6.6) instead of L, =m A' for the quantized value of
L, . This action has the same four branches discussed in
Appendix C.

Furthermore, the re1ation between the amplitude 8
and the action S is the same in multicomponent WKB
theory as it is in the scalar case, so the computation of
the amplitude is exactly as discussed in Appendix C. In

FIG. 2. Geometry of the orbit. The particle is located at P,
in the plane of the orbit APQ. Point A is the ascending node,
and y is the longitude of ascending node. The inclination of the
orbit is ~. The angular-momentum vector L (not shown) is per-
pendicular to the plane of the orbit, in a direction given by
(Hi, gi ) =(a.,y —n /2).
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(6.14)

which allows us to rewrite the wave function in the form

where now

X [e'{"}+(—1) ' e '{"}j, (6.15)

[x']=(I +—,
' )ro —(m —a)2) . (6.16)

FIG. 3. For a given direction of the particle OP, i.e., for
given values of {8,$}and (L,L, ), the two branches of ps corre-
spond physically to two orbits. The branch pe &0 is the orbit
APQ in the figure, and the branch ps) 0 is the orbit RPD.
Point A is the ascending node of the orbit pz &0, and D is the
descending node of the orbit pz & 0.

for the two branches ( 6 ) of r in either of the two gauges
(o =+1).

We can now assemble the WKB wave function in Eq.
(6.1). It separates into a radial and angular part, just as
the exact wave function did in Eq. (3.12) and as the scalar
wave function did in Eqs. (C16)—(C19). We write

'(r, 8,$}= 4„i(r)P '(8,—$)
T

(6.10)

which is a generalization of the first line of Eq. (C19). We
substitute into this formula the quantized values of L and
L, given in Eqs. (5.24) and (6.6), and we use Eqs. (6.8),
(6.9), and (C14) to express everything in terms of the-
branch (pe (0). We find

P '(8, $)=Bne ' d'„'(8i)

X [e' " +( —1)™~a"e' "
j (6.12)

where

[x ]=(op —a)(P, P}+(I+,' )co (m—, op)rj —. — —(6.13)

In these equations and below we suppress the branch in-
dex + on pi, r0, 2}, etc., it being understood that we are
referring to the —branch. Next we use Eq. (6.7) and the
fact that P =y+ r}, evident from Fig. 2, to write

to indicate this separation, and we concentrate on the an-
gular part Y, which carries the spinor index, and which
alone can be calculated explicitly without knowledge of
the functional form of the potential.

The WKB formula for ti' is

+lm&(8 ~) B iLnplii( iS& Is+ iS&+/ii —in/2}

(6.11)

In these manipulations we are seeing the gradual disap-
pearance of the gauge-dependent terms (those depending
on 0 ), and the appearance of the phase of the asymptotic
form for Yi (8,$), shown in Eq. (C19), with m =mj —a.
We must remember, however, that co and g are functions
of L =(l+ —,

' )R and L, =(m ap—)A, so that the value of
L, is not the right one for the asymptotic form of Y&

with m =m —a. If, however, co and g were evaluated at
L, =(mj —a)R, then we would have the asymptotic form
of YI which otherwise seems to be appearing. Since the
difference b,L, =L, L, =(a—iu —a)R is small,
i.e., of order A', we can expand the phase in hL, to con-
vert the given phase into the desired one. We must retain
terms of first order in EL„ i.e., first order in A, because
we are expanding the action in the exponent of a WKB
expression. But by using homogeneity arguments as in
Eq. (C13), it is easy to show that the first-order terms
vanish, i.e., that

Lco(L,L, ) L,r}(L,L—, }=Leo(L,L, ) L,ri(L, L, )—
+O(bL, ) . (6.17)

A similar but easier argument applies to the amplitude

Bz, which can be evaluated at either L, or L„because
the amplitude is only needed to lowest order in A.

