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Probability distributions of directed polymers in (1+1)-dimensional random media
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In this paper we study directed polymers in (1+1)-dimensional random media with special emphasis
on P(x, t), the probability distribution to reach a transverse distance x for a polymer of length t. P(x, t)
follows the scaling form P(x, t) —(x (t) ) ' f(g), where (x'(t)) is the transverse mean-square displace-
ment, which asymptotically obeys ( x'(t) ) -t ~', and ( is the scaling variable g=x/(x (t) ) '~'. The nu-

merical results indicate that f(g)=exp( —cg ), where the exponent 5 evolves with g such that 5=2 for
$~0 and 5 & 2. 5 for g&& 1, demonstrating an "enhanced" Gaussian behavior. We discuss these results
in the context of enhanced diffusion.

PACS number(s): 05.40.+j, 61.50.Cj, 02.50.+s

The scaling properties of directed polymers (DP's) in
random media [1] have been a rnatter of intensive study
and debate mainly due to possible mapping of DP's on
various other problems [2—6]. This seemingly simple
model of DP's is hampered by difficulties similar to those
encountered in spin glasses [7,8].

The DP problem in (1+1) dimensions is defined by a
walk in two dimensions with coordinates (x, t ), where the
walk is directed in the longitudinal t direction but can
fiuctuate in the transverse x direction [1]. With no ran-
domness the mean-square displacement describing the
transverse fluctuations is simply the expected Brownian
behavior (x ) -t. In a random medium, characterized
by uncorrelated Gaussian or white noise, it has been es-
tablished that (x ) —t /, namely an enhanced-
diffusion-type behavior in the transverse direction. Ener-
getic and geometrical modifications of the original DP
model have been recently proposed by changing the na-
ture of the noise term [3,9—11] and by extending the
transverse motion to fractals [12]. An interesting aspect
of DP's in random media is the possibility of observing a
transition from enhanced to regular transverse fluctua-
tions as the relative strength of the randomness decreases
(strong-to-weak-coupling transition). Such a transition is
expected in higher dimensions, d & 3 [4].

The mean-square displacement ( x ( t ) ) is of course
only the second moment of the more informative proba-
bility distribution P(x, t ). The behavior of P(x, t ) should
reflect the details of the DP's in the different coupling re-
gimes in ways similar to previous studies of propagators
in systems characterized by anomalous diffusion [13,14].

In this paper we concentrate on DP's in (1+1)dimen-
sions, a case that belongs inherently to the strong-
coupling regime, and therefore displays enhanced mean-
square displacements. We study P(x, t), the probability

+ri(x', t')

where W(x, t) denotes the weight of all directed poly-
mers joining the points (0,0) and (x, t) and D is a
diffusion coefficient. The randomness is given by un-
correlated Gaussian noise with 5-function correlation

(q(x, t)) =0,
(g(x, t)ri(x', t')) =X 5(t t')5( xx') . — (2)

The path-integral expression has an equivalent partial-
differential-equation representation:

W= [Dr7 +ri(x, t )]W, (3)

subject to the initial condition W(x, 0)=5(x ). Without
the noise term we immediately recognize the ordinary
diffusion equation with the solution W(x, t )
—t '/ exp( —x /4Dt), which corresponds to (x (t))
-t. In the presence of noise the weight function is more
complicated and depends on the noise configuration.

distribution to reach a transverse distance I for a DP of
length t, in (1+1)dimensions. We will compare the re-
sults with other propagators which correspond to anoma-
lous diffusion [13,14].

The formalism applied for the description of the DP in
random media was introduced by Kardar and Zhang [1].
The weight function for a polymer in a random potential
field is expressed by the path integral [1]

d '
W(x, t)= f ' 2&x'(t')exp —f dt' (1/4D)

(0,0) 0 dt'
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Here we have to calculate the configurational average

Pt xt ) =
(

IVt x t ) fdx W( x t ) (4)

It has been suggested that P(x, t) follows the scaling
form [1,15]

which yields the enhanced transverse mean-square dis-
placement (x (t))-t ~ derived through

(x (t)) =f dx x P(x, r).

We solved Eq. (1) using a discretized version and the
transfer-matrix method discussed by Kardar [16] and
used by Kardar and Zhang [1]. This method is described
by the following recursion relation:

W(x, t ) =e"'""[W(x, t —1)

+e '~ [W(x —1, t —1)

+ W(x+ l, r —1)]j, (7)

where we set D=1. The values of g were randomly
chosen from a Gaussian distribution of width A, . In our
calculations the averaging was taken over 10 realiza-
tions.

Figure 1 shows the transverse mean-square displace-
ment for A, = l. (x (t ) ) clearly shows enhanced behavior
at long times that follow t ~, as expected [1]. At early
times, however, it seems to fit a regular behavior
(x (t))-t and the crossover time depends on the ran-
domness parameter A, [12].

