PHYSICAL REVIEW A

VOLUME 45, NUMBER 2

15 JANUARY 1992

Statistical mechanics of social impact

Maciej Lewenstein,* Andrzej Nowak, and Bibb Latané
Department of Psychology, Florida Atlantic University, Boca Raton, Florida 33431
(Received 20 March 1991)

We discuss the mean-field theory for a class of probabilistic cellular automata that can describe the dy-
namics of social impact. The models exhibit complex intermittent behavior.

PACS number(s): 05.50.+q, 89.90.+n, 64.60.Cn

I. INTRODUCTION

Statistical mechanics has proven to be a powerful tool
for interdisciplinary research, most notably with regard
to the study of neural networks [1]. A network approach
to the social sciences comes from the theory of cellular
automata [2,3], as applied to the so-called voter problem,
or to different kinds of majority rule, in which individuals
adjust their opinions (i.e., their states) to match the ma-
jority of their close neighbors [4-7]. Although their
rules of opinion change following social interaction pro-
cesses seem intuitively plausible, one may ask how well
the assumptions of these models relate to knowledge of
social influence processes developed by social scientists.

The theory of social impact was formulated by Latané
[8], who claimed with considerable empirical support
that the impact of a group of individuals on a given per-
son can be seen as proportional to three classes of factors:
the “strength’ of the members of the group (how credible
or persuasive they are), their “immediacy” (a decreasing
function of their social ‘“distance” from the individual),
and their number N (impact scaling as N*, with x ~1). It
has been shown that this general function can describe a
wide variety of situations in which social impact is exert-
ed, regardless of the form in which influence takes place.
This function can be fitted to such diverse phenomena as
bystander intervention in emergencies [9], tipping in res-
taurants [10], social loafing [11], interest in news events
[8], stage fright [12], conformity [13], and, of course, atti-
tude change [13], where an individual is affected by his or
her social environment.

The formal analysis of opinion formation in groups was
initiated by Abelson [14], who has shown that a wide
class of linear models of individual attitude change lead
to complete uniformity of opinions as a generic stationary
state. Recently, Nowak, Szamrej, and Latané [15,16]
have proposed a new class of computer models of opinion
formation based on Latané’s theory of social impact [8].
These models exhibit a richer variety of stationary states,
including the emergence of well-localized and dynamical-
ly stable clusters (domains) of individuals who share
minority opinions, similar to real-world phenomena. The
emergent self-organization of minority and majority
members can be related to similar effects discussed by
Axelrod [17] involving the clustering of optimal strategy
choices in the so-called “prisoners’ dilemma.”

It is the aim of this paper to represent a mathematical
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framework for the class of models introduced by Nowak,
Szamrej, and Latané. Although these models are related
to known models of cellular automata [4-7], they are in
many respects novel. Contrary to the models studied in
the literature, those in question are characterized by
long- or moderate-range interactions and by an intrinsic
disorder. As we shall see below, these two features of the
models are essential for describing a dynamical theory of
social impact (influence).

The class of models, as well as theory that we present
here, should be of general interest for statistical physicists
who study discrete statistical models, such as neural net-
works, cellular automata, kinetic Ising models, etc., for
the following reasons.

(1) The models provide a class of exactly solvable
dynamical models of statistical mechanics. They are
especially interesting, since they describe disordered sys-
tems. The disorder has a special character, since each of
the elements of the system is characterized by random
“strength” parameters. The interactions between the ele-
ments are also random and proportional to these strength
parameters.

(2) The method of solving the models in the framework
of mean-field theory is also novel and consists of intro-
ducing dynamical “‘order” parameters that even in the
simplest cases have the form of a function. The complex-
ity of order parameters here does not, however, have
much in common with the complexity of the order pa-
rameters of spin glasses and replica symmetry breaking
(cf. Ref. [18]). It reflects rather the amount of ordering
among the elements of the system that share a given level
of “strength.”

(3) The dynamics of the models generically exhibits an
interesting intermittent behavior, which, we think, is of a
general nature and characterizes various other decaying
systems. In particular, although a small amount of noise
in the system tends to destroy minority clusters, the ap-
proach to uniformity is very complex and has the form of
“staircase” dynamics. It consists typically of several rap-
id steps, each of them followed by a long period of inter-
mittent quasistationary behavior.

(4) The models and methods presented here may be
used to describe physical systems. In particular, we have
in mind applications to the physics of evaporation pro-
cesses (for a review, see Ref. [19]), to the theory of ran-
dom ferromagnets (cf. Ref. [20]) that are composed of
various species of magnetically active atoms, and to the
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physics of neural networks [3].

The present paper is organized as follows. In Sec. II
we describe the models of Nowak, and Szamrej, and La-
tané in detail, including a rather careful discussion of the
assumptions used to construct the model and their rela-
tion to empirical data. Although these assumptions and
their supporting data are grounded in social science rath-
er than physics, they show how firm are the empirical
fundaments on which we stand.

Next, we present exact solutions of specific versions of
the models for several underlying geometries.. We start
in Sec. III with the simplest case of a fully connected
model, in which every element interacts with every other.
Such a model may be solved exactly within the frame-
work of mean-field theory, using an appropriately defined
function as a dynamical “order” parameter. We present
here heuristic arguments to show that the decay of
minority groups in fully connected models will generical-
ly exhibit “staircase” dynamics. This is proven in Sec.
IV, where we discuss the influence of noise on the dynam-
ics. In Sec. V we briefly present the results for the case
of hierarchical geometries, in which the interaction of
elements decays with ultrametric distance (cf. Refs.
[18,21]). In Sec. VI we discuss the case of strongly dilut-
ed and randomly connected models. Here we apply
directly the theory of Derrida et al. that has been formu-
lated in the context of Kaufmann’s model of cellular au-
tomata [22-24] and asymmetric neural networks [25,26].

In Sec. VII we turn to the discussion of social impact
models realized in two-dimensional (2D) Euclidian space.
The interaction of elements in such cases decreases with
increasing distance between the elements. For such mod-
els mean-field theory is an approximation only. Never-
theless, it allows for a satisfactory comparison of qualita-
tive and some quantitative results of the analytic theory
with numerical simulations.

The paper ends with Sec. VIII, which contains our
conclusions. We have tried to keep our presentation on
an elementary level in order to make it accessible to
scientists from other specialties with interdisciplinary in-
terests.

II. DESCRIPTION OF THE MODELS

The models of Nowak and Latané are based on several
assumptions, which we have listed and discussed below.

(1) Two-state elements. The models in question belong
to the category of cellular automata consisting of N indi-
viduals, each holding one of two opposite opinions. The
states of every individual are therefore binary, o; ==*1, as
in the standard Ising model of a ferromagnet.

One might expect that the opinions of individuals on
specific subjects should vary gradually and be described
by some continuous variable. As empirical data show,
very frequently this is not the case. In fact, the distribu-
tion of opinions on “important” issues measured on some
multivalued scale is typically bimodal and peaked at ex-
treme values [27].

(2) Disorder and random ‘‘strength” parameters. Each
individual is characterized by two random strength pa-
rameters, which we call persuasiveness p; and supportive-

ness s;. These parameters determine how effectively a
given individual may interact with and influence other in-
dividuals either to change or to confirm their opinion.

Although assumption (2) seems intuitively reasonable
to most observers, it is remarkably controversial with re-
gard to personality differences [28]. Here we focus on the
fact that differences of age, intelligence, socio-economic
status, etc., may affect the degree to which individuals are
influential.

