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Storage capacity and learning algorithms for two-layer neural networks
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A two-layer feedforward network of McCulloch-Pitts neurons with X inputs and E hidden units is an-
alyzed for N ~ ~ and E finite with respect to its ability to implement p =aN random input-output rela-
tions. Special emphasis is put on the case where all hidden units are coupled to the output with the same
strength (committee machine) and the receptive fields of the hidden units either enclose all input units
(fully connected) or are nonoverlapping (tree structure). The storage capacity is determined generalizing
Gardner's treatment [J.Phys. A 21, 257 (1988); Europhys. Lett. 4, 481 (1987)]of the single-layer percept-
ron. For the treelike architecture, a replica-symmetric calculation yields a, ~ &E for a large number E
of hidden units. This result violates an upper bound derived by Mitchison and Durbin [Biol. Cybern. 60,
345 (1989)]. One-step replica-symmetry breaking gives lower values of a, . In the fully connected com-
mittee machine there are in general correlations among different hidden units. As the limit of capacity is

approached, the hidden units are anticorrelated: One hidden unit attempts to learn those patterns which
have not been learned by the others. These correlations decrease as 1/E, so that for E~ ao the capacity
per synapse is the same as for the tree architecture, whereas for small E we find a considerable enhance-
ment for the storage per synapse. Numerical simulations were performed to explicitly construct solu-

tions for the tree as well as the fully connected architecture. A learning algorithm is suggested. It is

based on the least-action algorithm, which is modified to take advantage of the two-layer structure. The
numerical simulations yield capacities p that are slightly more than twice the number of degrees of free-

dom, while the fully connected net can store relatively more patterns than the tree. Various generaliza-
tions are discussed. Variable weights from hidden to output give the same results for the storage capaci-
ty as does the committee machine, as long as E =0(l). %'e furthermore show that thresholds at the
hidden units or the output unit cannot increase the capacity, as long as random unbiased patterns are
considered. Finally we indicate how to generalize our results to other Boolean functions.

PACS number(s): 87.10.+e, 64.60.Cn

I. INTRODUCTION

The methods of statistical mechanics have been widely
used for a quantitative analysis of networks of formal
neurons [1]. Among all possible architectures the feed-
forward layered systems play a central role [2]: they have
great computational abilities and at the same time are
rather simple, because there is no feedback. The problem
of learning in such a network is defined as follows. Given
a set of p input-output relations [P,g"](p= 1, . . . , p),
can one construct a network which produces the correct
output ri" for each input P?

The simplest feedforward net is the single-layer per-
ceptron without hidden units. This system is well under-
stood. Geometrical arguments [3] as well as statistical
mechanics [4] can be used to determine its storage capaci-
ty, i.e., the maximal number of random input-output rela-
tions that can be implemented. Furthermore, a learning
algorithm is known that finds a solution, if one exists [5].

Much less is known about multilayer perceptrons with
one or more layers of hidden units. Whereas single-layer
perceptrons can solve only a very limited class of prob-
lems [6], any Boolean function of N inputs can be imple-
mented, if one allows for an intermediate layer with
sufficiently many hidden neurons [7]. Hence these sys-
tems are of great technical importance and have been

used extensively in applications of neural nets to real
problems. However their theoretical storage capacity is
not known in general. Upper bounds for the storage
capacity have been derived for some multilayer networks
[8,9]. A detailed analysis using methods of statistical
mechanics has been performed for the parity machine

,'10,11]. The main result of Ref. [10] is a storage capacity
per synapse, which increases with the logarithm of the
number of hidden units, in agreement with the upper
bound of Mitchison and Durbin [9].

Several learning algorithms have been suggested to
train multilayer networks. The best known one is "back-
propagation" [2] which has been used in many applica-
tions. In other approaches [12—14] the network is con-
structed while learning: hidden units or layers of hidden
units are added to the network, until the desired mapping
is achieved. Convergence can be guaranteed, in contrast
to existing algorithms for a fixed architecture.

It would also be interesting to consider recurrent neur-
al nets with hidden units. One question to ask is the fol-
lowing: How many patterns can be stabilized in a neural
network with attractor dynamics, if a certain fraction of
sites is left free to adjust? In the Hopfield model it is
known that a macroscopic number of patterns can be sta-
bilized, even though the stability condition is violated at
a finite fraction of sites (corresponding to thermalized
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hidden units) [15].
Here we consider a multilayer pere eptron with a

single-layer of hidden units (Fig. 1). All neurons of the
network are linear threshold units. In general the synap-
tic weights from the input to hidden and hidden to out-
put layers are free to adapt in the process of learning a
given set of p input-output relations. Due to the symme-
try of the model all weights from the hidden layer to the
output unit can be taken as positive without loss of gen-
erality. This has led us to consider in detail the so-called
committee or consensus machine, where the synapses
from the hidden layer to the output unit are all taken to
be equal.

Such an architecture has important applications in
various contexts. For example, Opper and Haussler [16]
use a committee machine with a large number of hidden
units to implement Bayes's optimal classification algo-
rithm. Sompolinsky and Tishby [17]analyze a closely re-
lated architecture in the context of learning a rule—
counting domains in one-dimensional patterns.

In this paper we present results of a phase-space
analysis to estimate the critical storage capacity
u, =p, /N For .the treelike architecture, a replica-
symmetric calculation yields az(K =3 ) =4.02 and

a, -~K for a large number K of hidden units. As com-
pared to the parity machine [10],the capacity is strongly
reduced, nevertheless it still violates the upper bound of
Ref. [9]. For this reason and also because of the structure
of solution space, we are led to consider replica-
symmetry breaking. In one step we find a reduction in
capacity as compared to the replica-symmetric result, for
E =3 a, is reduced to -3.02. In the fully connected
committee machine, there are in general correlations
among different hidden units. As the limit of capacity is

N/K
A

t = 1 . . . K )

approached, the hidden units are anticorrelated. One
hidden unit attempts to learn those patterns, which have
not been learned by the others. These correlations de-
crease as 1/K so that for K~ ~ the capacity per synapse
is the same as for the tree architecture [18]. For small K
the capacity per synapse is considerably enhanced; for
K=3 we find a, —34.5 as compared to a',"'(K =3)
X3-12. Numerical simulations were performed to ex-
plicitly construct solutions for the tree as well as the fully
connected architecture. A learning algorithm is suggest-
ed. It is based on the least-action algorithm [9], which is
modified to take advantage of the two-layer structure.
The numerical simulations yield capacities p, that are
twice the number of degrees of freedom. For the fully
connected net, correlations between different hidden units
are shown to decrease as 1/K as suggested by a simple ar-
gument and in agreement with our theoretical analysis.
Various generalizations are discussed. Variable weights
from the hidden units to the output unit give the same re-
sult for the storage capacity as the committee machine
gives as long as E remains finite. We indicate how to
generalize our results to other Boolean functions and
show that thresholds cannot increase the capacity, as
long as random unbiased patterns are considered.

II. MODEL

The network under consideration consists of an input
layer of N neurons g; (i = 1, . . . , N), a hidden layer of K
binary neurons o &(1 =1, . . . , K), and one output unit rj.
The system operates as a feedforward net: synaptic con-
nections from input neuron g; to hidden unit 0& are
denoted by JI; and synaptic connections from hidden unit
col to the output unit by wI. We consider real valued
variables [J)j,w& ] with spherical normalization. Each
hidden unit or& calculates the weighted sum of all its in-

puts [j(l) ] and compares it to a threshold 8).