Thus we are able to introduce the asymptotic form for
Y& with m =m —a. In doing this, we ignore real and
positive multiplicative constants, but keep the conven-
tional phases indicated in Eq. (C20). This gives

P~™(8,$)= ' d,"p(8i) Yi (8,y) . (6 18)

Finally, we introduce the asymptotic form for the
Clebsch-Gordan coefficient,

( I, m a, s, a ~j, m—) =( —1)'+"d'„'(8i), (6.19)

with j =I +p. This asymptotic form is valid when j and
l are large and s is small, exactly as we require in the
present calculation. It is important that the phase con-
ventions used in the Clebsch-Gordan coefficient be coor-
dinated with those used in the YI, here we follow the

phase conventions of Edmonds [29] in both cases. [How-
ever, Edmonds interprets his rotation matrices in a pas-
sive sense, whereas we are taking the active point of view;
this means that the indices (a,p) on the d matrix should
be reversed when comparing to Edmond's formulas. ]
Combining Eqs. (6.18) and (6.19), we obtain the correct
asymptotic form of the exact wave function shown in Eq.
(3.12), to within an overall phase. The overall phase de-
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pends on the quantum numbers and on gauge code o., as
it may, but not on the spinor index a, as it must not.

Thus we see that the asymptotic theory of vector-wave
functions developed in Ref. [5], when applied to the an-
gular part of three-dimensional wave functions, repro-
duces the asymptotic forms not only of the spherical har-
monics, but also of the Clebsch-Gordan coefficients.

VII. CONCLUSIONS
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APPENDIX A: EIGENVALUES
AND EIGENVECTORS OF L.S

In this appendix L.S is regarded as a (2s + 1)X (2s + 1)
matrix, with components which are functions of the clas-
sical vector L.

Since the eigenvalues of any component of S are just
p= —s, . . . , +s, the eigenvalues of L S are pL, where p
is the polarization index and L =~L~. We will assume
that LAO, i.e., we will stay away from those regions of
phase space where L =0, so that the eigenvalues can be
assumed to be nondegenerate.

If R is some 3 X 3 proper rotation matrix, then we write
U(R) for the corresponding spinor rotation, i.e., the
(2s + 1 }-dimensional unitary representative of R if s is in-
tegral, or one of the two representatives, appropriately
chosen, if s is half-integral. In terms of U(R), the formu-
la expressing the adjoint action of the rotation group is

U(R) (a S}U(R)=a.(RS)=(R 'a).S, (Al)

where a is any three-vector. The exponentiated version
of this equation is

U(R) U(n, y)U(R)=U(R 'n, y), (A2)

In conclusion, we have shown by an explicit example
how Bohr-Sommerfeld vector wave quantization works,
and how Berry's phase, noncanonical coordinates, gauge
structures, and rnonopolelike singularities are used in a
practical calculation of eigenvalues and eigenfunctions.
We have also obtained new insights into the meaning of
invariant tori in the presence of gauge fields, and showed
how symmetries, conservation laws, and conserved quan-
tities express themselves in vector wave systems. In the
future we will report on calculations involving potentials
with only axial symmetry, which are not integrable and
which are of greater interest in nuclear applications than
the potentials studied in this paper.

where a rotation matrix in axis angle form is conjugated
by another, and where y is any angle.

If LAO, we will write the direction of L as I, and
denote the spherical angles of / by (8~, $1). The sub-
scripts on these angles are to distinguish them from the
angles (8,$) which elsewhere in the paper are used to
denote the spherical angles of the particle position, i.e.,
the vector r. A particular rotation R of interest is one
which rotates the z axis into l,

(A3)

Since this R is parametrized by L, we will write R(L),
R(l), or R(81,$~) for it, and U(L), U(l), or U(8I, P&) for
the corresponding spinor rotation.

We denote the orthonormal eigenvectors of S, by 'T"',
so that

S ~'"'=p~'"' .z z z (A4}

which, as one can show by using Eqs. (Al) —(A4), are
eigenvectors of L S,

(L S)r'"'=@LE'"' . (A6)

In the standard representations for the matrices S, the
eigenvectors r'"' are the columns of U(L).

We will sometimes write r'"'(L}or r'"'(l }or r'"'(8I, PI )

for the eigenvectors, to show that they, like R and U, are
functions of L or of its direction. We choose phase con-
ventions so that the eigenvector ~'"' actually depends
only on l and not on the magnitude of L; thus, ~'"' can be
regarded primarily as a spinor field over the unit sphere
in angular-momentum space, and becomes a function of
L only by lifting, i.e., by writing r'"'(L)=r'"'(l(L)).
Similarly, we will regard R and U as fields of matrices
over the unit I sphere, which can be lifted into the full
angular-momentum space in the same way. The collec-
tion of eigenvectors ~'"' for all p forms a field of ortho-
normal spinor frames over the unit l sphere, which can be
lifted along with the individual eigenvectors themselves.
All these fields, R, U, ~'"', and the orthonormal frames,
can be lifted a second time from angular-momentum
space to the full phase by writing, for example,
R (r, p)=R(L(r, p)), where L(r, p)=rXp.