(3) “Social” space. Each individual is characterized by
a location in social space, so that each pair (i,j) of indivi-
duals is characterized by a distance d;;. Interactions be-
tween individuals tend to decrease with this distance.
The determination of the nature of this metric is itself a
fascinating problem of sociometry, and in principle d;;
should be empirically determined from sociometric data
and could correspond to some peculiar geometry.

In this paper we study some simple geometries that
may capture some aspects of the actual geometry of so-
cial space. We consider (a) the trivial geometry of a fully
connected model, where all the distances between indivi-
duals are equal; (b) a hierarchical geometry with ul-
trametric distance, where the individuals are divided into
a hierarchy of groups and the distance between two indi-
viduals is determined by the hierarchy level of the group
to which both belong; (c) a strongly diluted model, in
which individual is linked to a random set of other indivi-
duals; in this model there is no metric structure, since the
“distance” d;; has to be considered as an asymmetric
function of i and j, which is infinite for most of the or-
dered pairs (i,j); and (d) two-dimensional Euclidian
geometry.

The first three geometries (a)—(c) obviously cover some
aspects of the social space that we want to describe. Ad-
ditionally, as will be discussed below, they allow for exact
solutions of the model. The two-dimensional Euclidian
metric was used for the computer simulations reported in
Refs. [15] and [16]. In fact, recent empirical data show
very clearly that the frequency of social interactions that
influence individual attitudes is indeed a decreasing func-
tion of the Euclidian distance between the homes of the
interacting persons [29].

(4) Social impact theory. Individuals are assumed to ex-
change, compare, adjust, and influence each other’s atti-
tudes. The total impact I; that the ith individual experi-
ences from his or her social environment is a function of
the persuasive impact of those individuals who hold the
opposite opinion to o, relative to the supportive impact
of those individuals who share the same opinion,

t(p;)
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where g( ) is some decreasing function of the distance d;
and ¢( ) is the strength scaling function. In Eq. (2.1) both
impacts are functions of the sums of the influences of all
individuals j who hold, respectively, the opposite or the
same opinion as i. Note that the strength scaling func-
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tion may be taken to be # (x)=x, provided we redefine ap-
propriately the distribution p (p;,s;). In the present paper
we adopt this approach. In the course of dynamics, indi-
viduals adjust their opinions according to the value of the
total impact they experience, so that, without noise,

o;=—sgnlo;l;), (2.2)
where o; and o} denote the opinion of the ith individual
at consecutive time steps. We assume a synchronous
version of the dynamics (2.2), in which all individual atti-
tudes are updated in parallel. It typically takes somewhat
longer to achieve stable equilibria using standard serial
Monte Carlo methods, because of the likehood of select-
ing some individuals too rarely and some too frequently.
Serial methods, on the other hand, avoid periodic asymp-
totic states that might occur with the parallel method.
Such states can occur when persuasiveness exceeds sup-
portiveness, such that two opposing individuals may each
persuade the other and both oscillate between the two
opinions. Nevertheless, we have noted no essential
differences among numerical results from using parallel,
standard Monte Carlo or serial “Knight’s tour” methods.
Numerical simulations [16] indicate, in fact, that the
models in question are robust with respect to the effects
of asynchrony.

(5) Presence of noise. Obviously, in reality, opinion
change is not so deterministic as Eq. (2.2) suggests.
There are various random elements in this process, and
they may be phenomenologically modeled by introducing
noise into the dynamics (2.2).

A probabilistic version of Eq. (2.2) may be realized by
allowing for violations of rule (2.2) with a given probabili-
ty. In the theory that we present in this paper, as well as
in numerical simulations, however, two kinds of noise
models have been used: a uniform white noise (for a con-
cise review see, for instance, [30)), i.e.,

o;=—sgn(o;I;+h), (2.3)

where h are random variables that are statistically in-
dependent for different time instants. Alternatively, we
have used a site-dependent white noise, i.e.,

o;=—sgn(o;Il;,+h;), (2.4)

where h; are random variables that are statistically in-
dependent for different individuals and different time in-
stants. For this kind of noise, we have assumed that the
noise variables have uniform statistical properties; i.e.,
the probability distribution p (4;) is both site and time in-
dependent.

The first kind of noise simulates global events affecting
the group as a whole, such as, for instance, the availabili-
ty of new information, the actions of public figures, etc.
Site-dependent noise is a rough description of all the
events, other than social impact, that are experienced by
individuals and that influence their attitudes (cf. indivi-
dual experiences, thought processes, etc. [31]).

Summarizing, we would like to stress that three major
properties differentiate these models from those studied
in the literature: First, for any geometry considered, we
studied models that have moderate- or long-range interac-

tions. For instance, in the case of fully connected models,
infinite-range interactions were assumed, whereas in nu-
merical simulations in two dimensions, the interactions
were often characterized by an algebraic decrease of cou-
plings with increasing distance. Second, the models in-
corporate random strength parameters or individual
differences in persuasiveness and supportiveness. In the
present paper we use a model in which p; and s; are ran-
domly and independently chosen for each individual,
with a probability density p(p;,s;). Finally, the models
include an element in the form of the impact functions I,
and I,. Here, however, we will use the choice I(x)=x
and leave the discussion of alternatives to future publica-
tions [32].

Given the dynamics defined by Eq. (2.2), how do typi-
cal initial opinion distributions evolve in time? Such ini-
tial distributions may be distinguished by the numbers of
opposing individuals, m =3 ;o ; /N, into three classes: (i)
States with |m|=1 are close to uniformity of opinion; (ii)
states with 0<<|m| <1 contain moderate numbers of
minority members, which may be distributed uniformly
in a statistical sense or concentrated in clusters
(domains); and (iii) finally, when |m|=0, we have bal-
anced opinion distributions, which, again, may be either
statistically uniform or clustered.

Nowak, Szamrej, and Latané in Ref. [15] and Latané
and Nowak in Ref. [16] performed extensive numerical
studies of the dynamics described by Eq. (2.2). In their
work, as we mentioned, they used Euclidian geometry
with g (d;;)=(d;;)% where the exponent a was varied be-
tween 2 <a =8. Strength parameters s; and p; were dis-
tributed uniformly on the interval [0,2s], and [0,2p], re-
spectively. Various forms of impact functions, such as,
for instance, I (x)=V'x or I (x)=x, have been used.

Computer simulations [15,16] in the absence of noise
indicate quite generally for class (i) states that uniformity
is the most frequent final state. For class (ii) states, two
scenarios are possible. With statistically uniform initial
distributions, there is a polarization (i.e., decrease of
minority numbers) and clustering of opinions, such that
stable domains of minority opinion appear. When minor-
ities are initially clustered, their decrease is inhibited,
leading such states to be more dynamically stable. Simi-
lar conclusions hold for class (iii) data, except, of course,
that the determination as to which of the opinions would
form the minority is random. It is worth stressing that
the formation of local coherent clusters of attitudes from
initially uniform distribution of attitudes has been ob-
served in empirical data. For example, the classic study
of Festinger, Schachter, and Back [33] of social pressures
in informal groups documented the development of
“group standards” geographically clustered among
residents of specific courtyards of a student housing pro-
ject at MIT.

The influence of small amounts of noise in the dynam-
ics, according to Eq. (2.3), did not seem to affect these re-
sults strongly. This is rather strange, since the simple in-
tuition from random ferromagnet theory would suggest
that the only thermodynamically stable state in the pres-
ence of small noise is a uniform state. Although minority
clusters showed a tendency to decay in the presence of
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noise, the time scale of this decay seemed to exceed the
computer simulation time for small noise levels. In
separate simulations [32] it was observed that minority
clusters perturbed by a strong noise at one time instant
and by relatively weak noise in the following time steps
change their shape and decrease in area. Typically, how-
ever, after some time such clusters reach a new, apparent
equilibrium and remain stable for periods longer than the
simulation.