+) sgn 2 ~lj (l)fj(1) 8)
j(I)

Similarly the output unit calculates the weighted sum of
all its inputs from the hidden layer and compares it to a
threshold 0:

g=sgn g t(),0)—8
I

FIG. 1. Committee machine with tree connectivity (a) and
fully connected (b).

We assume that there are no direct couplings from input
to output. Two architectures will be discussed in detail.

(a) Tree connectivity. The input units are organized in
K groups each containing N/K neurons [Fig. 1(a)]. Each
hidden unit receives input from its group only, i.e.,
j(l)=(l —1)(N/K)+1, . . . , 1(N/K). The appropriate
normalization of synaptic connections is
X.~I~JI.~I] =N/K. The same architecture has been studied
for the parity machine [10]. It has the advantage that
there are no correlations among different hidden units,
because they have no input in common.

(b) Full connectivity. Each hidden unit is connected to
each input unit [Fig. 1(b)]. In that case j (1)= I, . . . , Nis

independent of I and the appropriate normalization is
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2
X~(1)Jlj(1) =N.

For simplicity we take zero thresholds 81=8=0. For
this particular choice, the model has the following sym-
metry: if a solution [w(, J&. ] has been found, then anoth-
er solution can be constructed by inverting all couplings
of one hidden unit, i.e., —w&, [

—J( j(( )]. Without loss
0 oj o

of generality we restrict ourselves to positive wl. More-
over we use fixed values for the w& and only adapt the
connections Jl. between input and hidden units during
the learning process. %e choose w1=1, l =1, . . . , X.
Such a network is called a committee machine since the
output adjusts to the majority of the hidden units. In
Sec. VIII we discuss other fixed Boolean functions be-
tween hidden units and output and consider also the
effect of variable wl, as well as nonzero thresholds.

The task is to learn p given input-output relations
[g', rj"} ((u=1, . . . ,p). The P and rj" are independent
stochastic variables. In most of our discussion we shall
focus on binary variables with equal probability for +1.
In the numerical simulations we shall also consider
Gaussian [g~. ]. Two questions will be addressed.

(i) How many relations can be learned for the number
N of input sites tending to infinity and a Jinxed number of
hidden units E7

(ii) How can the couplings [J&j ] and [ w& ] be found,

which realize a given set of p input-output relations for
fixed N and E?

The first question will be analyzed in Secs. III and IV
by doing statistical mechanics in the phase space of the
synaptic interactions Jl (1). In Secs. III and IV we calcu-
late the storage capacity for the tree architecture and in
Sec. V for the fully connected net. The second question is
discussed in Secs. VI and VII, where different learning al-
gorithms are introduced.

III. REPLICA-SYMMETRIC THEORY

In this section we determine within the replica-
symmetric approximation the typical fractional volume
V,„~ in the space of interactions [J& (&)] of synaptic ma-
trices that can realize p random input-output mappings
[g~&(&)]~rj",p=1, . . . ,p. We are interested in the case

p =aN and N~ ~. The method is a straightforward ex-
tension of Gardner's analysis of the single-layer percept-
ron [4]. For given random input patterns [P&j(&)] and the
corresponding outputs g" the quantity

M
D

where

~=f II IIdJ,j„,IIs yJ,'j„,——IIe & y g
1 =1 j(1) I =1 j(l) p, 1=1

X Jlj(()~j ( &)

j(1)
(4)

and

ND= f II rIdJJ II& XJi
1=1 j(l) 1=1 j (1)

gives the fraction of synaptic matrices [J(j(()] which satis-

fy the constraints

g J(j(()= 1 =1 . . . K (6)
j(l)

and implement the desired mapping [P]~rj" for all

p= 1, . . . ,p. Here e(x) denotes the Heaviside function.

P and rj" are independent, identically distributed random

variables with distribution

P(P) = ,'5(P 1)+—,'5(@+1)—. —

Hence the integrand of M is a product of almost indepen-
dent random factors and the typical volume Vfyp is given

by

1/2
K

lp X Jlj(l)kj(l)
j (1)

for the local fields at the hidden units and their conjugate
Lagrange multipliers xl„, the average over the patterns
can be performed and after standard manipulations [4]
one finds to leading order in N

V,„,=exp [ « ln V)) ],
where «)) denotes the average with the distribution (7).
Note that the transformation P~rj"P leaves the statisti-
cal properties of the input-output ensemble invariant so
that in calculating «lnV)) the rl" in (4) can be omitted.
The average of the logarithm of Vis performed using the
replica trick, i.e., by introducing replica indices
a= I, . . . , n for the synaptic qouplings Jlj(1) in order to
calculate «V"», and then taking the limit n ~0. Intro-
ducing the auxiliary variables

«v»= f II, ' II,',„'-p
4m

1 p 2mE/N
a(p

N QEP -g F) ~qf-
2K la 2E lap

a(p

+ G2(EP, F( ~)+a—G) (q( ~) —[1+in(2m.)]—
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where

G2(E(,F(~)=»f gdJ(exp —
—,
' QE((J) )2+ g F~t'J JP'

and

l, a l, a l, a,P
a(P

G)(qP~)=in f g
l, a

dx

2' exp i gx( A, , —
—,
' g (x) ) —

—,
' g x(xpq, t g 8 'gsgng,

'

aAP

(13)

As usual we have introduced the order parameters

q(
=

N g J(J(()JPj(() (12)
j(l)

characterizing the overlap between two synaptic matrices
implementing the desired input-output mapping. El and
Fl ~ are Lagrange multipliers associated with the con-
straints (6) and (12). The last term in (9) comes from the
denominator (5).

The integrals in (9) are dominated by their saddle-point
values. In this section we study the ansatz that the values
of the order parameters at the saddle point are indepen-
dent of the replica indices, i.e., we look for a saddle point
of the form

F ~=F =F,l l

El E =E.

These quantities are independent of l, because the hidden
units are equivalent to each other after averaging over
the patterns. We do not expect a spontaneous breakdown
of this "translational invariance. "

With the help of (13) Eqs. (9)—(11) simplify consider-
ably. The saddle-point equations for E and F become
algebraic as in the case of the single-layer perceptron [4]
and therefore these order parameters can be eliminated.
In order to simplify the expression for G1 it is convenient
to split the integration variables A, l into their sign and
their absolute value:

(14)

Taking finally the limit n ~0 we get

1—((lnV»= extr . —,'ln(1 —q)+ +af g Dt(ln Tr 8 'gr( '

PH(Qt&rl)
{~( +1I l l

with Q = [q l(1—q)]'~ . As usual we have used the abbreviations

(15)

dt tDt exp-- v2~ 2

and

H(x)= f Dt .
x

Equation (15) has a simple physical meaning. Tr(, ~, )
8(X&r, ) is the trace over all internal representations [r, j that

I

produce the desired output + 1 and g&H (Qt) r& ) is the product of Gardner volumes of the subperceptrons for a given
internal representation.

