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Long-range attractions between solutes in near-critical fluids
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The Ornstein-Zernike equation is used to analyze adsorption at, and the forces between, solutes and
walls in near-critical Auids. The density profile is shown to decay exponentially with the bulk correlation
length. The forces between solutes and between walls are also exponentially long ranged with the bulk
correlation length, and are always attractive for identical solutes.

PACS number(s): 64.60.Fr, 68.35.Rh, 68.45.Gd, 82.70.Dd

This paper is concerned with the forces between solutes
in fluids near the critical point. We examine both spheri-
cal solutes and planar walls, and also consider solutes in
binary mixtures near compositional instabilities. Our for-
mal analysis is based upon the Ornstein-Zernike equa-
tion, and in particular the divergence of the compressibil-
ity at the critical point. We find certain universal behav-
ior, namely, long-ranged attractions, independent of the
specific solute-solvent interactions. Moreover, the range
of the force is given by the correlation length of the bulk
solvent. Therefore measurement of the forces between
surfaces in near-critical fluids, with, for example, the ap-
paratus of Israelachvili [1], would directly give the bulk
correlation length.

Ornstein and Zernike, in their pioneering study of criti-
cal opalescence [2], postulated that the long-ranged total
correlation function h(r) was made up of chains of the
shorter-ranged direct correlation function c (r). Their ex-
act equation forms the basis of the present work, and for
a multicomponent atomic fiuid it is [3]

h &(r)=c &(r)+ gp fh (s)c &(ir —si)ds, (1)
r

where p~ is the number density of species y. Taking the
three-dimensional Fourier transform and using the con-
volution theorem, for a one-component fluid one has

f„(k}= c„(k)
1 —p, c„(k}

At the critical density, p& p„and temperature, T=T„
the isothermal compressibility diverges due to the long-
ranged character of the total correlation function, and
hence h &&(k)~+ 00, k ~0. The direct correlation func-
tion remains short ranged, in the sense that its integral
exists, and c»(0)=p, '.

Experimentally one cannot access the critical point
precisely, and we shall therefore be concerned with near

criticality, p, =p„T T, . We assume the classical or
Ornstein-Zernike form [3—6]

h»(r) —A»e ~"/r, r~ao,
or, in Fourier space [7],

4m. A iif„(k)-, k~O .
k +g

(3)

(4)

(ok) cot (k}=—piet t(k)~ot(k)

=p, h „(k}co,(k},
and for the solute-solute interaction:

too(k) —coo(k) =p&fo&(k)co&(k)

=p, [1+p,f„(k)]co,(k)

(6)

(7)

One deduces from Eq. (6) that near bulk criticality the
solute-solvent total correlation function becomes long
ranged, and that the direct correlation function is shorter
ranged [8]. The second conclusion follows from the first
equality, because c»(0)~p, ', p, ~p„T~T,. The pole

Here A&&)0 because the compressibility of the fluid
must be positive for it to be stable against density fluctua-
tions. As one approaches criticality, the correlation
length diverges with the universal critical exponent v.
Equations (2) and (4) imply that

4m Aiic„(k)-
k +y

k~O, )( =g+4npt—Aii .

Hence the direct correlation function is exponentially de-
caying near criticality, and c» (r) /h» (r)~0, r ~ ao,
since g) g.

Now add to the near-critical bulk solvent spherical
solutes at infinite dilution (i.e., po=O) and consider the
Ornstein-Zernike equation for the solute-solvent interac-
tion:
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in f»(k)=if determines the range of ho&(r) to be the
bulk correlation length g

' consistent with earlier work
[9,10]. [Note that there is no reason for co&(0) to vanish
near criticality. ] The solute-solvent total correlation
function represents the excess density profile about the
solute. Whether there is a positive or a negative adsorp-
tion excess is given by the sign of co, (ig), which is deter-
mined by the specific nature of the solute-solvent interac-
tions.

Equation (7}implies that the solute-solute total correla-
tion function becomes long ranged near criticality be-
cause of the pole at k =i( [N. ote that the left side of Eq.
(7) is, asymptotically, the negative of the excess potential
of mean force, since the bridge function is as short ranged
as is the direct correlation function. ] Because the real
number co, (ig) occurs as a square, the sign of the poten-
tial of mean force is always negative. Thus there occur
long-ranged attractions between solutes near bulk solvent

criticality, irrespective of the particular solute-solvent in-

teractions. Physically, one can rationalize this as an at-
tempt by the solute to aggregate in whichever of the di-

lute or the dense phase it prefers.
We now consider the interaction between planar walls

whose size is much larger than the correlation length of
the bulk fluid. The wall-solvent Ornstein-Zernike equa-
tion is [11]

length [9,10]. Although A» )0 [see Eq. (4)], the adsorp-
tion excess can be positive or negative (corresponding to
wetting or drying) depending on the sign of co, (ig).
Again we have assumed co&(z)/ho&(z)~0, z~ ~ [other-
wise the asymptotic behavior of ho, (z) would be deter-
mined by that singularity of co&(k) that lay closer to the
origin than the pole in f&&(k) at k =if].