These findings have implications for a variety of appli-
cations in the social sciences, such as the use of public
opinion polls to predict elections. Currently, the predic-
tion of election results is usually based solely on assessing
the proportion of people holding different attitudes or, at
most, on plotting temporal trends in the distribution of
attitudes. In the light of the theoretical and numerical
results described above, predictions should also take into
account the degree to which attitudes are clustered. For
instance, a well-clustered 30% minority may remain in a
stable equilibrium, while a 30% minority scattered
among majority members may be subject to rapid de-
clines in number. Thus public opinion polls should assess
the degree to which individuals that are “close” to one
another share the same opinion, as well as determining
the proportion of who agree with the majority.

In the sections below, we look for analytic results that
could give more insight into the structure of the dynami-
cal models of social impact and that could, at least quali-
tatively, explain the results of numerical simulations.

III. FULLY CONNECTED MODELS

We shall begin our analysis with a fully connected
model that has infinite-range interactions. Such a model
allows for an exact solution in the framework of mean-
field theory.

For such a model, one chooses g(d;;)=N for all i7}].
The scaling with N assures the existence of N — oo limit.
In order to describe a nontrivial competition between so-
cial impact and self-supportiveness, we additionally set
g0)=1/B.

In the noiseless limit, the evolution equation (2.2) may
be reduced for large N to the form

o;=sgn(m)O(|m|—|a;|)+o;sgn(a;)0(la;| —|m|), (3.1)

where m denotes a weighted majority-minority difference

m=2(sj+pj)aj/N(s +p), (3.2)
J

s and p are the means of s; and p;, respectively, and O(-)
denotes a unit-step function.

In the infinite-N limit, we expect that the mean-field
theory is exact, and so the relative fluctuations of m are
of the order of 1/V'N. In the limit of large N, m is prac-
tically no longer a random variable and may be replaced
by its mean.

The random parameters a; introduced in Eq. (3.1) de-
scribe the effective self-supportiveness and are defined for
each of the individuals as

_s—p, B _
ai s+p s+ps"

We restrict our attention to the case in which all ¢; =20
for any realization of the random variable s;, reserving
discussion of the case where a;’s may take negative values
for Ref. [32].

It is interesting to realize that the “order parameter”
appropriate for the dynamics defined by Eq. (3.1) is a
function of a variable £€ [0, « ],

(L utp
n() <N§S+p

where brackets { ) denote the average with respect to
random variables s; and p;,. n(&) measures the weigthed
majority-minority difference calculated only for those in-
dividuals who have effective self-supportiveness greater
than £ As we shall see below, n(§), which gives the
description of the dynamics (3.4) averaged with respect to
the quenched disorder, is indeed a proper order parame-
ter since (i) in the absence of noise it defines different, sta-
tionary states of the dynamics (i.e., nonergodic phases); in
fact our model has infinitely many stationary states; (ii) it
determines uniquely an approach toward stationary
states in the noiseless case; and (iii) in the presence of
noise the only stationary state, or stable phase in the ther-
modynamical sense, is a nearly uniform state with
m ~=*1. The function n(§), however, turns out still to be
very useful for description of an approach and a depar-
ture from metastable states.

The complexity of the order parameter n () is a direct
result of the disorder, but is only weakly reminiscent of
the order parameter of spin glasses [18]. The function
n(€) does not describe any replica symmetry breaking, al-
though it does describe infinitely many stationary states.
Its physical relevance is that, to specify the state of the
system completely in the presence of disorder, it is neces-
sary to describe the ordering among individuals of a
given strength. In fact, the derivative of n(§) with
respect to £, when it exists, is directly related to the
weighted majority-minority difference of those o;’s
whose strength is given according to Egs. (3.1) and (3.3)
by the expression

(3.3)

aje(a,.—g)> , (3.4)

=L +p)—(s —p)] . (3.5)

B
The order parameter (3.4) fulfills the equation

n’(§)=[g(m,§)+n(|mi)]9(|m|*§)+n(§)6(§—-|m|) ,
(3.6)
where n (0)=m and

(L S;itp;
g(m,€) <ngn(m)§ S+p

G(Iml—aj)e(aj—§)> .

(3.7)

In fact, Eq. (3.6) can be derived without the mean-field
assumption. In such a case, n(£), g(m,§), and m would
correspond to unaveraged quantities. The fact that Eq.
(3.6) does not depend explicitly on random variables s;,
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p;», and fluctuating o; provides yet another argument for
the correctness of the mean-field approach. Note also
that Eq. (3.6) implies that n(§) is continuous for all &,
provided that was initially. It may, however, be
nondifferentiable at £=m,, where m; denote successive
values of the weighted majority-minority difference.

Note that according to Eq. (3.6), the function n(§)
does not change its shape for £>|m|=|n(0)|. The
“magnetization” m fulfills therefore the recurrence that
follows from Eq. (3.6) by putting £=0:

=g(m,0)+n(|m|) . (3.8)
Direct inspection of expressions (3.4) proves that
=m—(L
n(&)=m <N§ A0l a)> (3.9)

Letting £=|m| in the above equation and introducing the
result to Eq. (3.8), we obtain

1 51p;
= + —_
" <N§ s+p

[sgn(m)—o;10(|m|—aq; )>

(3.10

Note that the change of m is always nonnegative, when
sgn(m)=1, since 1—o0,;20. Similarly, the change of m is
nonpositive, for sgn(m)= —1, so that

Im’|=|g(m,0)+n(|m|)|>|m| . (3.11)

From this inequality it follows that m is a monotonic
function of a time step. The actual value of |m| is there-
fore the maximal among all of the values of |m,|. In
such a case, according to Eq. (3.6), the initial function
ny(£) determines the value of the function n (|m|). That,
in turn, implies that ny(£) determines fully the evolution
of the parameter m. For positive initial my=ny(0), we
obtain, for instance,

=g(m,0)+ny(m) . (3.12)

The map (3.12) provides an analytic solution for the dy-
namics (3.1), since it reduces it to the solution of a single
algebraic equation. Knowing the explicit form of ny(m),
we may, using Egs. (3.12) and (3.6), find explicitly the dy-
namics of m and then that of n (§).

The map (3.12) has the following properties: Denoting
g(m,0)+ng(m)=f(m), it is easy to show that f(0)=m,
and f(m)2m for all positive m’s. The latter inequality
follows from Eq. (3.10) when we let m’'=f(m) and o;
equal its initial value o;(0):

s;+p;

= 1 $57Pi _
fm) m0+<N§ =0 0)e(m a,.)>.

(3.13)
Moreover, from Eq. (3.4) it follows that —1=<n(§)=

whereas from Eq. (3.7) it follows also that 0 <g(m,0) =
As a result, f( ) is bounded. Writing

sim=(3 3 ~a)=0,(08la;—m))

J
(3.14)

and replacing ©(m —a;) by 1 —6(a; —

P B
Flm)=1 (Ng s

so that f(m)=<1. From Eq. (3.13), on the other hand, we
infer that it is an increasing function of m.

All these facts imply that m is an increasing and
bounded function of the time step; i.e., map (3.12) has at
least one stable fixed point. It may also have several
stable fixed points separated by unstable ones. The fixed
points values fulfill the equation

1 o85tpi. _
N% P [1—0;(@]6(|m|—a;)=

m), we get

i [1+0,(0)]6(g, m)>, (3.15)

(3.16)

m will tend to the smallest of the stable fixed points as
time step goes to infinity.