From (15) we get the maximal storage capacity a, by taking the limit q —+ l. In this limit different solutions for the
synaptic matrix become highly correlated and the typical fractional volume V,„~ shrinks to zero. Quantitatively a, can
be determined from the limit q ~1 of the saddle-point equation corresponding to (15). It is, however, simpler to rewrite
(15) as

—((lnV» =extr, (1—q)ln(1 —q)+q+2a(1 q) f g—Dt&ln
1 1

N q 2(1—q)
' Tr 8 g r& g H(Qt)7() (16)

and to observe that in order to have a well-defined extremum for q ~1, the expression in the outer bracket should go to
zero in this limit. This yields immediately an equation for a, :

(a, ) '= —lim 2(1—q) f g Dt&ln
q~1 I

Tr 8 g r( g H(Qt(r() (17)
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Taking the limit q~1 now requires finding the dom-
inating terms in the trace over v&. This is done in Appen-
dix A and gives finally

(a,"'} '=K f Dt t'g (t) (18)
0

with

4.0-

2.0-

(K —1)/2
g(t)=

k=0
[H(t)]» ' "[1—H(t)]'. (19)

0.0 I
~ ~

I
~ ~

I
~

I

0.0 0.2 0.4 0.6 0.8 1.0
A qualitative interpretation of this formula is given in
Sec. VIII together with a discussion of analogous results
for networks with other Boolean functions between hid-
den units and output. A numerical analysis of (18) gives
a, =2, 4.02, 5.78, 7.30, and 8.70 for E= 1, 3, 5, 7, and 9,
respectively. For large K the binomial distribution in (19}
can be approximated by a Gaussian one and one finds for
the asymptotic dependence of a,

1/2

a, '(K) -6 — Kt" .
2
7r

K —1
2 g 1

a

2

(20)

Figure 3 shows a plot of q(a) for K=3 as obtained by
numerically determining the extremutn in Eq. (16}. Un-
like in the case of the parity machine where global sym-
metries make q=0 for a finite interval 0 a ao [10],for
the committee machine one has q & 0 for all a & 0.

In Fig. 2 we have plotted a", for K=1 to 59 together
with this asymptotic behavior as a function of E '

The asymptotic behavior violates the upper bound
a, (K)-ln(K) obtained by Mitchison and Durbin [9].
This is a strong indication for replica-symmetry breaking
and has led us to investigate a saddle point with broken
replica symmetry.

To finish the investigation of the replica-symmetric
theory we note that the order parameter q is monoto-
nously increasing with increasing a. For a —+0 we find

FIG. 3. a(q) for the tree with K=3 in replica-symmetric ap-

proximation.

IV. ONE-STEP REPLICA-SYMMETRY BREAKING

The asymptotic behavior of the storage capacity
a, -K' for large numbers E of hidden units as ob-
tained within the replica-symmetric theory violates the
upper bound a, -ln(K) derived from geometrical con-
siderations similar to Cover s analysis of the single-layer
perceptron [3,9]. It is therefore necessary to see how this
result is modified when the symmetry between replicas is
broken. According to common wisdom replica symmetry
corresponds in the present context to a connected solu-
tion space, whereas replica-symmetry breaking is to be
expected if the solution space consists of several discon-
nected parts [19]. For the single-layer perceptron with
continuous weights the solution space is known to be
connected (even convex) and hence replica symmetry
holds. In hidden-unit networks the possibility to en-
counter replica-symmetry breaking is much larger due to
the existence of different internal representations j o l j of
the patterns.

Let us assume first that there is a synaptic matrix J&*[&]

which realizes the internal representation ~~& = + 1,
l = 1, . . . , E for all patterns p. It is easy then to show
that the solution space is starlike with respect to J&,*[&]

[Fig. 4(a)]. In fact let J&~'('l) be any other solution which
implements the desired input-output relation, i.e., which
makes more o~&=+ 1 than o-~&= —1 for all p. Then

~l, (l) =r~lj(l)+( 1'} lj(l) (21)
30.0-

20.0-

10.0-

0.0-

10.0 I I I I I I

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

FIG. 2. Storage capacity a vs &K for the tree architecture
with E hidden units in replica-symmetric approximation. The
straight line shows the asymptotic v K increase of a,"s.

has for all y with O~y&1 also more o.~&=+1 than
o.~&= —1 for all p and is hence a solution. Therefore the
solution space is connected (but probably not convex) if
the special solution J&~[&] exists. Via J&J[&] any solution

J&~'~&] can be continuously deformed into any other solu-
tion J&~[&] without leaving the solution space. We can ac-
tually determine the value of a for which J&*.

~&]
exists. In

order to have o.~&=+1 for all 1 and p we have to teach
the K subperceptrons of our machine aN patterns [gj"].
Each subperceptron has N /K synapses and using
Gardner's results for the single-layer perceptron we find
that J&*.

[&] exists for a ~2/E. Hence for a ~2/K the solu-
tion space is connected and the results of the replica-
symmetric solution should be correct.
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It is difficult to characterize the solution space for
a) 2/K, mainly because then two different solutions J&"~I~

and Jl'. ~'I& differ by their internal representation for very
many patterns. Nevertheless one expects that for some a
with 2/K & a & a, the solution space breaks into several
disconnected parts [Fig. 4(b)]. Then the replica-
symmetric value for a, is clearly wrong.

In the following we study the implications of the first
step of Parisi s hierarchical replica-syrnrnetry-breaking
scheme to our problem [20]. The saddle point in (9) is
then parametrized by the six order parameters E, F„F2,
q1, q2, and m, where m denotes the break point of the or-
der parameter function. Again E, F1, and F2 can be el-
iminated with the help of their self-consistent equations,
and similar to related problems [21, 10] we get

(a)

FIG. 4. Sketch of the solution space for @=3. (a) a & 3, the

solution space is starlike with respect to JI, . (b) a & a, the solu-

tion space breaks into disconnected parts. The dotted line con-
nects two solutions with difFerent internal representations.

1—« V»= extr
qp + ln(1 —q, )+ ln(1 —q&+mhq)

m —1 1

N q, , q, , m 2(1 —q&+mbq) 2m ' 2m

+ DZlln Dtl Tr 8 ~l )]/z 0 I[q' z +(bq}' t ]I

m

(22)

where hq =q, —qp. In order to determine a, from this expression we would have to derive the three saddle-point equa-
tions and to study the limit q1~1. This is a rather complicated program. Instead we try again to determine a, directly
from (22) using arguments similar to those that carried us from (15) to (17). First one expects from the structure of the
integral in (22) that with q& ~1 we have m ~0 so that c =m/(1 —

q& ) remains finite. This scaling of m is well known
from a variety of related systems [20, 22, 10]. Replacing (1—q, ) by m /c in (22) we get

—« In V»
1

1 Cqp= extr +In[1 —m +c(1—qo)]
q, , c2mm 1 —m +c (1—qo)

+min —+2a f g Dzi» f g Dti
c I I

C
1/2

Tr e /11 gH, , [qo zl+(1 q ) tl]
+1I I I m '

(23)

In order to have a weil-defined extremum with respect to m for m ~0 the expression in the outer curly bracket in (23)
should vanish in this limit. This gives an equation for a, :

Cqp0= min +ln[1+c(1—qo)]+2a,g(qo, c)
q, , c 1+c(1—qo)

(24)

where

m

[qo zi+(1 qo)' t,]-
m '/'

1/2

g(q, c)= lim f gDz(lnf gDti Tr 6 gr( gHm~p I I +I +1 I I I
(25)
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Equation (24) determines a, in an implicit way. It defines
a function f (c,qo, a ) and states that a, is that value of a
for which the minimum off with respect to c and qo hap-
pens to be zero. Since g (qo, c) (0 for all c and qo, we can
make the determination of a, more explicit. We intro-
duce the function a=a(qo, c) defined by
f(c,qo, a(qo, c))=0 and find a, =min, a(qo, c), i.e.,
with (24):

a, = min
qo, c

cqp +ln[1+c (1—qo)]1+c 1 —
qo

2g (qo, c)
(26)

where g (qo, c) is given by (25).
It is still difficult to determine g(qo, c) for general E.