Changes in phase conventions for the eigenvectors ~'"'
are the gauge transformations in the theory of Berry's
phase [21]. In order to preserve the interpretation of the
eigenvectors as fields over the unit l sphere, we require
that the gauge scalar g also be such a field, i.e., a function
of I, or else the lift of such a function into the full
angular-momentum space or phase space. The gauge
transformation itself has the form,

(A7)

notice that g, like ~, depends on the polarization JM

(different polarizations can be subjected to different gauge

If the standard representations for the matrices S are
used, in which S, is diagonal, then r,'"'=5~&. In terms of
the eigenvectors of S„we define

(A5)
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gg() —i(r(P) )tdr(P) (A8)

where B stands for "Berry." This may be regarded pri-
marily as a 1-form over the unit I sphere, which can be
progressively lifted into L space and then into the full
phase space. When g)(()') is regarded as a 1-form over L
space, we will use the alternative notation,

gg'= A'"'(L) dL, (A9)

where A'"'(L) is a "vector potential" in angular-
momenturn space. Thus, we have

g&(p)A'"'( L ) = i ( r'"')
L (A 10)

Under the gauge transformation of Eq. (A7), we have the
transformation laws,

gg(')~gg() dg(P)

A()M) A(P ) gg (p)

L

(Al 1)

(A12)

For the remainder of this appendix, we will drop the
polarization index (p), it being henceforth understood
that we are working with a definite polarization, and that
all the quantities, r, g, gs, and A, depend implicitly on )((,.

We now consider the parallel transport of an eigenvec-
tor r along a curve. Let some phase convention for r(L)
be chosen, and let L0 be some value of angular momen-
tum through which a curve L(s) passes, with L(0)=LO.
Let r(s) be the parallel transported eigenvector along the
curve, subject to the initial condition r(0) =r(LO). Then
r(s) is equal to r(L(s) } to within a phase, and satisfies the
differential equation [21]

t di
l7

dS
(A13)

The phase factor relating the transported eigenvector r(s)
and the conventional eigenvector r(L(s)) along the curve
can be worked out by using Eqs. (A10) and (A13). The
result is

dLr(s) =exp i f A ds r(L(s)) .
0 ds

(A14)

In particular, if the curve is a closed loop, then we have

r„„„=exp (t} A dL (A15)

transformations).
The rotation matrices R that satisfy Eq. (A3) are not

uniquely determined by that equation, since an R that
satisfies Eq. (A3) can be multiplied on the right by any ro-
tation about the z axis, or on the left by any rotation
about the 1 axis, and the new R will also satisfy Eq. (A3).
Thus, there is a convention involved in the selection of R
and therefore of U as fields over the unit 1 sphere. If
(uAO, then redefining R in this way is equivalent to per-
forming a gauge transformation on ~'"', so the conven-
tions for R, U, and ~'"' are all closely related.

Given a convention for ~'"', we define Berry*s 1-form
by

Now suppose the curve L(s), when projected onto the
unit I sphere, is a great circle, and that the parameter
$ =a is the angle along the great circle. Then the parallel
transported vector can be expressed in terms of a rotation
taking place in the plane of the great circle,

r(a) = U(m, a)r(LD), (A 16)

where ax is a unit vector perpendicular to the plane of the
great circle, and U(m, a) denotes a rotation about m by
angle a, i.e.,

U(m a) e ™s (A17)

To prove Eq. (A16), first we note that r(a) is indeed an
eigenvector of L(a) S, as follows from Eq. (Al}. Next,
we use Eq. (A16) to compute the left-hand side of Eq.
(A13), to get

irt =~ (m S)r .
da (A18)

We have here the expectation value of m S with respect
to an eigenvector of a component of S, namely, l S,
which is in a direction perpendicular to m. This must
vanish, as one can see by taking expectation values of the
commutation relations of the S matrices. This proves Eq.
(A 16).

