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Critical behavior of ionic-fluid models
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It is argued that one should expect a fluid of symmetrically charged hard spheres (the restricted primi-
tive model) to have an Ising-like critical point. It is further noted that the presence of a repulsive » ~*
ion-ion interaction term (of the sort found in real ionic systems as a result of solvent-averaged ion-
dipole-ion interaction) will prevent such a critical point from developing, although competing terms that
suppress its effect may also be present in real electrolytes.
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Some time ago, on the basis of general arguments as
well as a systematic investigation of several approxima-
tion schemes, we concluded [1] that the restricted primi-
tive model (RPM) of an ionic fluid exhibits phase separa-
tion in the fluid state, with a fluid-state critical point at
very low density. Further work by others [2], including
very recent computer simulations [3], have borne out this
conclusion, and have led to a considerably more precise
and accurate estimate of the location of the critical point
and fluid-fluid phase boundary.

We further concluded in a later study [4] that the RPM
was in the same universality class as the Ising model with
respect to the critical point. Our published remarks in
this connection were brief, however, and we gave few
technical details concerning the argument that led us to
this conclusion. In light of the rapidly growing current
interest, both experimental [5—7] and theoretical [§-10],
in the critical behavior of three-dimensional ionic fluids
and ionic-fluid models such as the RPM, it seems useful
to give the argument here, especially since its conclusion
appears to be somewhat controversial [11], as does the
experimental picture [12].

In Ref. [4] we also asserted that if attractive ion-
induced-dipole r ~* interactions are added to the RPM
Hamiltonian, the thermodynamic critical behavior would
become mean-field-like, referring to earlier work [13] of
ours on the effect of power-law potentials on critical be-
havior as the basis of our assertion. Here we shall discuss
the much more spectacular effect of a repulsive r ~* term.
We find that when added to the RPM Hamiltonian such
a term can be expected to suppress the critical point and
phase separation, giving rise instead to a different kind of
singular behavior that can be thought of as the fluid ana-
log of an antiferromagnetic Neél point associated with a
transition to a spatially ordered state. Models in which
such a repulsive % term is present have a well-
established place in ionic-solution theory [14—16]. If the
critical properties of real ionic solutions prove to be well
described by such models that share the critical proper-
ties of the RPM with an added repulsive » ~* term, our
assertion here would require a major reassessment of the
thermodynamic singularities in such systems. In discuss-
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ing the singular thermodynamic behavior of the models
we consider, we note some of the issues that we feel must
be better understood before one can be confident that one
comprehends real ionic-fluid behavior in this connection.

We begin our technical discussion with the RPM,
which we shall describe in three dimensions classically
(nonquantally and nonrelativistically) in the thermo-
dynamic limit. It is a system of charged hard spheres of
equal diameter o in which the potential energy associated
with n particles is a sum of pair-potential terms of the
form @;;(r)=o for r <o and @;;(r)=s;s5;u(r) for rZo
where

u(ry=q?/er , (1)

with species indices / and j either 1 or 2 and charge num-
bers s, =—s,, with the electroneutrality condition
51p1+5,p,=0, where p; is the number density of species
i. Thus p,=p, with total density p=p,;+p,. The € in (1)
is the dielectric constant (relative to that of the vacuum)
of the uniform structureless continuum solvent in which
the spheres are immersed and g is electronic charge. The
r is distance between ion centers.

One has an Ornstein-Zernike (OZ) equation relating
the total correlation functions h;;(7) to direct correlation
functions c;;(r)

hij(ri)=cy;(rip)+3pp fhik(’u)ckj(rn Vdr, 2
k

and a second independent relation expressing
¢;j(r)—®;(r) as a functional of p; and h;; (and no other
functions) as well as a function of r; where
D, (r)=—PByp;(r), B=(kp T)~ 1, T is the temperature and

kg is Boltzmann’s constant:

cj(N=®,;(r+R;(rh;p;) . (3)

ij
We have the boundary condition h;(r)=—1 for r<o
and so we only need (3) for r > 0.