The one-dimensional Fourier transform of the excess
interaction free energy per unit area is [12]

peak—

~ Tco, (k)
oo k plkB Tho)(k)col(k), (12)

1 —p)c))(k}

which again has a simple pole at k =i g Inve. rting this re-
sult one obtains

woo(x) — 2mp, k—~TA»co&(C) e ~ /4

which is negative, corresponding to an attractive force.
The above results were obtained for a pure bulk fluid,

and depended upon the positive divergence of the
compressibility near criticality. The generalization to a
multicomponent bulk mixture is straightforward, and in
this case the compositional instability is characterized by
the zero of a determinant dependent upon the c &(k).
For example, for a binary mixture one has

ho&(y)=co&(y)+2mp& f dz f ds sho~(z} 2), = [1—p, c„(k)][1—pzc22(k) ]—p,p2c, 2(k) (14)

Xc„([(z—y) +s ]' ),
(g)

At the critical solution temperature, 2), ~0+, and again
one concludes that the forces between identical solutes
are long-ranged and attractive. Explicitly for walls, the
excess interaction free energy per unit area as x ~~ is

where the argument of the wall-solvent correlation func-
tion measures the distance from the wall [ho&(z)= —1,
z (0]. The excess interaction free energy per unit area
between walls in the hypernetted-chain approximation is
[12]

woo(x) — 2mk~ T[ A»—p&co&(ig)

+2A, zp&p2co, (ig)cop(l g)

+ ~z~pzco2(C)']e '"4 (15)

woo�(x)

= p, k~ Tf h—o, (z)co, (x —z)dz, (9)

where ks is the Boltzmann constant. Equation (9) does
not include any direct interaction between the walls nor
the bridge function, which are short ranged and may be
neglected at large separations. Hence Eq. (9) is exact
asymptotically. The negative derivative of Eq. (9) with
respect to separation, x, gives the net pressure between
the walls [12].

The one-dimensional Fourier transform of Eq. (8)
yields [12]

co, (k)
ho, (k)=

1 pic„(k}
(10)

Near criticality of the bulk fluid, the denominator has a
simple zero at k =if, and one concludes that

ho, (z)-2mp, A „co,(ig)e ~'/g, z~ ~ .

Hence near criticality the solvent profile decays exponen-
tially ofF' the wall at a rate given by the bulk correlation

where the A
&

are as in Eq. (3). Stability conditions im-

ply that A»A22~ A&2, ensuring that the quantity in
square brackets in Eq. (15) must be positive and hence the
force must be attractive. In the context of force measure-
ments, the consolute point of a binary mixture may be
more accessible experimentally than is the critical point
of a one-component fluid.

The critical point is the extremum of the spinodal
curve delineating the absolute stability limit of the fluid.
since the latter is defined by the divergence of the
compressibility, one sees that the above results for near-
critical fluids should also apply to metastable Quids near
the absolute stability 1imit.

To summarize, we have used the Ornstein-Zernike
equation to analyze the forces between solutes in near-
critical fluids. We have treated both spherical solutes
and planar walls, and also briefly discussed fluid mixtures
and the spinodal line. We found that the density profile
about a solute decayed exponentially with the bulk corre-
lation length, which becomes increasingly long-ranged as
criticality is approached [13—15]. Although the adsorp-
tion excess could be positive or negative, depending upon
the specific solute-solvent interactions, we have shown
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that the force between identical solutes or walls is always
attractive, and again exponentially decaying with the
bulk correlation length. Earlier work by Fisher and de
Gennes [16], Cardy [17], and others [9,18,19] was
confined to the critical point itself, where the correlations
decay algebraically rather than exponentially as in Eq.
(3), and hence their results are not directly comparable to
ours. Nevertheless, their small separation analysis (here
we were concerned with large separation asymptotes,
x »g ), indicated a certain universal behavior, to some
extent independent of the boundary conditions at the
walls [20].

Finally, we note that there exist various techniques for

measuring the force acting between surfaces immersed in
fiuids, including one developed by Israelachvili [1]. Thus
it should be possible to directly measure the forces de-
scribed in the present analysis.
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