Next we consider two neighboring points L and
L+hL of angular-momentum space, assuming again that
definite phase conventions for r(L} have been chosen.
We parallel transport r(L) over to L+b,L, and compute
the result ~(L+b,L) in two different ways. In the first
computation, we use Eq. (A14), which we write in the
form

r(L +EL)=(1 +iA bL)r(L+bL), (A19)

since the path is infinitesimal. In the second calculation,
we rotate by an infinitesimal angle ha in the plane
spanned by L and L+b,L, i.e., we use Eq. (A16), setting

LXhL
mrna= I 2

Then we have

(A20)

V(L+bL)= 1 — (LXbL) S ~(L) .I 2 (A21)

Equating these two results and setting
~(L+b L)=r(L)+ br, we obtain the useful result,

T

A
LXS

cjL
(A22)

This result is consistent with Eq. (A10) because, when we
multiply by ~t, the second term on the right-hand side
vanishes, for the same reason as the right-hand side of
Eq. (A18).

Rotations can also be used to parallel transport vectors
along arbitrary curves in L space, not just those which
project onto great circles on the unit I sphere. We simply
break the curve into a large number of small segments,
each of which is the small arc of a great circle, and apply
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Eqs. (A20) and (A21) to each of them. The result is the
parallel transport equation,

d7 l

ds
XL S 7=i

ds
Xl S r.

ds
(A23)

By using this to transport a vector around a small closed
loop on the unit circle and comparing the result with Eq.
(A15), we obtain

VXA=- pl
L2

where ()'=BIBL, or,

f A.dL= —pQ,

(A24)

(A25)

where 0 is the solid angle subtended by the loop. This is
the usual result in the theory of Berry's phase [21], here
obtained without committing ourselves to any specific
gauge.

Now we introduce two gauges. The first, which we call
"north standard gauge, " is obtained by rotating the
eigenstates of S, away from the north pole along great
circles of constant longitude. That is, we set

U(8I, p( ) = U(QI, 8I ) = U(z, pt ) U(y, 8& ) U(z, fI ), —

(A26)

where in the middle expression we use an axis-angle nota-
tion for the rotation, where we have used Eq. (A2) to fac-
tor the operator, and where

P&
= —x sing, +y cosP, (A27)

is the usual unit vector in spherical coordinates.
The vector potential A can be determined in this

gauge by using the geometrical construction illustrated in
Fig. 4. Once again we consider two neighboring points L
and L+hL, and we parallel transport 7 from L to
L+b,L, calling the result r(L+b, L). We also write
U(, U2, U3 for the three spinor rotations which parallel
transport eigenvectors along the arcs of great circles
shown in the figure. Then we have

r(L+ b,L)= U3r(L)

= U3U27,

= U3 U2 Ut r(L+ b L)

=e' ' ' r(L+bL)=e '" r(L+bL),
(A28)

where the fourth equality follows from Eq. (A14) and the
last from Eq. (A15), and where Q is the solid angle sub-
tended by the path 123 on the sphere. By simple
geometry we have Q=(1 cos8I )bP&, —so the equality of
the final two expressions in Eq. (A28) gives

North standard gauge is so called because it is nonsingu-
lar in the northern hemisphere, becoming singular only at
the south pole.

In a similar manner we define south standard gauge, by
setting

U(81,$t)= U($1, 81 n)U(y—, m )

= U(z, $1 ) U(y, 8t ) U(z, PI ), (A31)

which in the first form first rotates the eigenvectors from
the north pole to the south pole with U(y, n. ), and then
along great circles to their final destinations. The second
form is obtained from the first by application of Eq. (A2).
In south standard gauge we have

A(L) dL=p(1+cos81 )dPI, (A32)

or

p(1+cos8, )
A(L) =

L sinOI
(A33)

South standard gauge is nonsingular over the entire
southern hemisphere, becoming singular only at the
north pole.

Finally, we quote the eigenvectors themselves in the
two gauges. In north standard gauge, we have

and in south standard gauge,

(A34)

FIG. 4. The positive octant of the unit sphere in angular-
momentum space, on which the projections of two.points L and
L+hL are shown. The spherical triangle 123 subtends solid

angle (1—
cos8i }hgl, where bgl is the increment corresponding

to AL. This fact can be used to find the vector potential A in
north standard gauge.