It is important to stress that the situation in which f( )
has many fixed points may be generic. Here we discuss
two examples. In both of them we assume s;=p; and
vary the form of the distribution p (s) or the initial corre-
lations of the strength of the individuals and their
opinion. Let us assume that the random variable that de-
scribes the initial state of each of the individuals, o;(0), is
a function of s; distributed with the probability p (o,s;),
which is identical for all i. Let us also denote

=3, +10p(0,5).

Example A. Single-peaked strength distribution p (s),
no initial strength correlations. For this case we may
choose for instance o(s)=o,

p(s)=—l— , (3.17)

25
for s—3 <5 <5+7%, and zero otherwise. § denotes here
the mean value of s and 52/3 its variance. Elementary
calculations show that, in this case,

my=0 (3.18)
and
flm)=0o, (3.19a)
for m <B(3—73),
: 2
y=o4+—2 | | 2| —5-92], (3.19b
flm)=c po [B (s s)} )
for B(3—5)<m <B(5+7%), and
flm)=1, (3.19¢)

for B(5—5)<m. This function has two stable and one
unstable fixed points, provided B(3—3)2oc and
B(5—3)=1. It is easy to generalize this example and to
show that f( ) will typically have K +1 stable and K un-
stable fixed points if the distribution p(p;,s;) is mul-
tipeaked [32] and has K peaks.
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Example B. Uniform strength distribution p (s) and in-
itial opinion-strength correlations. For this case we may
choose

1

p(S):E (3.20)
for s <25,

o(s)=—1 (3.21a)
for s =s,, and

o(s)=1 (3.21b)

for s >s,, with s, being a real parameter. After perform-
ing some algebra, we obtain
_ 252_5%
T s
Note that my >0 for s, <§/V2. The function f(m) is
then given by

(3.22)

252 —52 2
f(m)=?—l —2;—2 %’ (3.23a)
for m <fs,, and
fim)=1 (3.23b)

for m = Bs,. Evidently, f(m) has two stable and one un-
stable fixed points, provided L <f8s; <1, and

B§ [ 1 s 21172

(3.24)

2 3

It is possible to generalize this result for more complicat-
ed initial correlations o(s). For instance, choosing

o(s)=—1
for s <s, and s = s,, while
o(s)=1

otherwise, we obtain f (m) that grows quadratically for
s <5, is constant for s; <s <s,, and grows quadratically
again for s >s,. Such a function may have three stable
and two unstable fixed points. We stress that some corre-
lations between the opinions of individuals and their
strength parameters are quite common in sociological
data.

The noiseless model results in a whole continuum of
asymptotic states corresponding to different minority
numbers and determined uniquely by the initial function
no(&). All of these states are marginally stable in the
linear sense, since small changes of initial data inevitably
change asymptotic behavior.

In order to understand the effects of noise, it is very
useful to evoke a physical analogy. The function

m—f (m)=20{m)
om
where ¥V (m) may be regarded as a potential. The dy-
namics of m from this perspective is a dissipative over-

damped motion in the potential ¥(m). When the func-
tion f(m) possesses 2K +1 fixed points m7,
m3,...,mj3x 1, the stable fixed points m{,m73,. .. cor-
respond to the local minima of the potential. The unsta-
ble fixed points mjy,mj,... describe locations of the
maxima of the potential. Typically, the values of the
minima and maxima are descending:

Vimt)>V(im3)> -,
Vim3)>V(img)> ---

The starting point of the dynamics, m (0), is smaller that
m7 for my>0. The noiseless motion corresponds to the
approach to the closest minimum of the potential, i.e.,
m7Y. This minimum should remain metastable even in
the presence of noise.

For uniformly bounded noise 4, the minimum of the
potential at m} will remain globally stable, provided the
noise A is small enough, and cannot carry the system over
the energy barrier ¥V(m3)—V(m}). For unbounded
noise, such as Gaussian noise, the minimum of the poten-
tial should become metastable, but its lifetime should be
extremely long. In particular, for Gaussian noise with
zero mean and dispersion A, the lifetime should behave as
exp{[V(m3)—V(m} )]/h*}. In principle, the system
should always end up in the uniform or a nearly uniform
minimum that corresponds to the point m3g .. The dy-
namics of the system will consist of several intermittent
steps. We call this kind of dynamics “staircase’” dynam-
ics.

A simple explanation of this form of the dynamics can
be formulated as follows. In most discussed examples
that lead to multiple minima of the potential ¥ (m), one
may distinguish several groups of minorities that are
characterized by different values of the strength parame-
ters. The staircase dynamics corresponds to successive
decays of such groups, starting from the weakest one to
the strongest. The first step of the dynamics with
m} =~m, may sometimes result from a small value of the
initial weighted majority-minority difference.

In the next section we shall show more rigorously that
this simple physical explanation of the results is quite ap-
propriate.

IV. STAIRCASE DYNAMICS
IN THE PRESENCE OF NOISE

In order to understand the effects of noise on the dy-
namics (3.1), we shall first analyze the case of vanishing
disorder, when p (p;,s;) becomes a product of Dirac’s &
functions centered at p and s. In such a situation all indi-
viduals are characterized by a single self-supportiveness
that we denote by a. In this case there is no point in in-
troducing the function n (§). m itself is then an appropri-
ate order parameter and fulfills an equation analogous to
Eq. (3.12), in which the right-hand side (RHS) is a func-
tion of m only and does not depend on ny(§). The dy-
namics of m is uniquely determined by its initial value
mg. In the noiseless case there are two kinds of asymp-
totic states: marginally stable states with |m|<a and
stable states with |m|=1.

We shall consider below two kinds of white noise: uni-
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form noise that acts in the same way on every individual
and site-independent noise.
In the presence of uniform white noise denoted by 4,

m’'=sgn(m +h)O(|m +h|—a)+mO(a —|m +h|) .
4.1)

m does not self-average over the different realizations of
h, and Eq. (4.1) must be considered as a stochastic map.
Direct inspection of this map shows that when we start
with 0<m <a, m will remain constant, provided the
noise h; will never exceed the value a —m at any time
steps k =1,2,3,.... For uniformly bounded noise such
that A, <8, this will happen for sufficiently small 8. For
unbounded noise, such as Gaussian noise, the noise will
necessarily exceed the value of a —m in the course of
time. If we take Gaussian noise with mean zero and vari-
ance §, however, in the limit of small § the probability
that it remains smaller than @ —m is close to 1. The life-
time of the state characterized by m <a is proportional
to the inverse of the probability of noise exceeding
a —m, which, in turn, is given by

p(h>a—m)xexp[—(|m|—a)?*/28%], 4.2)

i.e., exponentially small. We may therefore expect that m
will remain constant for such a long number of steps, and
then finally it will jump and reach the value 1. Of course,
the noise may also take negative values and become
h < —m —a, so that m in such a case will attain the value
— 1. The probability of such an event, however, is much
smaller than the one given by Eq. (4.2). Also, in princi-
ple, m may jump back from the value 1 to some value
m’ <a, provided the noise becomes negative and fulfills
h <a —1. Again, the probability of such an event will be
exponentially small in the small-8 limit:

p(h <a—1)xexp[—(1—a)*/28%] . 4.3)

In the asymptotic limit we shall observe a balance of
jumps between the values of m =1 and some m <a.
Each of the actual states will have an exponentially long
lifetime. The reason for such behavior is clear: The noise
must compete with or cooperate with self-supportiveness
a in order to induce a change of state. Sufficient numbers
of individuals must change their opinion under the actual
influence of noise to lead to a global change of the state of
the system.