Note that the corresponding expression for the parity
machine is much less troublesome since qp =0 in this case
[10]. In Appendix B we determine explicitly g(qo, c) for
IC= 3, by performing the limit m ~0 in (25). The numer-
ical solution of (26) then gives a, (K =3)=3.0, with
qp-—0.61 and c =50.

One-step replica-symmetry breaking thus reduces the
value of a, as compared to the replica-symmetric result.
This reduction is less than in the case of the parity
machine. We find for K=3 a decrease of a, from 4.02 to
3.0. For the parity machine the corresponding values for
X=3 are 10.3 and 5.0 [10]. This is in accordance with
our qualitative discussion of the connectivity of the solu-
tion space. For the parity machine it is "checkered" and
a replica-symmetric calculation is even less appropriate
than in the case of the committee machine. The reduc-
tion of a, in one-step replica-syrnrnetry breaking should
also apply to the asymptotic behavior of a, for K~ ~.
It would be very interesting to see whether the modified
asymptotics obeys the Mitchison-Durbin bound as in the
case of the parity machine [9], but this seems to be very
difficult. One can show that a, is bounded by lnK for
large K if c increases with K at most like a power c -K"
with arbitrary x & Do. However, we were not able to ex-
tract this behavior of c with K out of the self-consistent
equation for c.

Another open question concerns the reliability of a
one-step symmetry-breaking calculation. We expect that
the result for a, for K= 3 is a good approximation of the

actual value. However, we do not see a convincing argu-
ment that one-step replica-symmetry breaking yields al-
ready the exact result as, e.g., in the case of the random
energy model [22]. To show that two-step replica-
symrnetry breaking reduces to the one-step solution is
very complicated for the committee machine and, in any
case, relies on nontrivial numerical work. Moreover our
qualitative analysis of the solution space suggests that the
number of replica-symmetry-breaking steps necessary to
obtain a fair approximation for a, may increase with in-
creasing K.

V. FULLY CONNECTED ARCHITECTURE

1
exp — g g g x„,x „„JP~Jg

pj I k aP
(27)

In order to decouple the integrals over JI and x„&,A,„I we
have to introduce additional order parameters:

and

1
Cki=

N g JkjJPj (kAl)
J

(28)

Dpp= —g Jk Jp~ (asap, k@1)
J

together with their conjugate Lagrange multipliers C k&

and D k&. These order parameters describe the correla-
tions between synapses which leave the same input unit
and arrive at different hidden units. Ckr characterizes
these correlations within one solution whereas DkP corre-
lates different solutions. It is straightforward to rewrite
(( V")) in the form of a saddle-point integral. Assuming
replica symmetry the saddle point is parametrized by the
seven order parameters E, q, F, C, C, D, and 8. The
saddle-point equations for E, F, C', and 8 are algebraic
and these variables can be eliminated. The resulting ex-
pression for ((lnV)) reads

(29)

In this section we discuss the replica-symmetric theory
for a committee machine where every hidden unit is con-
nected to all input units, i.e., j (1)=j = 1, . . . , N for all I.
The calculation proceeds along the lines of Sec. II. Now
however the average over the patterns produces a term of
the form

1 K —1 K q—((lnV)) = extr ln(1 —
q

—C+D)+ —'in[1 —
q +(IC —1)(C —D)]+-

N q, c,D 2 2 1 —q+(K —1)(C D)—
+ K(E —1) (q —D)(C —D)

2 (1—
q

—C+D)[1—q+(K —1)(C D)]—
(q D)' t&+(C D—)' z+D'~ y-

+af gDtifDylnfDz Tr e 'gr&' PH
I ~( =+1I (1—

q
—C+D)'i

(30)

For a~a, we expect that the solution is unique up to permutations of the hidden units. Consequently solutions which
are related by permutations of the hidden units are not connected in solution space. Hence we have q ~1 and D ~C.
Introducing
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we find

C —D
1 —

q
(31)

1 1 Kq
N z 2(1—q) Da
—((lnV)) = extr extr (1 q)—(K —1)ln(1 —q)(1 —a)+(1—q)ln(1 —q)[1+(K —1)a]+ [1+(K—1)a]

X Tr 8 g'Ti gH 1i
J~)=+1j

I

(q D) t&+(C D) z+D y

[(1—q)(1 —a) ]'~
(32)

We now assume that a remains bounded for q ~1. This assumption is shown to be self-consistent below. Then the first
two terms in (32) do not contribute as q~ l. In the last term the limit q ~1 can be performed using the techniques of
Appendix A. We then get an equation for a, similar to (18):

1/2 2

0= extr —a, (1 C)f—Dy f Dt t-
c,a 1+(K—1)a (C/1 —C) /

y
y g(t) (33)

with g(t) defined in Eq. (19). The extremum condition
with respect to a gives

1

(K —1)
(34)

Using (19) one can show that this expression is real. For
X=3 we find the numerical result a, =34.5. So in repli-
ca symmetry the storage capacity per synapse is for the
fully connected net almost three times larger than for the
tree.

For large K, C tends to zero and we get

&FC ~&tree
C C (36)

The result (34) for the order parameter C measuring the
correlations between synapses leaving the same input unit
but arriving at different hidden units is remarkably sim-
ple. It can be understood qualitatively as follows. At a,
most patterns have internal representations with
(K+1)/2, a&=+1, and (K —1)/2, cr~= —1. That
means that on the average two different hidden units will
have the same value for a fraction [(K —1)/2K] and
different values for a fraction [(K+1)/2K] of the pat-
terns. This gives rise to an anticorrelation
((o&ok)) —= —1/K. This result shows that a committee
machine is indeed more complex than just E perceptrons.
In particular C(0 demonstrates that there is a genuine
"division of labor" between the hidden units. It is also
interesting that Mezard and Patarnello find for the fully
connected parity machine C=O for all K [18].

We expect that the order parameters C and D are de-
creasing functions of K, also if replica-symmetry breaking
is taken into account. Then the storage capacity per

The extremum condition with respect to C shows that a
remains O(1) for q~l thus verifying our assumption.
From (34) and (33) we find

'2

(35)

I

synapse should be the same for the fully connected and
the tree architecture in the limit of large E. This has
been shown explicitly for the replica-symmetric solution.