OI'

A(L).dL= —p(1 —
cos8i )dPI,

p(1 —cos8I )
A(L) =-

L Sin01

(A29)

(A30)

(A35)

where there is no sum on a and where d" is the reduced
rotation matrix, i.e., it is the same as our U(y, 8I). For
the special case of a spin- —,

' particle, we have
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cosOI /2

i/Ie sinOi /2
(A36)

two cross terms involve two Levi-Civita symbols, which
are easily expanded out. Some simplification comes from
Eq. (A6). The final form of the sum of the two cross
terms is

~(
—

& /2)—

—i/I—e 'sinO& /2

cosOI /2

in north standard gauge, while in south standard gauge
we have

—
i/Ie 'cos8& /2

sin8I /2
(A37)

[( A S).r]*rp r—*[(A.S)r]p . (B1)

This vanishes when contracted with either 5 & or D &, in
the latter case because of Eq. (2.5). Therefore all terms
involving the gauge-dependent vector potential A vanish
in the computation of A. ,2, as expected.

Only the gauge-invariant term remains, which involves
three Levi-Civita symbols. We expand two of these and
write the result in the form,

~( —1 /2)—
—

sinO&/2

e cos8&/2i/I

1
e; kL;(S r)"(Skr)p .

L2 &J & J (B2)

APPENDIX B: THE CALCULATION OF A, )2

The calculation of A, &z, yielding the result in Eq. (2.10),
is straightforward, but involves some algebra. In this ap-
pendix we summarize the principal steps.

We begin by computing [r",r&] by using Eq. (2.9), into
which we substitute Eq. (A22) for the derivatives of r
with respect to I.. There is one term involving two fac-
tors of A, two cross terms involving one factor of A, and
a gauge-invariant term involving no A at all. The term
involving two factors of A is easily seen to vanish. The

I

L 2
[rt(L S)r]=

Similarly contracting Eq. (B2) with (L.S) & gives

(B4)

We wish to contract this with

—(i/2)(D p
—Ao5 p)

=(t'/2)f (r)[pL5 & (L S) &—], (B3)

to obtain A, ,z. Contracting Eq. (B2) with 5 & gives

1 g 1
2 e;,„L,(r SJSkr) =

~ e(jkL, (r [SJ,S„]r)
2L 2

e(jkL; [1 SJ(L'S)Sk7]= ~ ejkL; [r S Sk(L S)r]—
z [r (LXS) r]

e;p, L((~ [SJ,Sk]r) —
2 [r [L S —(L S) ]r]

=i[2@ —s(s+1)] . (B5)

APPENDIX C: SEMICLASSICAL EIGENFUNCKIONS
FOR SCALAR PARTICLES

The problem of determining the semiclassical eigen-
functions of a scalar Hamiltonian of the form

H(r, p) = + V(r)
2m

(Cl)

should be a standard one in WKB theory, just as the
determination of the eigenvalues is standard. In fact, the

Combining these results, we obtain Eq. (2.10).
We suspect there is an easier way of doing this calcula-

tion, since if the entire result is gauge invariant, then it
must be possible to construct it out of manifestly gauge-
invariant objects. Indeed, this can be done in the case of
the term involving 5 &, which is the total contraction of
the canonical symplectic Poisson tensor with Berry's 2-
form on phase space. But we have not been able to ex-
press the part involving D

& similarly, so what we have
presented in this appendix is simply a brute-force calcula-
tion.

calculation of the semiclassical eigenfunctions, which in-
cludes asymptotic forms for the spherical harmonics YI
is somewhat diScult to find in the literature. Surprising-
ly, the asymptotic forms for the YI cannot be found in

any of the standard references on special functions or on
the theory of angular momentum, except for the case
m =0. References of which we are aware which do treat
this problem or related problems include Brussard and
Tolhoek [30] and recent work by More and Warren [31].
The classical mechanics involved in the following calcula-
tion is essentially that of finding Delaunay's canonical
transformation [32].

Our purpose in this appendix is to summarize the semi-
classical calculation of the eigenfunctions of the Hamil-
tonian of Eq. (Cl) in such a manner as will be useful for
the generalization to vector particles given in Sec. VI.
Our approach is essentially standard for multidimension-
al WKB theory, except that we pay more attention than
is common to the invariant torus in phase space, and less
to the separation of the Hamilton-Jacobi equation.

