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We study a system composed of N identical bosons interacting in three dimensions via attractive Yu-
kawa pair potentials V( r) = —e "/r. Four approaches to the problem are related: the "equivalent
two-body method, " translation-invariant Gaussian trial functions, collective 6eld theory, and Hartree
trial functions. Upper and lower energy bounds are given and are compared to some recent results
which were obtained independently by an optimized Hartree method [M. Membrado, F. Pacheco, and J.
Sattudo, Phys. Rev. A 39, 4207 (1989)]. In the pure gravitational limit A, ~O the N body en-ergy is deter-
mined for all Rand all values of the coupling with an error of less than 7.2%.

PACS number(s): 03.65.Ge, 05.30.Jp

I. INTRODUCTION

There is at least one good reason why the many-body
problem in quantum mechanics may be easier to solve
than the corresponding problem in classical mechanics:
identical particles in quantum mechanics have no indivi-
duality. The states of a many-identical-particle system
are either symmetric or antisymmetric under the permu-
tation of the particle indices. This fact is a very powerful
constraint which induces a kind of dynamic crystallogra-
phy in which every pair of particles copies the motion of
every other pair.

A system of N identical bosons interacting by attrac-
tive forces collapses as N increases: the "size" of the sys-
tem diminishes to zero, and the binding energy per parti-
cle ~@/N increases without bound. It seems that fer-
mions are necessary for stability. In the case of Coulomb
interactions we have at our disposal detailed theoretical
results [1—3] which characterize the relation between
particle statistics and stability, and also the nature of the
collapse in the unstable cases. A concise review of the
"stability-of-rnatter" problem may be found in a recent
article by Thirring [4]. By diminishing the coupling pa-
rameter y of a general boson system as N increases (so
that the product yN remains constant) we can arrange
for 6/N to remain finite in the large-N limit. Just as in
the large-W approximation, where A' is the number of
spatial dimensions, suitable large-N limits can provide
useful energy estimates, even for ftnite systems

The main purpose of the present paper is to put togeth-
er in a single framework some recent approaches to the
N-boson problem so that the methodology and results
may easily be compared. In Sec. II we introduce our for-
malism and discuss some general questions to do with the
N-boson problem. We review, very briefly, the main re-
sults from the "equivalent two-body method" and the use
of Gaussian wave functions, which have been described

in more detail in earlier articles [5,6]. In Sec. III we
study the collective-field method which, it has been
shown [7], yields the same upper energy bound as does
the Hartree variational method, provided that the
center-of-mass kinetic energy is removed. In Sec. IV
these methods are applied to the specific example of the
attractive Yukawa pair potential. We compare the re-
sults by expressing the energies in terms of a dimension-
less parameter R which always lies in the range
—1&R &0.

For the Yukawa problem, Membrado, Pacheco, and
Sanudo [8] have derived a differential equation for the
best Hartree upper bound: we are happy to report that
their results and ours are close and consistent. This
agreement is very welcome. Even though one is dealing
with well-defined, and perhaps rather pure, many-body
problems, there have been a number of differing results
for such problems published in recent years. For exam-
ple, Membrado, Pacheco, and Sanudo [8] report earlier
Hartree results for the gravitational problem differing
from theirs by a factor of 3. Meanwhile, in a study of the
linear potential in one dimension [5] we found large
discrepancies between our results and some earlier work
based on collective-field theory. In the end we should
like to understand fully how the different approaches to
the problem are related and we should like to see them
produce consistent results when they are applied to
specific problems.

II. THE EQUIVALENT TWO-BODY METHOD
AND GAUSSIAN TRIAL FUNCTIONS

In this section of the paper we summarize general re-
sults obtained from the "equivalent two-body problem"
and by the use of Gaussian trial functions. We consider a
system of N identical bosons each of mass m which in-
teract via an attractive pair potential V(r)=yf(rla).
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The Hamiltonian H for such a system (with the center-
of-mass kinetic energy removed) is given by

N
H= g p, — g p,

—g yf(r, , /a)
i=1 ™i=1 ij =1

(2.1)

(2.2)

In a careful discussion of the problem we must retain two
symmetries: translation invariance and boson statistics.
Therefore, even if it is uncomfortable, we must now deal
with the question of relative coordinates.