VI. SIMPLE LEARNING ALGQRITHM

In this section we present a simple learning algorithm
for the committee tree, which is able to learn
p-O(N/&K ) patterns. The motivation of this chapter
is to show that the tree can learn more patterns than one
of its branches (pb„„,h =2N/K [4]). The idea of the algo-
rithm is very simple. Each hidden unit learns 2N/K pat-
terns. The units are trained one after the other; each new
one learns only those patterns, which do not yet produce
the right majority vote at the output unit. If one is in-
terested in high storage capacities, this algorithm is use-
less. It is best for no hidden units at all, i.e., X= 1. How-
ever the suggested algorithm allows us to make use of all
the available know-how in training of single-layer per-
ceptrons also in two-layer nets with tree architecture.
This may be advantageous in applications, where for
technical reasons one may favor more units with low con-
nectivity instead of few units with high connectivity.

We start with a description of the learning algorithm
for given N, K, and p, where p ~p, (N, K). Then we go on
to calculate p, (K /N).

We assume N/E&&E and denote an optimal algo-
rithm for the single-layer perceptron by Ab„„,h. Without
loss of generality the desired output for very pattern is
+1.

First the lower synapses are all set equal to 0. Then we
successively set the lower synapses at +1 and learn the
upper synapses in the corresponding branch. After each
step the field at the output unit for each pattern is calcu-
lated. As all lower synapses have weight 1 or 0, the fields
can only take integer values. The field distribution is
used to select those patterns, which will be learned by the
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next unit. The detailed procedure is as follows. In the
beginning all patterns have field h "(0)=0. The first
branch is learned with Ab,»,h such that the first 2N/E
patterns set the hidden unit to + 1. Half of the other pat-
terns will have hidden output + 1 (they have been learned

I

"by accident") and the other half will have —1, because
the patterns are stochastically independent. Now the
lower synapse connecting the first hidden unit to the final
output unit is set to +1. So after the first step the field
distribution is

P, (h)= ———5(h + (1+ —+—5(h —()=
(( x 5(h —h "( ) ))))

p N p
2 E 2 I(

P
(37)

In the next step the second unit learns 2N/E patterns
with field h "(1)= —1. After training the second unit, the
set of all p patterns can be classified according to their lo-
cal fields h "(2)=—2, 0, +2. The third unit learns those
2N/E patterns, which have the smallest fields and so on.
In Fig. 5 we show the field distribution after each step for

p =5N/K. In the second step 2N/K patterns with field
—1 are learnt by Ab„„,h to give +1 at the second hidden
unit. In the example (Fig. 5) there are only 1.5N/K pat-
terns with field —1. So all these patterns are learned at
the second hidden unit together with 0.5N/E patterns
with field +1. The remaining 3N/K patterns with field
+1 have been divided: half of them will give +1 at the
second hidden unit, the other half will give —1. The
second lower synapse is finally set +1. Let us summarize
the effect on the field distribution of step 2: 1.5N/K pat-
terns with field —1 are learned, so their fields become 0.
0.5N/K patterns with field +1 are learned to field +2.
1.5N/K patterns with field + 1 are shifted to fields 0 and
+2, respectively. All subsequent steps are performed in
the same spirit. Ab„„,h is applied to learn 2N/K of the
patterns with the worst (most negative) field. If those are
less than 2N/K, patterns with the next worse field are
learned. Half of all other fields will be increased by +1,
the other half decreased by —1.

The algorithm will be successful if after K steps all
fields are positive. This will be true if p p, (K,N). The
storage capacity is most easily calculated by determining
K;„(p,N/K), defined as the minimal number of
branches which is needed to learn p patterns for fixed
N/E. One starts with p patterns, calculates the field dis-
tributions after each step, and counts the number of steps
E;„needed to assure that all fields be positive. The re-
sult is shown in Fig. 5 for pK/N=5. Note that K;„only
depends on the ratio pK/N (instead of two variables P
and N/K), because if p and N/K are multiplied by the
same factor, the field distribution before the first step
Po(h)=P5(h) and the number of patterns, which are
learned in one step 2N!K, are scaled by the same factor.
Hence all field distributions are just rescaled. K;„ is al-

p, =N 3.086 ——0.87—+O(K )v'K '
K

(38)

where the coefficient of K ' has been determined by the
slope of the curve in Fig. 7. We present the following re-
marks.

(1) One can generalize the algorithm in selecting pat-
terns which do not have the most negative field, e.g.,
N/E patterns which have a negative field with the lowest
absolute value could be learned together with N/K pat-
terns with the most negative field. For small, fixed E it
can be shown analytically that the most-negative-field
rule yields the maximum p. The proof involves the solu-
tion of a linear optimization problem with O(K ) vari-
able. We performed the calculation up to K=11. As a
by-product one gets p, (K) directly

1

3

5

7

9
11

4
5—,

'

6 —",,
7.80
8.76

(2) The algorithm ca,n be applied if the lower synapses
have nonuniform weights. We shall not investigate this
possibility systematically. We just mention that for given
K one might be able to increase p„e.g. ,

ways odd, because the last step always learns patterns,
which had field 0 to field +1. For each odd K the max-
imum storage capacity p, can be determined by calculat-
ing K;„(pK/N) in the neighborhood of p, . At p, K;„
jumps from K to K+2.

In Fig. 6 we show p, K/N as a function of K. In order
to verify the guess p-N/&K for K~~ we plotted
p&K /N against N/pK. The result is

f4/K

-2 0 2h

FIG. 5. Field distribution P;(h) at each learning step for pK/N=—5.
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pK/N

10

FIG. 6. Storage capacity aK =pK/X as a function of the

number of hidden units K as obtained by the simple algorithm.
For finite K the graph has a slight curvature.

p, (K = 5 ) =6N/K (instead of 5.5N /K) if the lower

synapses have values 2,2, 1,1,1.
(3) Note that a, (N, K) decreases with increasing K.

One reason why the algorithm is not optimal is the fol-
lowing. It does not contain any back-correlations. Con-
sider an arbitrary hidden unit I with 1 & l &K. It has in-
formation about parts of the patterns, which have been
learned by the first (/ —1) hidden units, because it is
trained only with patterns, which did not produce the
desired output so far. However unit I lacks any informa-
tion about parts of patterns which will be learned later,
i.e., by hidden units l + 1, . . . , E.

VII. TOWARD A BETTER LEARNING ALGORITHM

Learning in a two-layer network is in general a hard
combinatorial optimization problem, so approximate
techniques are needed to find good solutions in reason-
able time. We will have a closer look at the least-action
algorithm of Mitchison and Durbin [9] and improve it by
taking special advantage of the two-layer structure.
Least action goes back to a learning algorithm for the
committee machine that was described by Nilsson [23].
It was reformulated [9) for the parity machine, which re-
quires three layers of simple-summing-threshold units,
but can also be applied to the committee machine and
other two-layer nets. It is a generalization of

ps K/N
3.10

3.05

0 0.005 0.01
N/(pK)

FIG. 7. Finite-size scaling of the storage capacity of the sim-

ple algorithm. The asymptotic behavior of p(K, N) [Eq. (38)]
can be extracted from the plot.

J,, (t +1)=J,, (t)+ [1 hP(t)]g—r/&
1

(39)

with

Thereby we ensure that the learning step is successful in
the sense that the sign of the hidden unit is changed, and
at the same time that it does not overachieve its require-
ments, i.e., produce a very large field. Note that the tar-
get state of the hidden unit is g", because the output unit
just calculates the majority of the hidden units and a hid-
den unit is selected in the algorithm only if it gives the
wrong vote.