Similar conclusions may be drawn in the case of site-
independent noise. We expect that the global effects of
noise in this case will be even weaker, since each of the
individuals is affected by a different noise value and the
global effects of the noise may average to zero.

In the presence of site-dependent white noise A4;, the
weighted majority-minority difference is a self-averaging
quantity, and the random map is replaced by its averaged
version,

m'=(sgn(m +h)O(|m +h|—a)+mO(a —|m +h|)) ,
4.4)

where the brackets ( ) denote that we now average over

h. Since m is self-averaged, this average is performed
with respect to the explicit # dependence of the RHS of
Eq. (4.4) only. In the case of uniformly bounded noise,
such that for every realization of the random variable A
we have h <8, some of the marginally stable states with
m <a —§8 remain stable. For larger values of m, the
function on the RHS of Eq. (4.4) will grow. Eventually, it
will saturate and exhibit a stable fixed point for m ~1.

In the case of Gaussian noise, all marginally stable
states become unstable. The function on the right-hand
side has a characteristic sigmoid shape. It is worth not-
ing that the rates A(m) that describe the departure from
the originally marginal fixed points with some m <a are
extremely small for low noise levels. For Gaussian white
noise, we may calculate them by rewriting Eq. (4.4) in the
form

m'=m[l1+A(m)], (4.5)
so that we easily estimate
1—m _ N2 2
AMm)= PRIV exp[ —(|m|—a)?/28%] . (4.6)

The averaged dynamics will therefore consist of very
slow, but monotonic growth of m for |m| <a. Such inter-
mittent behavior [34] will be followed by a fast decay to-
ward |m|=1, as soon as |m| reaches a. For obvious
reasons we call such behavior “staircase” dynamics with
a single step. It should be stressed, however, that the in-
troduction of disorder and individual differences will add
additional complexity to the dynamics. For instance, the
dynamics in the presence of disorder will typically start
with some period of fast decay and then become inter-
rupted by a series of very long periods of apparent sta-
tionarity.

Let us now consider the disordered case and start again
with a discussion of uniform white noise 4. In this case
the order parameter n (£) does not self-average over the
realizations of the noise 4. On the other hand, mean-field
theory in the sense of self-averaging over individuals is
still valid, and n(§) is self-averaged with respect to the
random strength parameters.

In the presence of noise, Eq. (3.6) becomes a stochastic
functional map and takes the form

n'(E)=[g(m +h,E+n(lm +h|))O(m +h|—£)

+n(E)O(E—|m +h|) . @.7)

We shall consider below a generic situation, in which in
the absence of noise the function f(m) of Eq. (3.13) has
three positive fixed points: two stable ones m},m3 and
an unstable one m3, with m§ <mj$ <mj}.

We shall look at the behavior of n(£) in the vicinity of
the first fixed point. As we shall see below, without losing
generality, we may assume that at the time instant ¢t =0
the system approached some state n (£, =0) and that the
noise was turned on in the following time steps.

At the first time instant ¢ =0, the function n(§) can
therefore be represented by the expression
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n(&t=0)=[g(m,&)+ny(m)]O(m —E&)

+no(8)O(E—m), (4.8)

where ny(&) describes the state of the system in the re-
mote past, whereas 7 is a parameter that fulfills

no(0)=mo<m=mf . 4.9)

The weighted majority-minority difference in this state is
given by m(t=0)=f(m)=g(m,0)+ny(m). It is ele-
mentary to check the following.

(a) For small & such that m +h <, the function n (&)
at ¢t =1 will remain unchanged,

n(E)=[g(m,0)+ny(m)]|0(m —E&)+ny(E)OE—m) ,
(4.10a)

and, consequently, the value of the weighted majority-
minority difference will be

m=n(0)=f(f) . (4.10b)

(b) For small h that m +h =, the function n (&) at
t =1 will become

n(€)=[g(m +h,0)+ny(m +h)]O(m +h —§)

+no(§)O(E—m —h) (4.10c)

and, consequently, the value of the weighted majority-
minority difference will be

m=n(0)=m(t=0)+h . (4.10d)

As we see, the form of the function remains unchanged
and only the parameter 7 has been replaced by
m (¢t =0)+h. For small uniform noise, we can exclude
the possibility that m will change sign as a result of the
action of large negative noise, similarly, the probability of
such change will ne negligible for Gaussian noise, provid-
ed m (¢t =0) is sufficiently larger than zero. That means
that the change of m in Egs. (4.10) determines the whole
evolution of n (£). The stochastic equation for /7 reads

m'=[f(m)+h]O(f(m)+h—m)

+mO(m—f(m)—h) . (4.11)

Note that, for positive i, positive noise is the most desta-
bilizing. It is easy to see that m may only grow. This
growth may be, however, limited for uniformly bounded
noise |#| <8. The growth of 7 is limited to those regions
of /i where

m—f(m)<8§ . (4.12)

This condition divides the set of 7 into two separate sub-
sets, provided max_«___ «[m —f(Mm)]=E=38. Let us
1 = =2

denote the boundaries of these sets by 77, and 7,. When
m, 2> +8, A cannot jump from a value m =/, to
some value 1 = 7 ,, since

m' < f(m)+h<m, +8<m, . (4.13)

This means that for small uniformly bounded noise, 7
will remain in the vicinity of m{ forever. Similar con-
siderations apply to the case of Gaussian noise with vari-
ance 6. The probability of jumping from one region to
another will decrease exponentially with the size of the
noise. In this case m will remain fluctuating around m}
only a finite time 7 and jump to the next stable point m 3.
The time T in the limit §—0 may for any practical pur-
poses be considered infinitely long.

The case of site-dependent noise requires more compli-
cated calculations. The function n(£) self-averages over
the noise, and the functional map (4.7) has to be replaced
by

n'(&)=([g(m +h,&E)+n(lm +h|)]O(|m +h|—£)

+n(£)O(E—|m +h|)) , (4.14)

where the average over the noise ) applies to the expli-
cit dependence of 4 on the RHS of Eq. (4.14). We assume
again that the noise was turned on at =1 and that at
t =0 the function » (£) had the same form as in Eq. (4.8).

Since, for any particular realization with sufficiently
small noise, the form of the function n(£) remains un-
changed, it is reasonable to look for the solution of Eq.
(4.14) in the form

n(&t=0)= [dm p(m){[g(m,E)+ny(m)]O(m —E)

+no(§)O(E—m)} , (4.15)

where the function p(7 ) is the normalized density,

S dmptm)=1. 4.16)
The weighted majority-minority difference is for n(§)
given by Eq. (4.15) equal to

mp=f0wdr71 plm)f(m)

= [ "dm p(m)[g (m,0)+no(m)], 4.17)
and depends functionally on the density p.

Substituting the ansatz (4.15) into Eq. (4.14), we obtain
after some algebra the exact evolution equation for the
density in the form

pm)=p(m—m,) ["dm’ p(m")

+[ Cdnpnpim) . (4.18)
This equation is valid, provided the noise, as well as the
support of the function p(#i), has appropriate lower
bounds, so that the evolution cannot lead to any sign
changes of the m,, i.e., sgn(m,+h)=sgn(m)=1 for all 4
and m. Denoting A(m)= ["dmp(m), E(h)
= fhdh’p(h), we can rewrite Eq. (4.18) in the compact
form

A'(m)=E(m—m,)A(m) . (4.19)

It is easy to see that the only stable asymptotic solution
of this equation corresponds to the situation when
A(m )=0, for all m such that E(ﬁz—mp)< 1. For noise
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that is unbounded from above, this implies the solution
A(m)=O(m—m *), with @ * — w0, or

lim 8(m—m*) . (4.20)

"*—»uo

plm)=

Note that the asymptotic solution corresponds to m,=1
since lim_+_ _f (mi*)=1. For the case when the sup-

port of p(h) is compact, the support of p(7 ) must con-
tain /m’s that are greater than any of the elements of the
support of p (7 —m,). An explicit solution of Eq. (4.19)
will depend on the form ny(&) that enters the definition of
m,.