We suppose that the new coordinates are the classical
relative coordinates of Jacobi defined by p=BR, where

p = [p,. ] and R= [r; ) are column vectors of the new and
old coordinates, p, is the center-of-mass coordinate divid-
ed by N', p2=(r& —r2)/&2, and 8 is the orthogonal
matrix given explicitly by

1/&N
1/&2

1/&N
—1/&2
1/&6

1/&N
0

—2/&6

1/v'N

(2.3)

1/&N (N —1) 1/&N (N —1) (N —1)/&—N (N —1)

a=(N —1) @2+—rf(&2lp2I/a) (2.4)

Further simplification of our discussion of the general N-
boson problem is possible if we introduce some dimen-
sionless quantities by the following:

mrna ma yNE=, v=, r=&2p2/a =r,2/a .
fi (N 1) 2A'—

(2.5)

Let us suppose that 4'& is a translation-invariant boson
function, that is to say, a square-integrable function of

Since 8 '=8, the column vectors II and P of the new
and old momenta are related simply by II =BP. We have
exhibited this well-known matrix because it is important
to note that the scheme we use is extensible. More
specifically, as we increase N, each new relative coordi-
nate is symmetric under the permutation of the previous
N —I particle iodices. The significance of this can be un-
derstood by consideration of the following argument. If
we have only two bosons, then the wave function 0'z(pz)
must be a symmetric function of p2. If we now consider
three bosons, then the new wave function %3(p2,p3) must
still be a symmetric function of p2 and it must also satisfy
one more condition so that it is invariant under all the
permutations of the particle indices 1, 2, and 3 [the per-
mutation group P3 is generated by the exchange (12) and
the 3-cycle (123)]. We see therefore that the necessary
permutation-symmetry constraint of boson functions be-
comes more stringent as N increases.

If we now compute expectations with respect to
translation-invariant boson functions, we find from Eq.
(2.2) that (H ) = (&), where the reduced two-body
Hamiltonian & is given by

the N 1 relat—ive coordinates tp;], z which is sym-
metric under the permutation of the N individual-particle
indices. It follows that the ground-state energy of the N-
boson problem may be written in the form

E=F&(u)= min
N~ N

(2.6)

where O is the dimensionless one-particle Hamiltonian
defined by

6+vf (r), — (2.7)

F~(v) ~Fx.(v), 2~N &E . (2.8)

This relation says much more than that the energy in-
creases with N. Fz(v) is proportional to the N-boson en-

ergy 8 divided by N —1, and meanwhile the product yN
is held constant. The most interesting cases are the ex-
tremes N =2 and Oo. Thus we have

EI =F2(v) ~F~(u) ~F„(u)~FG(v)=EU, (2.9)

where the upper bound FG(v) is obtained by the use of a

and 6 is the Laplacian with respect to r.
For a given physical problem, the coupling parameter U

varies with N. However, we define the "trajectory func-
tions" Fz by (2.6) with the value of v jixed Consequ. ent-
ly, @ does not depend on N, which enters the problem
only as the number (plus 1) of Jacobi relative coordinates
to be included in the wave function %z. As we observed
above, the Jacobi coordinate p;+1 is symmetric under the
permutation of the individual particles 1 through i. This
means that the permutation-symmetry constraint on the
minimization process (2.6) increases in severity monoton-
ically with N; this in turn implies that the N-boson trajec-
tory functions satisfy the ordering relation:
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Gaussian trial function, as will shortly be explained. The
lower bound EL is simply the exact lowest energy of the
one-particle ("reduced" two-particle) Hamiltonian
We refer [5—7] to this energy bound as an "equivalent
two-body energy" because of the historical roots [9—12]
of this notion from the early days of nuclear physics.

Now we turn to Gaussian trial functions. Suppose that
the N-boson function could be factored in the form

a P(r/a)=y (r),
with the normalization

fy (r)d r= fP(s)d s=1, s=r/a .