In our simulations and also in the formulation of the
algorithm we restrict ourselves to the simplest case of a
two-layer network, a committee machine with zero
thresholds, and an odd number of hidden units, in order
not to burden the model with too many details. The algo-
rithm, which we call the adaptive least-action (ALA) al-
gorithm, can later be modified to take additional free-
doms like threshold or variable couplings from hidden to
output into consideration. We will formulate and apply
the algorithm to the tree and also to the fully connected
net in a unified way. Without loss of generality we may

Rosenblatt's perceptron algorithm [5]. Patterns are cycli-
cally presented to the network; whenever a pattern needs
to be learned, i.e., if the parity of the hidden layer is not
as desired or the field of the output neuron lower than its
threshold, a hidden unit is selected and a Hebbian term is
added to the couplings of the selected unit. In a simple
perceptron there is only one unit (or, respectively, N in-
dependent units). The selection of the hidden unit in the
layered net is done according to the rule that the local
field h&" of the selected unit is closest to its threshold.
Then a little change of the couplings may be sufficient to
change the sign of the unit's output, which in turn would
change the parity or the field of the output unit. This
however is not always the case. The algorithm has been
applied to the fully connected parity and the committee
machine (with an even number of hidden units) [9] and to
the tree-structured parity machine [10]. Mitchison et al.
also showed that it is much more efficient than the back-
propagation of Rumelhart et al. [24].

In a two-layer network we have more information on
how well a particular pattern is already learned than just
the binary output of a parity machine —we know the
field at the output unit. Since we want to learn all pat-
terns of a specific set we can always select a pattern with
index )M that is worst (or one of the worst), in the sense
that its field h" has the most undesirable (e.g. , smallest)
value of all fields h" (v=1, . . . ,p). Now not only the
hidden unit but also the pattern is selected in each step.
The step itself can be made adaptiUe, that is instead of
adding a simple Hebbian term to the couplings we multi-

ply it with the distance to the desired local field 1 or —1

as in Adaline learning [25—27], see also [28]). For the ful-

ly connected network the change of couplings is explicitly
given by
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again map all patterns on q"=+1. It is convenient to
store the correlation matrix of the patterns
()M, v= 1, . . . ,p) for the tree,

(40}

and for the fully connected network,

CP"= g PP1

N j
(41)

update local fields hk and fields h .
The algorithm is equally well applicable for binary and
for real-valued patterns with or without a bias. Note that
C~(/)'=1 for binary patterns, where C(t) stands for C&

' or
C ', respectively, for the tree and the fully connected net-
work. Also a stopping criterion is needed for the case
that no solution can be found. It would be too crude to
stop the algorithm after a fixed number of steps T, be-
cause a significant stopping time will depend on system
sizes N and K and also on the special choice of the set of
patterns. We therefore check the change of the couplings
of the last T steps against their L2 norm
IJ(I = gi „xt C(t)x)". The algorithm is stopped with no
success after ~T steps, if for some small e & 0

We can write the couplings as J) = g„xt"P~ and
therefore ht"=&N/K g„x/'C/'" or, respectively,
ht"=&N g„x/'C"". All calculations can be done with
the embedding strengths xI', so we do not need to store
JI. until we start calculating order parameters. Slightly
formalized, the main part of the algorithm reads

set xk —=0 for all v and k

for t =0, 1, . . .

find first pattern )(t with h"=ming'

if h")0 solution found, STOP

find first hidden unit l with h/'=maxk& hf

let x/'(t +1)=x/'(t)+(1 —h/')(C~(/)')

peatedly changed without improving the total solution
significantly. This effect makes problems in Mitchison
and Durbin's nonadaptive and therefore linear least ac-
tion (LLA).

Simulations were performed for the tree and the fully
connected network as well as for binary and Gaussian un-
biased patterns. Gaussian patterns produce results with a
weaker dependence on the system size. Note that the
theory holds for both kinds of patterns. Figure 8 shows
the distribution of the local fields ht normalized to
I J& I

= 1 for all 1 after learning in a fully connected system
and a tree with K=3, N„„=147, and Xf„&&=49 of 200
sample sets of Gaussian unbiased patterns each. It
demonstrates the way learning works: fields are taken
from small negative values and shufHed to 1/I J(I, which
is a large change in the beginning of the learning process
and decreasing, while I J) I

is growing. During this
shuffiing other local fields are dropping back with the ten-
dency to become Gaussian. The distribution of the corre-
sponding embedding strengths xh' after learning normal-
ized in the same way is depicted in Fig. 9; 77% and, re-
spectively, 74% of all x&" have a value of zero for the tree
and for the fully connected network. The distribution is
characteristic for the learning algorithm; it is much
smoother than the one of LLA, where we see sharp peaks
at zero and also at 1. Differences between the tree and
the fully connected network are apparently not
significant in x and h.

Storage capacities were determined by interpolating
success rates to 50% in learning all patterns of a set. To
be more precise, we determined a p so that slightly more
than 50% of all tested sets with p patterns could be
learned completely, then we increased p so that the suc-
cess rate went down. The intersection of the connecting
line with 50% defines the critical number of patterns
p, " . The critical storage capacity is defined as

a, (N, K)=p, (N, K) /N. The stopping parameter
was chosen to be small enough to have little influence on
a, and also big enough to not waste too much computer
time: e=5X10 . Figure 10 shows storage capacities

full

e—e tree

(42)

where fix/((, )) is the change of xg in step t, r=1,2, . . . .
Convergence problems were never observed. For a given
pattern and hidden unit the algorithm is equivalent to the
quadratic optimization problem of Adaline learning. The
nonlinear and nonsmooth learning problem is fitted with
quadratic cost functions in every step and therefore be-

longs to the class of the trust region methods (see, e.g. ,
[29]}.

Usually all hidden units are changed approximately
equally often during one learning cycle. We did not see
the effect that the algorithm is caught frequently in local
traps, where only a single or a few hidden units are re-

—3 —2 —'I

FIG. 8. Distrsbutson of local fields hk, k = 1, . . . , E,
v = 1, . . . ,p for the fully connected and the tree-structured com-
mittee machine, after learning with adaptive least action. Sys-
tem sizes are N=63, I( =3, and the numbers of patterns P are at
the critical storage capacity. Both distributions have been aver-
aged over 200 independent sets of patterns.
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FIG. 9. Distribution of embedding strengths xk,
k = 1, . . . , K,v=1, . . . ,p of the simulations of Fig. 8.

for the tree committee machine for K=3, 5, and 7 hidden
units. The solid symbols show results for Gaussian distri-
buted patterns with zero mean and variance 1. Open
symbols give results for binary unbiased patterns, which
show a stronger dependence on N, when N is small. For
sufficiently large N we see a maximal possible storage
capacity of a, =2 for all E. This storage capacity is
approximately twice the number of degrees of freedom,
as for a single-layer perceptron, see also Fig. 12. The
discrepancy to the theoretical result of a, =3.0 may be
due to further replica-symmetry-breaking effects or to
insufBciencies of the algorithm. Even if the capacity is
not significantly larger than 2, this does not mean that
the tree could be replaced by a simple perceptron, since
also nonlinear separable problems can be handled.