The probability distribution P(x, t) was obtained by
numerical calculations, using Eqs. (4) and (7) and averag-
ing over 5 X 10 realizations. It is presented in Fig. 2 for
the randomness parameter A, =1 and for times t =10, 30,
100, and 300 and is plotted vs g. g is the scaling variable
g=x/(x (t))'~ . The scaled nature of P(x, t) as a func-
tion of g is clear as well as the deviation from a regular
Gaussian shape. To emphasize the deviations we includ-
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FIG. 2. The probability distribution P(x, t) as a function of
the scaling variable g. Plotted is P(x, t)(x'(t))'~' for times
t=10, 30, 100, and 300. The scaling variable is given by
(=xi(x'(t) )'~ . The dashed line denotes the normal distribu-
tion.

ed in Fig. 2 the corresponding normal distribution as a
dashed line.

In order to check in more detail the scaling properties
of the probability distribution we plotted in Fig. 3
—ln[P(x, t)/P(O, t)] vs x /(x (t)). Scaling is obeyed
and deviations from Gaussian behavior are again notice-
able. We therefore tried the more general case
f ( g ) =exp( —

g ), typical to anomalous transport prob-
lems [13,14]. We found that a single exponent 5 did not
fit the whole g range. Assuming this form of f(g) the re-
sults indicate the following limits:

exp( —c,g ) for g~O
f( )-'

exp( —c2( ), 5& —,
' for gazoo .

In Fig. 4 we display the value of 5 as a function of g2. 5
was calculated from an analytical form fitted to the nu-
merical data. We considered Pade approximants with
different polynomial degrees in powers of g' . A con-
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FIG. 1. The mean-squared transverse fluctuations (x~(t) ) as
a function of time t for dimension (1+1). The solid line gives
the simulation results, the dashed lines denote the slopes for the
regular and enhanced behavior, 1 and 3, respectively.
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FIG. 3. The probability distribution P(x, t) as a function of
the scaling variable g . Plotted is —in[P(x, t ) /P(0, t ) j for times
t =10, 30, 100, and 300.



7626 BRIEF REPORTS 45

—ln

300

100

1
0 2 4 6 8 10 12 ~ 14

FIG. 4. The exponent 5 as a function of the scaling variable
for times t=10, 30, 100, and 300. The dashed lines denote

the limiting values 2 and 3, respectively.

tinuous change is observed in 5 from a Gaussian (5=2)
to an enhanced Gaussian behavior (5~2.5). A lower
value of 5 was obtained in Ref. [15]. Although the data
show a slowly increasing trend in the values of 5, they do
not attain the predicted asymptotic value of 5=3 [17],
which would interestingly fulfill the Fisher shape and size
relationship [18]. Nevertheless, it is possible that 5=3
holds asymptotically and that an extension of the scaling
function by a power-law prefactor f(g) —(~exp( —c2$ )

fits the numerical results in the intermediate g regime.
Such prefactors turned out to be crucial in the scaling
analyses of P(x, t) for the motion in random velocity
fields [14] and for random walks on fractal substrates
[19,20]. In fact, considering the power-law prefactor and
fitting the exponent P, we found that the scaling form
concurs excellently with the simulation results for g) 1.
This tends to support the conjecture that 5=3 [17].

Our results, as displayed in Fig. 3, should be confront-
ed with the scaling properties of P(x, t) when using
x /t as the scaling variable which relies on the asymp-
totic behavior of (x (t) ) [15]. We have performed this
scaling and show it in Fig. 5. The figure demonstrates
that the data collapse is less satisfactory than what fol-
lows from the presentation in Fig. 3 for the same range of
variables. This is consistent with the slow approach of
(x (t) ) to its asymptotic limit as shown in Fig. 1.

Comparing the probability distribution in Eq. (8) to
other enhanced-diffusion models [13,14] we find strong
differences. In the one-dimensional random-velocity
model a particle moves within a layered medium where

3 g 4
x/4~

FIG. 5. The probability distribution P(x, t) as a function of
the scaling variable x /t '. Same data as in Fig. 3.

there is a constant velocity in the longitudinal direction
of the layer. Transverse to the layer the particles are as-
sumed to follow diffusional motion. For this model the
mean-square displacement follows an enhanced
diffusional behavior with (x (t))-t ~ . The propagator
P(x, t ) has the following limiting behaviors:

t exp( —cia ) for (~0
P(x, t)- '

3z4 5n (9)
t ~

g
~ exp( —cia ~

) for )~co
with the scaling variable being g=x lt ~ . We thus ob-
serve an ordinary Gaussian behavior in the small-g re-
gime and a stretched Gaussian behavior (slower than
Gaussian) in the large-g regime. As aforementioned, the
power-law prefactor of the g —+ ~ form was found to be
important for intermediate g regimes.

Finally we mention the behavior found in continuous-
time random-walk models with space-time-coupled
memories [13]. Here, enhanced diffusion is observed with
the exponents depending on the parameters given in the
particular models. However, no unique behavior is
obeyed for the propagator P(x, t ); rather one finds
several regimes for the different scaling variables g.
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