We begin with the three commuting classical observ-
ables (H, L,L, ), whose level set in phase space is a 3-
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torus. As in Sec. III, we compute the three actions
(I„,Is,I~) or (I„I2,I3 ) =(I„,L,L, ), which are related to
one another and quantized in Eq. (3.11).

Next we find an expression for the momentum field
p=p(r, I)=VS(r, I) by holding (H, L,L, ) constant and
solving for p. We write p in spherical coordinates,

Z

)l
r2

pg ~ py
p =p„r+ 8+

r r sinO
(C2}

where (p„,ps, p&) are the covariant components of the
momentum, i.e., the momenta conjugate to (r, 8,$), not
the components of the momentum projected onto
(r, 8,$). Crossing with r, we find

pyL=rXp=ps/ — . 8,
sinO

(C3)

which can be combined with the relations above to solve
for the three components of the momentum,

p~=L, ,

pe=+ L—
' 1/2

Z

sin 8
1/2

(C4a)

(C4b)

Lp„=6 2m E— —V(r)
2P71r

(C4c}

In these equations, E is understood as the function
E (I„,L).

The momentum field p(r, I) has four branches, corre-
sponding to the signs of p„and pe. All four branches are
defined (i.e., as a real vector field) over the same region of
configuration space, which is the projection of the 3-torus
in the six-dimensional phase space onto configuration
space. The region is a solid of revolution, defined by

1 — —r2 O1 + O —O2 where r1,2 and 81,2 are the turning
points. Its cross section in the x-z plane is illustrated in
Fig. 5.

Because central-force motion is classically degenerate
(the frequencies in the 8 and P directions are equal for all
initial conditions}, the 3-torus in phase space is not ex-
plored by a single orbit. Here we can distinguish typical
and atypical cases of central-force motion. The atypical
case consists of either the Coulomb or harmonic-
oscillator potential, V(r)= klr or V—(r)=kr /2. These
potentials are atypical because they give rise to another
degeneracy, since the radial frequency is commensurable
with the 8 and P frequencies for all initial conditions.
The typical case, for which the potential V(r) is anything
except the Coulomb or harmonic-oscillator potential, is
easier to think about, and we shall mainly have it in mind
in the following discussion.

In the typical case, a single orbit only fills in a 2-torus
in phase space, whose projection onto configuration space
lies on an annular region in the plane of the orbit between
the two radial turning points. By rotating about the z
axis, such an orbit is converted into a one-parameter fam-
ily of orbits which does fill up the 3-torus in phase space,
and which has a projection onto configuration space
which is the solid of revolution illustrated in Fig. 5. The
rotation causes the angular-momentum vector L, which

FIG. 5. The 3-torus in phase space which is the level set of
(H, L,L, ) projects onto configuration space as a three-
dimensional region which is a solid of revolution about the z
axis, bounded by the r and 8 turning points. The region is filled

by a family of orbits, all of which have the same inclination ~ to
the x-y plane.

is perpendicular to the plane of the orbit, to sweep out a
cone as in Fig. 1, without affecting the inclination z of the
orbit to the x-y plane. Thus, for all orbits in the family,
we have

L, =L cosa, (C5)

m/2 —]c if 0&a&m-/2
01=

x n. /2 if m. /2 &a. &—m,

n/2+@ if0&a. &m/2

3m/2 —sc if m/2 & z & w .
02=

(C7}

The upper and lower cases correspond to forward motion
(L, )0) and retrograde motion (L, &0), respectively.

so that a, regarded as a function of (r, p), is constant on
the 3-torus. This is evident in any case, since the torus is
a level set of both L and L„but it is important to visual-
ize the appearance in configuration space of the orbits
which lie on a give torus. These orbits all have the same
r and O turning points and the same inclination ~, but
differ from one another in their values of y, the longitude
of ascending node, as illustrated in Fig. 2.

The action S(r, I) is obtained by writing p=V'S in
spherical coordinates and comparing to Eq. (C4). This
shows that S separates, i.e., has the form

S(r, I)=S„(r,L,E)+Ss(8,L,L, ) S+&(P,L, ), (C6)

where p„=OS/dr, pe=BS/88, p&=BS/BP, and where
E =E(I„L).The term S„cannot be calculated explicitly
without the knowledge of the form of V(r), so we will
henceforth concentrate on the terms S& and S&.