A slightly different result is found for the fully connect-
ed committee machine. Figure 11 shows its storage capa-
cities, again for Gaussian and binary patterns (solid and
open symbols). We see a storage capacity which reaches
a value of approximately 2E for not too small N
(a=5 X 10 '). In order to check whether the algorithm
is able to store more than this at the cost of more com-
puter time, we tested the scaling behavior of a, (e) for
%=3 and sufficiently large N (43 fully connected and 129
for the tree), see Fig. 12. We observe linear scaling of the
fully connected storage capacity with e', which reaches
a,""/K~ =2.2 for a~0. The data points of a',"'(e' )

are not on a straight line; still the plot suggests for small

FIG. 11. Critical storage capacity of the full connected com-
mittee machine for Gaussian and binary patterns as in Fig. 10.
Also shown is the storage capacity over E for N= 27, which in-
dicates a linear scaling in that region with gradient 2.0.

e that a',"'—+=2.02. Compared to LLA we find that
critical storage capacities are higher and can be reached
with fewer iterations. In an example of N=14, X=3,
and Gaussian patterns we found a, =5.48, while ALA
reaches a, =5.81 in 52p compared to 50p iterations on
the average for e=5X10 . We always took T=p.

The algorithm as defined is deterministic. %e find that
the storage capacity cannot be increased by changing the
initial conditions xo—:x (t =0). We took all xo =+1 or
all xo= —1 or Gaussian random xo with mean zero and
variance 1. The worst results are obtained for xo= —1,
while random initial conditions reduce a," by —10%
and increase the number of necessary iterations by a fac-
tor of 6.

In contrast to single-layer perceptrons it is not known
whether the algorithm finds a solution, if one exists. This
may well be the reason for the observed discrepancy be-
tween the calculated capacities and the capacities
reached by ALA. On the other hand, we cannot exclude
that the theoretical capacity is further reduced by more
steps of replica-symmetry breaking.

For the full connected net it is of interest to study
correlations among different hidden units:

(43)

2. 1 2.2

1.9- 2.1-

9 2.0-
O

1.5
0 100 200

N

1.9-

0.00 0.01 0.02

FIG. 10. Critical storage capacity of the tree committee
machine for Gaussian patterns (full symbols connected with
lines) and binary patterns (open symbols) and finite-size effects.

FIG. 12. Scaling of a, for the fully connected and the tree-
structured net with e' for N=43 (full) and N=139 (tree).
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&(q)=[&g(q) jg I
= 2

M(M —1) g 5(q —
qI ~)

a,P g, l

(45)

averaged over patterns and hidden units is shown in Fig.
15 with K=3 and 5, N=49, and 200 sets of patterns.
The storage ratio was a=1.85, which is somewhat below
the critical storage capacity of the algorithm, so that
solutions can be found with acceptable success rates also
for random initial conditions. Since q will not change
rapidly at a„a11 sets of couplings were correlated,
whether learning was successful or not. A growing num-
ber of solutions M improves the statistics of the distribu-
tion, but takes more of the second-best solutions into ac-
count, with the result of a decreasing q (K=3: M=3,

Its distributions are depicted in Fig. 13 for two systems
with K= 3, N= 11, and N=63 (200 sets of patterns). It
shows that the distributions get sharper with growing N
at a value of = —0.35. Finite-size effects are depicted in
Fig. 14, where average values of C are plotted versus N.
The small inset graph shows C of N=22 as a function of
1/(K —1). The data points are fairly well on a straight
line with the gradient —1.2, which is remarkably close to
C = —1/(K —1), the replica-symmetric result in the lim-
it a~a„and supported by a simple argument (see Sec.
V).

We would like to learn more about the solution space
and in particular the other order parameters from numer-
ical simulations. This is difficult, because we do not
know whether the dynamics of Eq. (39) is ergodic or not.
Hence it is not clear whether averaging over random ini-
tial conditions is equivalent to the average of statistical
mechanics with equal a priori probabilities. Nevertheless
we have seen that different initial conditions generate
different fixpoints of the dynamics for the same set ofpat
terns. To investigate correlations of these fixpoints, we
first generate several solutions {JI~ I (a= 1, . . . , M) for a
given set of patterns, using ALA with random Gaussian
xo and xo(a= 1 ) =0. For the tree we calculate their mu-

tual overlaps

~ N/K

q
~=—g J„Jg, &P (44)

j
for each hidden unit k. The distribution of overlaps

0.4-

0.2-
K=7

K=9

K=5

C

0.0
0

—0.4
o1 (K~) ' o..

10 20 30 40 50 60

N

FIG. 14. Finite-size effects for the order parameter C of the
fully connected net. Plotted are average values of C from 200
sets of Gaussian patterns for K=3, 5, 7, and 9 and N up to 63.
The inset graph shows data for C over (E —1) ' for N=22,
which lie on a straight line with gradient 1.2.

(46)

The remaining combination of hidden units forms the or-
der parameter D:

(47)

Figure 16 shows the distribution of q and D of systems
with %=49, K=3 averaged over 200 independent sets of
patterns again; q appears to be a little smaller than in the

solid triangles; M=4, solid circles). Both K=3 distribu-
tions are still well peaked at q=0.2. For X=5 we see the
peak at q =0.14 (M=4). If the learning dynamics (39) is
ergodic these results would suggest that at a=1.85 repli-
ca symmetry is still unbroken.

The order parameters q and D of the fully connected
committee machine were obtained by correlating four
different solutions; one of them was obtained from xo =0.
Since the full net has a permutational symmetry in the
hidden units, any solution can prefer any permutation of
the hidden units at random. We therefore determined for
all pairings (a,p) an individual mapping of the hidden
units I k I ~ {k '

J, which maximizes

I

N=63
N=11

~ K=3 M=3
~-i K=3 M=4
e—e K=5 M=4

—0.8

1
I

I

I

—0.4 0.0
—0.2 0.0 0.2

L y.

0.4

FIG. 13. Distribution of the order parameter C of the fully

connected net with Gaussian patterns. E=3, +=1.85. For
N= 11 and 63, the distributions get sharp with growing N.

FIG. 15. Distribution of the order parameter q of the tree,

%=49, X=3, +=1.85. Three and four solutions of 200 sets of
binary patterns were correlated.
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I

~—o P
e—e q

values of the [wk } are prescribed in advance and fixed
during learning. The algorithm takes the different values
of wk into account: Concerning the patterns, the fields
h" reflect the influence of [wk}. Hidden units can be
selected as for uniform couplings. In this way simula-
tions can be used to learn more about the appropriate dis-
tribution of [ wk }.

VIII. GENERALIZATIONS AND OUTLOOK

0.0 0.5

FIG. 16. Distributions of the order parameters q and D of
the fully connected net, N=49, X=3, a=1.85. Four solutions
of 200 sets of Gaussian patterns were correlated.

tree. The average value is approximately 0.15, while D is
distributed around zero.

Also for the parity machine adaptive step lengths are
possible. Advantages are not as clear as in the committee
case. In a simulation of a system with N=23 we saw an
increase of the critical storage capacity from 5.2 to 5.6 at
the cost of 80% more necessary iterations. Further simu-
lations need to be performed to get a clearer picture of
the matter.