For our purposes it is convenient to introduce the sum
and difference combinations of 4;; that describe density
and charge fluctuation, respectively. The critical point is
most directly described in terms of the former, so
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we focus on them. We have hg=(h, +h,)/2,hp
=(hy;=h;;)/2. (Note that h;,;=hg+hp, and
h,,=hg—hp, with hy; =h,, and h|,=h,; by symmetry.)
Similarly one has cg and cp,Rg and Rp, and &g and &,
with ®¢=0. The pair hg and cg satisfies an OZ equation
induced by (2) as do hj and ¢j. For the former

hs(rip)=cs(r))+p [ hs(riz)es(ry )drs @
where
cs=Rg[hyp;] - (5)

We drop the argument r in (5) and below for notational
simplicity. Notice that ®,; does not appear in (5) since
®,=0. This is important and is a major reason for the
absence of significant density-fluctuation differences be-
tween a simple one-species fluid and the RPM. A related
remark of importance is that the equation of state that
yields the pressure (via integration with respect to p of
the inverse compressibility) as a function of B8 and p is
wholly determined by sg and p. On the other hand, the
configurational internal energy is wholly determined by
hp and p. See [4] for details.

Our strategy now is to call upon some techniques and
results of [17] and [18], extended from the simple-fluid
and lattice-gas case to the RPM and its discretized ver-
sion. In the case of a simple one-component fluid one has
a single OZ equation satisfied by an 4 and a c, and a sin-
gle c —®=R. In the analysis of [17] we note that in the
critical region h(r), c(r), and R (r) can each be regarded
as the sum of a homogeneous function of r and «, an in-
verse correlation length, and the rest—a part which is ei-
ther short ranged or, if homogeneous, is of higher degree
than the dominant homogeneous term. We use a super-

script N to denote this second term. Thus
h(r)=hH(r)+nMr) with  hH=f,(kr)/r'*",  c(r)
=cHr)+cMr), cHr)=f.kr)/r'™s,  R(r)=RH(r)

+RMr), and R¥=c¥. Summarizing, and extending
somewhat, the analyses of [17] and [18] we find that it is
the functional dependence of R¥ upon h¥ that deter-
mines the universality class one has, and hence the value
of the critical exponents. (A key point in this connection,
important in our argument to follow, is that R #[h#] is
insensitive to the form of A%, which is model dependent
even among models in the same universality class.) In
particular we have, as k—0,

c=cV+RHRH], (6)
cN=d+R"V, (N
RATR= AR+ 43R+ -

r>og, kr>1, (8)
RAIWH)1=B(hH¥+ --- | r>>0, kr<<1. 9

(If we consider a lattice gas with hole-particle symmetry
about the critical isochore, then 4,=0 along that iso-
chore.)

We note that these results, as well as the assumptions
that have gone into them, are consistent with the assump-
tions and results of renormalization-group theory
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developed subsequent to the work of [17]. Similarly con-
sistent is the conclusion that it is the functional depen-
dence of R¥ upon h¥ that determines the universality
class one has, and hence the values of the critical ex-
ponents in particular. As it stands, the analysis of Ref.
[17] is not powerful enough to find those exponents, and
we do not attempt to extend it in a way that would per-
mit their ab initio determination here. Instead we com-
pare the cg of the RPM with the c of the simple fluid to
determine whether the two systems have the same ex-
ponents. To do this, we turn to the RPM equation (5).
We assume hg=hk+hl, where the density correlation
function hg also can be decomposed into a dominant
homogeneous part hf=fs(kr)/r'*" and the rest, hY,
with k—0 at the critical point. The charge correlation
function hp, on the other hand, does not have a homo-
geneous part with respect to « of degree 1+ that is co-
dominant with h#. Instead it (and therefore #}; and A%,
introduced below) can be expected to have a dominant
homogeneous part (of Yukawa form at low densities)
with respect to an inverse shielding length I' that is only
very weakly sensitive to the singularity in density fluctua-
tion associated with k—0. [At low densities I" will just
be the inverse Debye length (4mpBsiq?/€)'’.] In partic-
ular I'%0 at the critical point we are considering. One
also expects a short-ranged model-dependent term in hj,.