(3.3}

(3.4)

We now introduce a "density function" &I) defined by the
relation

+(P2&P3»' ' ' PN) 4(P2)g(P3&P4»' ' PN) ' (2.10)
In terms of the density P we find [7] that the upper bound
(3.1) can be expressed in the form

III. COLLECTIVE-FIELD THEORY AND HARTREE
UPPER BOUNDS

The main difficulty with the N-boson problem is to
satisfy the constraints of permutation symmetry and
translation invariance simultaneously. One variational
approach is to work with a translation invariant Hamil-
tonian but, instead of a boson function of the X —1 rela-
tive coordinates tp;»], to employ a manifestly sym-
metric function 8&(ri, rz, . . . , rN) of the N individual-
particle coordinates. Provided 8& is square integrable
over g; —,d r; it follows that it is also square integrable
over g+,d p; and, in a general Fourier analysis of 8N in
terms of functions of a11 the Ip;], the dependence on p,
could be expressed by a factor in each term, acting like a
constant with respect to the Hamiltonian. It follows
therefore that such a wave function, although it is not
translation invariant, would generate an energy upper
bound. That is to say, in our notation, we have

(8iv 8'�) (3.1)

The most convenient of such boson trial functions are
of course Hartree products with the general form

8„(r„r„.. . , r„)=y(ri)y(r, ) . . y(rN) . (3.2)

In this case, the expectation value on the right-hand side
of (2.6) would reduce to (f,og)/(g, f), that is to say, the
expectation of a one-body Hamiltonian O with respect to
a one-body wave function 11&(pz). However, it has been
proved [13] that the factored form (2.10) is possible for a
boson function if and only if it is Gaussian. The upper
bound EU=Fa(u) in (2.6) is therefore defined to be the

2
result of using the trial function f(r) =e " and minim-
izing (g&) with respect to the parameter a. Since u is
held constant, and the N in 4 cancels out with the factor
g, we see that F&(v) is an upper bound for all N ~ 2. In
the special case of the harmonic oscillator f(r) =kr, all
the inequalities in (2.9) collapse to the well-known exact
N-body solution E =Fz(v) =3v'~ . For this problem, the
trajectory function EN does not change at a11 with X for it
always has the value 3U' . In many other cases, al-
though the trajectory function F~ is not constant, it
varies only very little with N so that the inequalities (2.9)
may determine the N-boson energy surprisingly accurate-
ly. For example, in the case of the linear potential [7] the
energy is determined by (2.9) with error less than 0.15%%uo',

by using the method described in the following section
this error is reduced to 0.116%.

F~(u) ~ F~(v )

P(s)

+u f f p(s)f(~s —s'i)P(s')d'sd's'. (3.5)

P(s)=(4mb I) 'w(s/b), s=is~,
where the density function w (t) is

w(t) =e

(3.6)

(3.7)

and the normalization integral I has the explicit form

I(q)= f w (t)t dt=I (3/q)/q . (3.8)
0

If we use this family of densities and we minimize F&(u)
with respect to both b and q, then we call the result
Fir(v). In summary we have

F2(u) +F&(u) +F (u) ~Fii&(v) +FG(v) . (3.9)

From (2.5) we see that the N-body energy 6" is recovered
from the F functions by the general formula

A' (N —1) ma yN
ma 2

(3.10}

Since the exact trajectory functions FN(v ), the Gaussian
upper bound FG(v), and the Hartree upper bound Fir(v)

This result has some interesting consequences, which are
derived in more detail in Ref. [7]. First, in terms of our
convention that the dimensionless coupling parameter U

is axed (so that the original coupling y diminishes with
increasing N so as to keep y N constant), it is evident that
the upper bound F& is independent of ¹ Hence F&(u) is
an upper bound to F„(v}. Second, if we choose the
Gaussian shape for the density P, and we minimize F&(u)
with respect to a scale parameter, then the result turns
out to be identical to the Gaussian upper bound FG(u)
which we found in Sec. II by the use of a translation-
invariant Gaussian trial function. Hence, by using (3.5),
we can find an upper energy bound (for all N) which is at
least as good as the Gaussian upper bound FG(v). Lastly,
(3.5) is exactly the expression obtained when collective-
field theory [14—19] is applied to estimate the energy of
the N-boson problem. However, it does not seem so clear
from the rather complicated formulation of the latter
theory that the expression F&(u) given in (3.5) is an upper
bound to the quantity F„(v), as we now know it to be.