Of these, $&=L,Q is trivial. As for Ss, it has two
branches S&+, corresponding to the sign of p& in Eq.
(C4b) and to the upper and lower branches of the 8—

ptt
orbit illustrated in Fig. 6. The turning points I9,, 02 are
given by



7716 ROBERT G. LITTLEJOHN AND WILLIAM G. FLYNN 45

1
2

2

FIG. 6. The orbit as seen in the 8-pz plane. The lower
branch (pz &0) is regarded as the primary branch. The ascend-

ing node occurs at 8=m/2 on the lower branch. Bsg+ Bsg~
Sg+ =L +L, =Leo~ —L,gg,BL

(C13)

is illustrated in Fig. 2. {The subscript is suppressed in the
figure, it being understood that the principle branch
pz (0 is referred to. ) In particular, co is the angle in the
plane of the orbit between the ascending node and the
particle, i.e., angle AOP in the figure, and g is the angle
AOB in the figure, measured in the x-y plane. Evidently
we have p=y +g, or $3+ =y+, so that it is the longi-
tude of ascending node which is the angle conjugate to
L, .

The angles co+ and g+, corresponding to the other
branch p& &0, have the same geometrical significance in
terms of an orbit as co and g, but it is a different orbit.
The two orbits p& & 0 and p& & 0, each of which contrib-
utes a term to the asymptotic form of the Y&, are illus-
trated in Fig. 3.

The action itself is easily computed by noting from Eq.
(C8) that Sz is homogeneous in L and L, of degree 1, so
that

We will regard the branch pe&0 as the primary one,
since it is on this branch that the particle crosses the as-
cending node, at 8=~/2. Taking the action S to van-
ish at the ascending node, we have

Ss (8,L,L, )= —f L'
n/2

1/2

d8,
sin 8

8)S„(8,L.,L,, )= —f
L2

sin 0

1/2 (C8)

—Sg

We denote the angles conjugate to (I&,Iz, I3) (I L )

by (g„gz, (3). In view of the dependencies shown in Eq.
(C6), we have

or

~ ] cos0
g

= S111
SlnK

—L,sin '(cot8 cot~),

(C14)
S =(L —~L, )vr S-

The total WKB wave function is

iSb /A —i vbm/2
Bbe

b

(C15)

B= det
BrBI

where b is the branch index, B is the amplitude, and v is
the Maslov index. The amplitude is given by

as„ as„ as, as, as,
aI„' ~' aL+ aL' ~' aL, +aL, (C9)

1 BS
det

r~sin8 a(r, 8,$)a(I„,L,L, )
(C16)

Concentrating on the angular parts, we abbreviate,

as, as,
aL ' aL,

(C 10)

It is the same for all four branches of S. By Eq. (C6), the
final determinant in this equation is upper triangular, and
factors into a radial and angular part, so that B =B,B&,
where

so that g3=p —g. Differentiating Eqs. (C8) with respect
to L and L„we obtain integrals for co and g which are
easily evaluated (respectively by substitutions x =cos8,
x =cot8},giving

BS,B2-
p

2 (3rQI,
(C17)

and

cosO=sin . , m+ =m. —m
SinK

(Cl 1)

1Bn= .
sin8 a8aL (sin a.—cos 8)'

(C18)

=sin '(cote. cot8), 7)+ =~sgn(L, )
—g (C12)

where again the + refers to the branches ofp, S, etc.
The geometrical significance of the angles ~ and g

is easily deduced from some spherical trigonometry, and

Corresponding to the exact representation of the wave
function g(r, 8,$) =(I lr)N(r)Y& (8,$), we have radial
and angular parts of the WKB approximation. The an-
gular part gives us an asymptotic formula for Y&
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T

c iL /la is Iii is+ ls i —n I2

2'
values L =(l +—,')R and L, =mtrt according to Eq. (3.11),
where ~ is given by

cos

n.(sin s.—cos 6))'& i sin

I.zcosK= I. (C20)

X (l + —,
' )sin

S1IM

—m sin '(cotic cot8) (C19)

and where the choice of cosine is made when 1+m is
even, and i sin when I+m is odd. If c is chosen to be a
phase factor, then Eq. (C19) for Yi is normalized in the
stationary-phase sense. In this paper, we follow the
phase conventions of Edmonds [29], which are realized if
we take

where c is a constant, where we have used the quantized
—i (I +m)m/2

0 (C21)
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