For the case of Gaussian noise, Eq. (4.19) is an approx-
imation only, since it excludes the possibility of a change
in the sign of 7 for any of the realizations of 7 and h.
The contribution of such sign changes, however, will typ-
ically be exponentially small, as we discussed in the first
part of this section.

Equation (4.19) does describes the staircase dynamics.
If we start the evolution with a well-localized distribution
p(m ) peaked at some m <m7, it will shift to the position
of m,=~f(m) and slightly diffuse in the next step. On the
other hand, a wide distribution p(7 ) will initially reduce
its width to the size of the order of the variance of the
noise and move toward m7}. After this happens, a slow
buildup of the distribution for 7 >m T begins. This hap-
pens on a time scale that increases exponentially with the
decrease of the noise variance. As soon as the sufficient
part p(7i) is concentrated for A >mJ so that m, be-
comes greater than m 3, the distribution will rapidly shift
toward m§ and shrink to the size of the noise variance.

Despite the simplicity of the final state in the presence
of noise, the discussion in this section leads to the con-
clusion that all of the considered models exhibit a com-
plex staircase dynamics with multiple steps. It is a gen-
eral type of dynamics, which characterizes decay in a
wide class of complex systems.

V. MODELS WITH HIERARCHICAL GEOMETRY

The theory presented in previous sections may easily
be generalized for the case of hierarchical models or
geometries, in which individuals are divided into groups,
groups into subgroups, and so forth. Within each level of
the hierarchy, the interactions among all pairs of
members of the same group are uniform, but different in
magnitude from those among members of different
groups. In other words, the interactions decrease with
distance, which in hierarchical models is ultrametric.
The distance between individuals i and j may be, for in-
stance, defined as a decreasing function of the lowest
hierarchy level in which both i and j belong to the same
group.

In this section we briefly consider the simplest version
of such a hierarchy, in which N individuals are divided
into p groups of equal, extensive size. Since the methods
used are direct analogs of those presented in detail in
Secs. III and IV, we sketch only the results.

We consider again models of the class described in Sec.
II. We assume once more that the function that charac-

terizes self-interactions and self-supportiveness is
g(0)=1/pB and does not depend on the group to which a
given individual belongs. On the other hand, we set
g(d;;))=N/p, if i and j belong to the same group, while
g(d;;)=N/ap, if i and j belong to different groups. In
this way we allow for nontrivial competition between
self-supportiveness and social impact.

In the following we shall enumerate groups with lower-
case Greek letters v, u, etc. Individuals within groups
will be enumerated with lowercase Roman letters j, i, etc.
We shall denote the state of the ith individual in the vth
group as o} and his strength parameters as s;” and p;”.
We assume that the statistical properties of the system
are uniform.

For each of the vth groups, v=1, ..., p, we introduce
the weighted majority-minority differences

'V
+
L s U i/t oy (5.1)
] e, STtp
These parameters characterize each of the groups sepa-

rately. It turns out that it is useful to introduce also addi-
tional parameters

M,=m,+a ¥ m,
VFEY

(5.2)

These parameters, in turn, provide a weighted average of
the weighted majority-minority difference.

The noiseless dynamics may be fully described by in-
troducing a set of functions n,(£), v=1,...,p, as an or-
der parameter

sy +p;
n (g)—<£ > LB

N jev s+p

o70(a} —§)> (5.3)
where a;/=[Bs;+(s —p)1+ap+a)]/(s +p). The order
parameters fulﬁll the equations
n(£)=[g(M,,E)+n,(IM,])]6(
+n(E)O(E—IM,]),

M, |—§&)
(5.4)

with n,(0)=m

One can proceed as before in order to obtain an analyt-
ic solution of the form of Eq. (3.12) and to show that the
dynamics (5.4) will also exhibit a staircase character.
This can be done only for a limited set of initial condi-
tions, namely, those that do not lead to any change of
sign of any of M. In the asymptotic limit, however, we
expect that this will always be the case, so that the
method will allow us to identify all of the stationary
states of the dynamics (5.4).

Let us assume that at £ =0 the state of the system is de-
scribed by the functions n,,(£). Atz =1 it takes then the
form

AE=[g(M,,E)+ny, (1M, )]O(|M,|—€)
+no,(£)O(E—|M,]), (5.5)

where M, =m,,+a3, ..,mo, and my,=ng,(0). Using
the same argumentation as in Secs. III and IV, it is easy
to show that the form of the function n,(£) remains un-
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changed; i.e., at t =2,

n(&)=[g(M.,,&)+ny(|M.|)O(|M,|—E£)

+no,(§)O(E—|M,), (5.6)
where
H;: fv+a va’(ﬁlv’)]
vF#Ey
XGI fita ¥ fv'(M'w‘—IMVI ]
VF#EY
+M.,© [IMVI— fota S fv,(M'v,)H (5.7)
V'FEv
and

f,(M,)=¢g(M,0)+n, (M,) . (5.8)

The expression (5.7) is valid provided the parameters M,
do not change their signs in the course of dynamics.
The actual value of the weighted majority-minority
differences are given by

m,=f,(M,), (5.9)

and M ’s are expressed as in formula (5.2).

The dynamics (5.7) is very similar in character to that
discussed in the previous sections. Also, one can easily
incorporate noise in the theory. There are, however, two
additional features.

(a) The dynamics introduces a class of stable stationary
states, such that m ,~—1, for v=1,...,k, and m ~1,
for k <v=<p. These states are linearly stable in the ab-
sence of disorder. For instance, if k fulfills the inequality
(p+1)/2—1/2a<k <(p —1)/2+1/2a, then such states
exist and are stable in the absence of noise, because when
m,)’s are close to their asymptotic values,
sgn(M,)=sgn(m,)=const. From Eq. (5.7) we easily
infer as in Sec. IV that [M/,|>|M,| so that |m/|>|m_|.
For the generic form of the function f (), this implies
that the asymptotic state |m, |~ 1 must exist. Obviously,
this state is stable in the noiseless limit. In the presence
of finite but small noise, the corresponding state with
|m,|~1 can be proven to be linearly stable, using the
analog of Eq. (4.19).

(b) There are types of critical phenomena induced by
changes of the control parameter a that determines the
distance between individuals that belong to different
groups.

We illustrate these features by discussion of a simple
example where only two groups are present and p =2.

Example. The evolution equation for the parameters
M, may take for p =2 even a simpler form than that of
Eq. (5.7). Namely, such simplification happens when we
consider two kinds of initial conditions: symmetric ones,
with ng (§)=ny(£)=ny(£), or asymmetric ones, with
no(E)=—ng(E)=ny(&). Denoting f(M)=g(M,0)
+ny(|M|), we obtain for symmetric initial conditions

M, =M, =M, where M evolves according to
M=1+a)f(M) . (5.10)

For the generic case, f( ) has two stable fixed points m |

and m3, such that m} =~1, and one unstable fixed point
m 5. For small a the evolution equation (5.10) will gener-
ically have also three fixed points m*(a),i =1,2,3. It
will always have at least one stable fixed point
m3(a)=1+a. The increase of a may, however, destroy
the stability of m ] (a), leading to intermittency [34] for
a = a., where the critical value of «, is determined from
m7(a,)=mj(a,). For an asymmetric initial condition,
M,=—M,=M and

M'=(1—a)f (M) . (5.11)

In this case, for small a, the dynamics will also exhibit
three fixed points m{(a), mj(a), and mi(a)=1—a.
With increasing a the fixed point m} (a) remains stable,
whereas the other two will vanish.