A very useful family of densities, which includes the
Gaussian densities as a special case, is given by
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are all minimal with respect to scale changes, it follows

[20] that a11 these results automatically satisfy the virial
theorem.

IV. THE YVKAWA AND GRAVITATIONAL POTENTIALS

We now consider the Yukawa potential whose shape is
given by

R(u)= & —1
U

2 (4.3)

to represent energies. For large v the ground-state wave
function is concentrated near r =0 and ?he energy is
essentially that of the gravitational potential. Hence,
even with A, )0, we can recover the gravitational results
from the Yukawa ratios by taking the limit:

f(r)=—e A. T

A, &0.
r

(4.1)
litn R( u)=R( ae) = R(1)~~- o. (4.4)

Although it is clear from our general formulation that we
need consider only one potential parameter, namely, the
dimensionless coupling U, we have nevertheless intro-
duced A, into the potential shape so that at any stage of
the work we can easily recover the special case of the
gravitational potential by the limit A, ~O. Usually we
shall set A, =1 for the Yukawa potential.

All our results come from (3.9) and (3.10). The gravita-
tional potential provides a useful guide to the energy
range we need to consider. In that case we have

2 2U
F2(u) = — FN(u) ~F„(u) — =FG(u), A, =O .

(4.2}

The bounds F2 and FG for the pure gravitational problem
were first found by Post [21]; later, some weaker bounds
were obtained independently by Levy-Leblond [22]. In
contemplating such simple formulas, one must stop to
remember that they bound the energy of the N-boson
problem for all N and all values of the coupling y.
Meanwhile, since —1/r (f(r), we know that —u /4 is a
lower bound to F2(u) for A, )0. Consequently, for the
remainder of this section, we shall use, instead of F, the
ratio 8 given generally by

We now turn to the Yukawa potential A, =1. The com-
putation for the Gaussian upper bound RG(u) is very
straightforward and needs no further comment here. We
shall, however, give some details to do with the Hartree
upper bound. We have to substitute the density (3.6) into
the expression (3.5), integrate, and then minimize with
respect to b and q. We obtain the following energy ex-
pression (before minimization):

E(u, b, q)= +uJ,E
8Ib

where I is given by (3.8},E is given by
t 2E=f s ds=(1+q)I (1+1/q),

o w(s)

and the potential-energy integral Jmay be written

(4.5)

(4.6)

J(b, q)=
2 f dt w(t)t sinh(Abt)

Ab It o

w sse ~'ds . 4.7

Two advantages of writing J in this form are that integra-
tions over the absolute-value function are avoided, and
the gravitatronal limit A, —+0 is easy to obtain analytically.
In order to find R~(u) we must minimize E(u, b, q) with
respect to b and q, and then multiply by 4/u .

In Figs. 1 and 2 we exhibit the lower bound R2(u), the

-0.6

-0. 1

-0.7

-0.2 -0.B

—0.3
-0.9

-1.0
10 60 110 160 Z10 Z60

FIG. 1. The energy ratio R =4F(v )/v for the Yukawa po-
tential V(r)= —ve '/r. U corresponds to the upper bound
F&(v) found with the aid of a Gaussian trial function. The
lower bounds L corresponds, respectively, to F2(v), which is the
lowest eigenvalue of the one-particle Hamiltonian
@=—4+ V(r}, and the convenient formula
—(1—2/v) —0.224/v, which is, in turn, a lower bound to
F2(v). The discrete data (0) are Hartree upper bounds from
Ref. [8].

FIG. 2. The energy ratio R =4F(v )/v for the Yukawa po-
tential V(r) = —ve /r. This graph is a continuation of Fig. 1.
In the gravitational (or Coulomb) limit v ~ ao we have

R2( 00 )= —1, RG(ao )= —8/311, Rg ( 00 )= —0.866, and

R~( ~ )= —0.868. %e suspect that the exact gravitational solu-
tion is close to —0.866 but a higher lower bound is required to
confirm this conjecture.
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TABLE I. Values of the ratio R =4E/v for the Yukawa potential V(r)= —ve "/r, with A, =1. Ri
is the lower bound obtained by the equivalent two-body method, RM is an optimal Hartree upper bound
from Ref. [8], R ir is our Hartree upper bound, and RG is the upper bound obtained with the aid of a
Gaussian trial function. The limit v~ ~ corresponds to the gravitational (or Coulomb) special case
A, =O.