Thus we have hg=h¥+hnY, hp=hp, hy,=hE+hY,
and h;,=hH+h?,. This induces a decomposition of Ry,
and hence cg, into a dominant homogeneous term with
respect to « plus the part R ¥ that includes the nonhomo-
geneous shorter-range terms:

cs=Rg[h;,p]l=R{+RE[AE] . (10)

It is through R{ that the crucial coupling between densi-
ty and charge fluctuations appears. In order for there to
be a critical point of the form we seek in the first place,
RY must be predominantly positive (at the very least
have a positive volume integral) and this is consistent
with the results of our analysis, from which we can easily
extract the exact low-density behavior of Rg through
O(p). In fact, at low density, for r >0, we find Rév dom-
inated by a term of the form Jh 12,, with
hp=—PBs%q% """ /er. (Such low-density information is
useful, since the RPM critical point appears to occur at
very low density [1-3].) The RHZ[h¥] appears to have
the same form as a functional of 4 that R#[h#] has as a
functional of 4. Thus the RPM appears to have a criti-
cal point in the same universality class as the Ising mod-
el. The result hinges on the following key observation,
which is simple but striking.

Compare the “h"-free” part of the h-
bond, p-vertex representation of R[h,p],
obtained by replacing & by hf, with the
“hN_free” part of the h;;-bond, p;-vertex
representation of Rg[h;;,p;], obtained by
replacing each h;; with h¥. One finds that
one has identical functionals of h¥ and hf,
respectively.

(11
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The meaning of the result clearly transcends the partic-
ular cluster-sum representation we have used to obtain it.
If one has a binary mixture of two species of particles and
the two species become identical to give a single-species
fluid, then the thermodynamics of the mixture becomes
identical to the thermodynamics of the resulting single-
species fluid. This will naturally be reflected in all cluster
sums, functional Taylor series, etc., that describe the mix-
ture. If the two species instead become asymptotically
identical in some way, then the mixture thermodynamics
can only be identified with pure-fluid thermodynamics in
an appropriate asymptotic sense. That is what is happen-
ing here in the critical region, and it will be reflected in
cluster sums, functional Taylor series, etc., in that region.
The asymptotically important parts of both 4,; and &,
(the hf and h ¥, respectively, in our notation) become
identical to £, the asymptotically important part of the
single-species # . However, because ®¢=0 in our prob-
lem, the nonasymptotic parts of 4, and A, have to in-
clude correlation to set up a critical point in the first
place. The correlation is RY, which plays the role of an
effective one-species potential and drives the system to
singular behavior (a “fixed point” in renormalization-
group language). Since the effective potential RY is at-
tractive and relatively short ranged, the fixed point will
look like a critical point driven by such a potential, as-
suming the form of R{ is compatible with such behavior.
Equation (11) shows that it is.

Several comments on these RPM results are worth
making.

(i) The OZ formalism lends itself to making contact
with important limits, models, and approximations and it
is worthwhile to note a few of these here. One obtains
the mean spherical approximation (MSA) by setting
R;=0, and hence Rg=0, for r >o. Thus cg=0 for
r > o and hg is the pure hard-core result, with no trace of
any critical behavior in kg, cg, or the density fluctuations
associated with f hg(r)dr, since one has lost the charge-
density coupling that sits in R;;. However, the MSA is
thermodynamically inconsistent, and by first assessing
the internal energy via 3,_;p;p; fgij(r)(p,»j(r)dr,
g;;=h;+1, and then integrating up with respect to j3 to
get Bf, f is the free energy per particle, one will pick up
mean-field critical behavior (correct through order 8°/2
it turns out). One gets the Gaussian approximation also
by setting R;; =0 for r >0 but replacing the exact bound-
ary condition g;=0,r <o, with the condition that
c,-j=c,§ls for r <o, where cfs is the unperturbed hard-
sphere result. In the mean spherical and spherical lattice
models, which should be kept conceptually distinct from
the MSA, one also has R i =0 pointwise for all » > o, but
one picks up long-range correlation in the h;; from the
spherical constraint, or an equivalent extra term in the
fluctuation equations associated with the mean spherical
constraint, which is just the lattice core condition [19]
8ij =0 for » =0. The removal of the constraint yields the
Gaussian model.

(i) The above analysis hinges on the separate behavior
of I' and «k, with T remaining nonzero as k—0, so that
there is a critical region in which k <<T". The estimates
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of the critical parameters given in Ref. [3] yield I' o =10
at the critical point where I'j, is the inverse Debye
length. One expects the true I' to be somewhat smaller
than [} at critical, but unless it is several orders of mag-
nitude smaller, crossover effects occurring at k =I" will be
well removed from the critical point.