Summarizing models with hierarchical geometry may
be solved exactly using the same methods as in the case of
fully connected models. Even the simple geometry intro-
duces features, such as the appearance of linearly stable
states and geometry-induced critical phenomena.

VI. STRONGLY DILUTED MODELS

In this section we consider yet another type of
geometry, or rather social network architecture, namely,
strongly diluted networks. The underlying assumption is
that at each instant every individual is affected by the im-
pact of K randomly chosen individuals that we call ances-
tors. The set of direct ancestors of a given individual i
changes at each time step. When the set of ancestors is
not too large, such a model may be exactly solved with
the help of the method of Derrida et al. [22-24]. The
reason is that K input sites are chosen at random among
the total number of N sites. The number of sites that be-
long to the tree of ancestors of the ith individual at the
time step ¢ is (K +1)’ (note that typically a given indivi-
dual is also his and/or her ancestor). As long as ¢t <<InN,
all the sites that belong to the tree of ancestors in the lim-
it N — o are different; i.e., there are no feedback loops.

The architecture of strongly diluted networks corre-
sponds to the fact that individual opinions are affected by
different individuals at different points in time. The
drawback of such models is that they are fully asym-
metric; i.e., when the ith person experiences the impact
from jth person, the reverse situation has a probability
close to zero.

The dynamics of such a model takes a similar form to
that described in Eq. (3.1):

o:=sgn(m;)0(|m;|—|a;|)+o;sgnla;)0(la;| —|m;|) .
(6.1)

The weighted majority-minority difference is now defined
locally,

=1 5i%j
mTK 25
j S

(6.2)

where j(i)=j,, ..., jx denote direct ancestors of the ith
individual at the time ¢ +1. We use here the normaliza-
tion g (d;;)=K for i#j, g(0)=1/B, to allow for the com-
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petition of self-supportiveness and social impact. We
have also assumed s;=p; so that the self-supportiveness

the states and strengths of all of its ancestors:

parameter is simply 0;=7,5;,{S }anc) - (6.4)
a.=Bs, . 6.3) Denoting the right-hand side of Eq. (6.1) by
b F(o; (2),5;,...,0 (t)s;,0,(1),s;), we may rewrite Eq.
The state of the ith individual at time ¢ is a function of  (6.1) in the form
|
1+0,7(2) 1+o (1)

olt+1)= 3 ———l 22Tl TR e R A (6.5)

0,=%1 2 ajm=:t1j(i) 2

In the course of evolution, the effects of ancestors and their random strengths will tend to self-average. The quantity of
interest is therefore

1-i(si)=<?(t’si’{S}am:))anc 4 (66)

where the average is over the random strength of ancestors and over statistics of initial conditions. Assuming that no
initial correlations between the states of different individuals were present at ¢ =0 and noting that the trees of ancestors
of different individuals are different with probability 1, the average (6.6) can be done independently for each of the fac-

tors entering the RHS of Eq. (6.5). We obtain

’ _ 1-|_0'i"'i(si) 1+01(z) (1)(31(1))
a,-(t+1)——< ;i — z_ [] F(o; 8jpr e 208008 )>Sjm , 6.7
o, =*1 oin=t1il
[
where ( ) denotes now only the average over the n'(&)={[g(m,&)+n(|m])]0(|M|—E)
strengths of the direct ancestors of the ith individual at
t+1. +n(£)0(E—|m|)), , (6.12)

Equation (6.7) may be written in the compact form
7i(s;)=(sgn(m;)0(Im;| —|a;|)

+7,(s;)sgn(a; )e(|a,-|—|m,~|)),,,i , (6.8)
where the brackets denote the average over the random
variable

=_1_ 2 j(l)oj(l)
l K (

(6.9a)
5

which is the sum of statistically independent variables
that are distributed according to

1+oj(sj)

P(O'j,Sj)= 2

p(s;). (6.9b)

When initial conditions o;(0) are statistically indepen-
dent and uniform [i.e., the probability distributions of
0;(0) are independent, but equal for different sites], the
solution of Eq. (6.8) remains uniform at any time, i.e.,
7;(s;)=7(s;). The distribution of m; becomes then also
site independent, so that if we denote m; =7,

(s;)=sgn(m)O(|m| —|a;|)

+7(s;)sgn(a; )6(|a,~[—rﬁ|))m (6.10)
Introducing the order parameter
K s.7(s;)
n(§)=<i 2 ]T] SJ (ai_§)>s , (611)
K 5

i=1
we obtain easily the analog of Eq. (3.6) or (4.14),

where the random variable 77 is distributed in accordance
with Egs. (6.9), with 7,(s;)=17(s;).
Denoting the mean value of 7 as m and writing

m=m+h , (6.13)
we immediately see that
n'(&)={[g(m +h,E)+n(|lm +h|)]O(m +h|—
+n(£)0(E—|m +h|)), , (6.14a)
and
K s.7(s;)
n(0)=m =<i > #> . (6.14b)
K= 5 /s
J J
The random variable 4 is defined by
-Ls Mj 57 (6.15)
"X § < T >sj ’ ’

and its distribution is uniquely determined by the distri-
butions p (0 ;,s;) given by expression (6.9).

Note that h is a sum of statistically independent ran-
dom variables with mean zero. In the limit of large K, A
may be well approximated by a Gaussian random vari-
able with variance

()= [as[(s* /5 —m?Ip(s) . (6.16)

In this limit the dynamics (6.14) is the same as that ob-
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tained for the fully connected model with site-
independent Gaussian noise [Eq. (4.14)]. The only
difference is that the noise level (6.16) depends this time
on the actual configuration of the system. This depen-
dence, however, is relatively weak, since 0= |m| <1 and

1 (s
<K (6.17)

Ea)sens( ).

The theory of Sec. IV may be directly applied to solve
Eq. (6.14). The dynamics described by (6.14) will again
exhibit a staircase character. The time scale of jumps be-
tween the steps depends on the noise level and is
governed by expression (6.16). This time scale increases
to infinity when the number of direct ancestors K — oo.

Note that the central limit argument that we used in
the case of large K does not apply when K is moderate or
small. In this case one has to use Eq. (6.10) for 7(s) with
the random variable 7 defined by Egs. (6.9). The statisti-
cal properties of /7 depend then functionally on 7(s) in a
self-consistent manner. Such a situation is well known in
the physics of disordered media [26,35].

Summarizing, strongly diluted models are equivalent to
fully connected models in the presence of site-
independent noise 4. The noise properties, however, de-
pend self-consistently on the actual state of the system.
Dilution will tend to destroy minority groups and to

speed up the staircase dynamics.
|

_ s(x)+p(x’)
<fD (s +plg(x —x’ Ola

g(x'))> .