2.631 58
2.777 78
3.125
5.0

25.0
250.0

Rl
—0.109
—0.132
—0.183
—0.397
—0.849
—0.983
—1.0

RM [8]

—0.002 88
—0.020 5
—0.065 0
—0.268
—0.717
—0.852
—0.868

—0.001 16
—0.018 7
—0.062 9
—0.266
—0.714
—0.849
—0.866

RG

0.008 45
—0.007 71
—0.050 2
—0.250
—0.698
—0.833
—0.849

Gaussian upper bound RG(v), and some Hartree upper
bounds (Cl) from Membrado, Pacheco, and Sanudo [8].
The lowest curve in these figures is a lower bound to
R2(v) which we found useful in connection with a study
of screened Coulomb potentials [23,24], namely, the left-
hand side of the inequalities:

—(1—2/v )
—0.224/v R2(v) ~ —(1—2/v ) (4.8)

V. CONCLUSION

A system of N bosons interacting via attractive pair po-
tentials must collapse. This process can be defeated by
weakening the coupling parameter y in such a way that
the product yN is held constant. This device leads to a
well-defined theoretical problem for all N. The energy 6
of the system may be written quite generally in the form

fi (N 1) ma yN-
2fi

(5.1)

where the "trajectory function" F~(v) depends on the po-
tential shape f(r) and on N. We have proved that, for
each v, Fz(v) increases monotonically with N~2. In
many instances, however, F~ does not vary very much
with N. For such problems, F2(v) and F (v) are not far
apart, and therefore the entire family of many-body tra-
jectories is sandwiched between close outer bounds.
Since a Gaussian trial function provides an upper bound
to F (v), a sufficient criterion for close bounds (for all N)
is that a Gaussian trial function would provide a good es-
timate for the energy of the one-body problem with Ham-
iltonian O.

The point of (4.8), which we established with the aid of a
soluble comparison Hulthen potential, is that it is very
convenient to have a formula for the lower bound instead
of a task involving the numerical solution of
Schrodinger s equation. However, the analytical approxi-
mation of the one-body Yukawa problem is another story
[25].

Our own Hartree results are very close to those of
Membrado, Pacheco, and Sanudo, and slightly above
them; this is completely consistent with their theory
which finds the best Hartree upper bound. These various
results are compared in the Table I.

In the case of the Yukawa pair potential, we have ex-
plored a more general upper bound than Fz(v), provided
by a Hartree trial function with two-parameter single-
particle factors of the form exp[ (r/b)~]—. Our results
for this problem are very close to those of Membrado,
Pacheco, and Sanudo, who, for certain values of U, find
the energy corresponding to the best Hartree wave func-
tion. In the gravitational limit (v ~ ao ), we have to find
just one number, the limiting "ratio" R, which, from
Table I, is determined by the inequality

R 2
= —1 R „~—0.866 =R ii, & Ro = —8/3m . (5.2)

The mean value of the bounds R = —0.933 therefore
determines R „with error less than 7.2%%uo. At this time
we cannot with certainty say more.

However, we have studied [6] the counterpart of the
Coulomb (or gravitational) problem in one dimension,
namely, the delta-function potential —5(x). These two
problems scale in the same way: consequently the ener-
gies in both cases are proportional to U . For the one-
dimensional problem we have the advantage of an exact
solution for all N. In the notation of the present article
we have [6]

R = ——1+—& R = —0.659472 .2 1
W (5.3)
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Thus, for the 5-function potential, the Hartree upper
bound is about 1% above the exact value R„=——', . We

may also have attained this quality of upper bound for
the gravitational problem: the only way to be sure about
that would be to devise a better lower bound, for exam-
ple, by using the method of Hill [26]. Even though such
security is hard to come by, it is well worth pursuing be-
cause it helps us enormously in scientific endeavor if we
can know with certainty exactly what our physical
theories predict.
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