(ii1) In real ionic systems, there are terms in the Hamil-
tonian not included in the RPM. These include polariza-
tion terms in the ion-ion pair potentials and solvent-
averaged potentials that have a large-r spatial dependence
of the form r ~*. Such terms—for example, those arising
from the polarizability of the ions themselves—can be at-
tractive, resulting in a contribution to ®¢(r) of the form
Bar —*, a >0. In [4] we noted that these terms will give
rise to mean-field or “classical” thermodynamic behavior
in a neighborhood of the critical point, the size of which
depends upon the magnitude of a. This result emerges
from our OZ-equation analysis, as discussed in some de-
tail in [13]. Here we note that one can also expect repul-
sive solvent-mediated r~* terms in ionic solutions
[14-16,20,21]. Such terms are often called cavity terms
because they are present in a well-known “‘cavity model”
[14,16] consisting of charged hard spheres immersed in a
structureless continuum solvent of dielectric constant €
that does not permeate the spheres, each of which is
thought of as bearing a dielectric constant €>¢,. (We
shall consider spheres of equal diameter and charge mag-
nitude.) One then recovers the RPM when €,=¢, which
can be thought of as the case in which the solvent can
freely and uniformly penetrate the spheres. In the cavity
model the ion-ion pair potential consists of the RPM
term plus a sum of contributions of the form

Pl =a,r *+agr Cttar T+ (12)

For the dominant first term of this sum, often called the
cavity term, one has

a,=(sPo’+s}o’)(e—€y)g*/16(2e +¢) . (13)

Under the usual assumption that €,<e€, we have a4 >0,
but if the ions were characterized by a dielectric constant
somewhat greater than the solvent, one would have
a, <0. For a solvent of nonpolarizable dipolar spheres,
rather than a continuum, Jepsen and Friedman [20]
found a cluster-integral contribution to the solvent-
averaged ion-ion potential that is of the form a,r %,
a, >0 with a, a function of the ion-solvent potential pa-
rameters that exactly coincides with (13) for solvent € ap-
proaching .

Adding a cavity term to the RPM pair potential will
have a striking effect on the critical behavior of the mod-
el, which can be best understood by considering the in-
verse structure factor S(k)”!, which is 1—pcs(k). At
critical one must have for small |k|, k real,

S(k) '=c,_ |k|>"7+ e, >0 (14)
2—7 U

In the RPM, we expect a very small Ising-like 7= 5, so

that S (k)™ ! as a function of k will look very smooth and
very nearly parabolic at the origin. Adding the cavity
term to @g(r) will add to S (k) ! a dominant small-k con-
tribution given by the Fourier transform of —p®g(k),
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which has the form —Bpm’a,|k| at small k. Hence the
smooth nearly parabolic profile of S(k)~! in the neigh-
borhood of kK =0 will develop a sharp dimple centered at
k =0 that moves the minimum of S(k)~! from k =0 to
some nonzero k,, the magnitude of which depends upon
a, and goes to zero as a, does. Thus the singularity
defined by S (k)~!=0 can no longer be a critical point as-
sociated with zero S (0)~!, which is 38p /dp. Instead it is
a singularity associated with S (ko) '=0 and hence an
oscillatory term in Ag(7).

The presence of the higher inverse-power terms in (12)
cannot be expected to alter the effect of the r ~* term
significantly. The intrinsic n-body potential terms for
n 2 3 in the cavity model cannot be expected to dominate
the r ~* term either, although one cannot rule out their
codominance, so their signs and relative magnitudes
deserve to be studied carefully.
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The cavity term can be exactly recovered from a model
with a dipolar molecular solvent that is taken to the
continuum-solvent limit [21,22]. Taken together with the
fact that the cluster-integral comtribution found by Jep-
sen and Friedman also yields the cavity term for small
solvent dipole moment without taking that limit, it seems
hard to escape the conclusion that such a term is present
in real ionic solutions. However, the competition be-
tween the repulsive cavity term and all possible attractive
r ~* terms arising from polarization effects in real solu-
tions remains to be quantitatively assessed.
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