VII. MODELS WITH EUCLIDIAN GEOMETRY

It is interesting to see whether the typical features of
the infinite-range and hierarchical models can be also be
observed for long- and moderate-range models [15,16,32].
For such models the dynamics are

o;=sgn(m;)0(|m;|—la;|)+o0;sgn(a;)0(|a;| —|m;|)

(7.1)
where both m; and a; are defined locally. For example,

+p;)o;
s;+p;)o (7.2)

EI (s +pgld; )
The mean-field approximation corresponds now to the as-
sumption that in Eq. (7.1) the actual value of m; may be
substituted by a mean of m; with respect to the disorder.
That is evidently an approximation. One should stress,
however, that in the numerical simulations, algebraically
decaying and moderate-range interactions were assumed
[15,16]. For such slowly decaying interactions, one may
expect that mean-field theory will provide a relatively
good approximation of the dynamics.

It is convenient to introduce a field-theoretical descrip-
tion of the model, in which we substitute an integral over
two-dimensional Euclidian space R ?* for the sum over in-
dividuals j, with an appropriate factor describing the
density of individuals. Let x ER? and n(x,[£]) be a
functional

(7.3)

In the mean-field limit, it fulfills an equation analogous to Eq. (3.6),

n'(x,[E])=g (x,[m, D) +n(x,[ L&+ |m|+ |6~

where n(x,[0])=m
(3.7):

g [m,g)=( [ Dyx LS

(x), whereas g (x

(s +p)g(x —x")

Apparently, Eq. (7.5) has a very complicated form and
does not seem to have any advantage over the direct
description of the dynamics given by Eq. (7.1). However,
just as before, we can prove that if sgn[m (x)]=const for
all x, then |m'(x)|>|m(x)|. The functional analog of
map (3.12) may be then easily derived:

m'(x)=g(x,[m])+ny(x,[Im|]) (7.6)

Now it is evident that the advantage of mean-field theory
lies in the fact that we reduced the full dynamics de-
scribed by the functional equation with disorder (7.1) to
the averaged functional equation (7.6). The functional
equation for m (x) holds, provided m (x) does not change
its sign. This may happen, for instance, if we are close to
uniformity, and sgn[m (x)]=const. In this way we show
that for such initial states the dynamics will have a stair-

Im[[)])

]s&n[m(x”e”m xr)l_a

(7.4)

,[m,&]) is a local, functional analog of the function g (m, &) defined by expression

(x"))0(a(x )—§(x’))> . (7.5)

case character in the presence of small amounts of noise.
In general, when sgn[m (x)]#const, we can only con-
clude that the dynamics will have at least one intermit-
tent step, if at some point sgn[m (x)] becomes constant,
or it will remain trapped for very long times with non-
constant sgn[m(x)]. In such situations correlations be-
tween the actual configuration of the system o(x) and the
strength parameters arise. The results of computer simu-
lations [15] indicate clearly that the latter possibility is, in
fact, typical, and even in the presence of small noise such
correlations build up in the course of evolution. We illus-
trate these findings by discussing two explicit examples.

Example A. We consider the case of finite-range in-
teractions, when g (x)=g for |x| <R and g (x)= o other-
wise. Let p(x)=s(x), and the probability distribution is
p(s(x))=1/23 for s(x)E[5—F,5+5] and zero otherwise.
Let also o(x)=—1 for |x|<r, o(x)=1 for |x|>r, with
0=<r <R /V2. Itis easy to check then that
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R*—2r2

m(x)=my=7—"—20 (7.7a)

for |x| <R —r. m(x) grows for larger |x| and becomes

2

m (x)=7rR— (7.7b)

for |x| > R +r. Since from Eq. (7.6) we infer that
m'(x)=m(x)

a(x )

<fD2 —x)°

x")O(m(x") a(x’))> ,

(7.8)
the configuration o(x) will be stationary, provided
(flx’quzx'g—(ziLf-;)—,)e(m(x')—a(x')))’—“ (7.9)
The sufficient condition for Eq. (7.9) to hold is

my<B(z—3) . (7.10)

Note that if condition (7.9) holds, a destabilization of the
considered configuration would require a change of m of
the order of B(5—5)—m,. Such change in the presence
of small noise will have an exponentially small probabili-
ty.

Example B. In general, sgn[m (x)]#const. As numer-
ical examples show, o(x) usually remains trapped in the
configuration with regions of positive and negative m (x).
Although for such stationary configurations the sign of
m (x) varies locally, Eq. (7.6) still allows them to be deter-
mined, since the sign of m (x) remains at least constant in
time. For instance, for the uniform strength distribution
p(x)=s(x), p(s(x))=1/25, for s(x)E[0,25], the neces-
sary condition for stationarity is again

(f 2

,sgn[m(x')]—o(x’) s(x")
glx—x")

><6(m(x')--a(x’))>=

For this condition to be fulfilled usually requires local
correlations of o(x) with the strength parameters. Con-
dition (7.11) is fulfilled if

(x)]

for |m(x)|=a(x) and for arbitrary o(x) for |m(x)|
<a(x). That leads to the nonlinear integral equation, for
the stationary m (x),

m(x)—<fD2 !

(7.11)

o(x)=sgn[m (7.12)

%S( x)O(|m(x")|—a(x"))

ag(x')

+
glx—x")

s(x")0(a(x')—|m(x")]) ])

(7.13)

This equation has many solutions. In particular, we may
assume cylindrical symmetry and let sgn[m (x)]=—1 for
|x] <7, sgn[m(x)]=—1 otherwise, with some r>>R.
Let us assume the same g (x) as in Example A and denote

r(x)= [Dx SELE T S “Eg”(’):"_)x]f)(" L (7.14)
This function takes the value
2
rix)=—nR" (7.15a)

for |x| <r—R. f(x) is cylindrically symmetric, and it
grows for larger |x|. Eventually, it becomes

2
r(x)=7'rR—

(7.15b)

for |[x| >R +r. If 7TR?/g > 2[5, then there exist the two

radii #_ and r, such that
r(x)==x2B5,
for |x|=r,. There exists also ry such that f(x)=0 for

|x|=r,. Obviously, r_ <r,<r,. Moreover, for convex
cluster shapes such as the presently considered circular
shape, r, <r. From Eq. (7.13) we obtain then

m(x)=r(x) (szx

x')—sgnm (x')]s(x")
glx—x")

Xe(a(x')—|m(x’)|>- (7.16)

It is easy to see that this equation is fulfilled for
m(x)=r(x), provided we choose o(x)=sgn[r(x)],
ie, o(x)=—1 for r_<|x|<r, and o(x)=1 for
ro<lxl<r,.

The question of stability and the selection of specific
solutions of Eq. (7.13) are very complicated, but at least
in simple situations, such as a cylindrically symmetric
case, it may be studied with the help of our theory. We
leave this problem, as well as the detailed comparison of
our theory with numerical simulations, to planned future
publications [32].

VIII. CONCLUSIONS

Summarizing, we have formulated the statistical
mechanics of a class of models of cellular automata that
describe the dynamics of social impact and set a para-
digm for the social sciences [36]. The models incorporate
intrinsic disorder, but nevertheless allow for analytic
solutions. We have formulated a kind of mean-field
theory that can be applied to systems in which interac-
tions are separable functions of random strength parame-
ters of the interacting elements. The dynamics is most
conveniently described by order parameters that charac-
terize correlations between ordering among the elements
of the system and their random strength. Generically, in
the presence of small noise, such dynamics exhibit “stair-
case” behavior, which consists of several intermittent
steps, corresponding to increased ordering among the
groups of elements that have weaker strength parameters.
The time scale of approaching these successive steps in-
creases rapidly with decreasing noise level. We presented
analytic results for a variety of simple geometries and
network architectures. Our results explain qualitatively
the results obtained in numerical simulations.
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