The suggested algorithm ALA can also be used for ful-

ly connected two-layer networks with variable couplings

[ wk } from hidden to output layer. We again restrict our-
selves to positive signs of the [ wk } and order them ac-
cording to their absolute value, since the net is invariant
under permutations of the hidden units. Nonuniform

So far we have mainly discussed a special case of a
two-layer network, where the output unit adjusts accord-
ing to the majority of hidden units. In this section we
shall try to put our work in a more general context and
investigate some possible extensions. In particular we
shall discuss other Boolean functions, variable weights
from the hidden layer to the output unit, and the effects
of thresholds. Finally some open questions will be point-
ed out.

A. General Boolean function from hidden units to output

It is easy to generalize our results for the maximal
storage capacity to a feedforward network with an arbi-
trary but fixed relation between hidden units and output.
Consider the same model as defined in Sec. II but with

n=F([al }) (48)

instead of (2), where F is an arbitrary Boolean function of
E variables. In complete analogy to Sec. III we then get
for the replica-symmetric value of a, instead of (17)

(g') '= —)im2(( —q)J ttD(, )n Tr B(qF(f~, )))ttH(Q(, T, )
llq~l I ~I =+1I (49)

For a symmetric Boolean function F ( I
—o

~ } )

F( I crl } ) the —
rt average in (49) can be performed just

by omitting g in the argument of the 8 function. To get
an explicit result for a, similar to (18) one has to take the
limit q —+I in (49) which now depends on the detailed
form of F. It is however possible to find the result by in-
spection, as we now show. This will not only facilitate
the derivation of a, for arbitrary Boolean functions, but
at the same time provide a deeper understanding of the
storage properties of networks with hidden units.

We rewrite Eq. (18) in the following form:

a, '=E Dttg t (50)
0

For g(t)=1 this is precisely Gardner's formula for the
storage capacity of a perceptron with N/E synapses stor-
ing p =aN patterns [4]. The advantage of a two-layer
network is that not all subperceptrons have to adapt to
all patterns. If, e.g., one pattern produces a large nega-
tive field at hidden unit crI, then the correct output can be
achieved with the help of other subperceptrons without
changing the synaptic couplings of crI. The capacity of
the two-layer net is reached if one of the subperceptrons,
which has to be adapted, is at its limit of capacity. We

g(t, )= [2H(t, )] (51)

with a factor 2H(tl) for each l =2, . . . , E. (This is of
course in agreement with the results of Ref. [10].)

As a second example we consider the committee
machine, i e , F([oI}.).= gl ot. If a pattern does not

then say that this subperceptron becomes saturated or
critical. Hence the storage capacity of the network with
hidden units is given by Gardner s formula with the in-
terpretation of g(t) as the probability that the critical
subperceptron has to be modified.

To see how we can construct g (t) if F ( [ cr I } ) is known,
we consider the parity machine as an example. In this
case F([err})=g& err and the correct output can be
achieved by adapting only one subperceptron. To max-
imize the capacity, this particular subperceptron should
be chosen as the one with the lowest value of the noise
[tI }. (Note that this is also done in the more elaborate
calculation of Appendix A.) Without loss of generality
we choose subperceptron 1. It will be modified only if
~t, ~

& ~tl ~
for 1=2,3, . . . , K. The probability that for a

given value of t, we have
~ t, ~

&
~
t 2 ~

is given by 2H ( t, ).
This implies
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g(t, ) =[H(t, )]

E —1
+ [H (t, )]~ '[1 H(—r, )]+

yield the correct output, we may have to change up to
(K+1)/2 subperceptrons. This is the worst of all cases
with all uI = —1. Again we want to adapt those percept-
rons, which have the smallest values of the noise [tt].
Hence the first subperceptron has to be modified, if t, be-
longs to the (K+1)/2 smallest t&. Since all [rl j are in-
dependent Gaussian variables with variance 1 we find

which coincides with Eq. (19).
Similarly one can construct expressions for the

replica-symmetric a, for other Boolean functions
F( [o t ] ). Two more examples will be discussed in the
next paragraph, where we study the e8'ects of thresholds.
It is also possible to get results for a, in one-step replica-
symmetry breaking along the lines of Sec. IV. In particu-
lar it is easy to generalize Eqs. (22) to (26) to arbitrary
Boolean functions F ( j cr t ] ).

B. Thresholds

E —1
+ (H(r ))x ~& &~&&[1 H( )](&—I)/2

2

(52)

We can generalize the main results of Secs. III and IV
to networks of formal neurons with thresholds. Denoting
the threshold of the hidden units by 8& and that of the
output unit by 00 we find in replica symmetry similar to
(16)

1 q OI, +q tI—((in V)) = extr —,'ln(1 —q)+ +a f g D&lln Tr e g g r&
—80 g HX, ' 2(1—q) (~&=+&) t ~ (1—q)'~'

(53)

The interpretation is the same as for (16). The ~t trace is restricted to internal representations that yield the desired
output and the Gardner volumes of the subperceptrons are now characterized by a stability parameter 8& [4]. In the
derivation of Eq. (53) we have assumed that all hidden units have the same threshold. If this is not the case, one has to
expect an I dependence of the order parameters E, F, and q. Note that thresholds break the S;~—S; symmetry so that
the statistics of the output unit g" must be taken into account explicitly in (53). Similar to (17) we then find

(a, )
'= —lim 2(1—q) f gDtI ln

q —+1
1

e +q'"t,
Tr e'g g~& —80

' gH 1((,=+~), , (1—q)'" (54)

The limit q~1 can now be performed using the tech-
niques of Appendix A or the intuitive argument of the
previous paragraph. We discuss two cases in detail.

(a) 8o=0, 8& &0. If the desired output is positive,
g= + 1, the inverse capacity is given by Gardner's result
for a single-layer perceptron with stability parameter
~=8&, multiplied by g(t) If the d. esired output is nega-
tive, g= —1, the threshold 8& facilitates the right de-
cision of the committee, corresponding to a negative sta-
bility parameter in Gardner's calculation, i.e., ~= —L9.

Adding both terms with weight —,
' we obtain

a, '(8„)=—f Dr(r+8, )'+ f Dr(r —8, )' g(r),
h h

(55)

with g (r) given in Eq. (52). The capacity has a maximum
for 8& =0, as can be seen by diff'erentiating Eq. (55) twice.

(b) 8&=0,80)0. In this case a, (80) changes discon-
tinuously if 600=2 and remains constant in between.
Hence we only consider 80=0,2, . . . , E —1. The proba-
bility g(t) that the critical subperceptron has to be
modified is given by the probability that it belongs to the
(K +8O+ 1)/2 [(K —8O+ 1)/2] subperceptrons with

smallest noise t~ for output g=+1(g= —1). Adding
both terms with weight —,', we obtain

a, '(8, ) =—f Dt r'
(K + Oo

—1)/2 (K —
(9o

—1~/2

X + X
1=0 1=0

[H (r)]K
—I —1[1 H (r)]l

For example, if 8O=(K —1) this implies

2e, '= —+E Dtt'0 t KK
2 0

(56)

For positive output, g = + 1, all hidden units must be + 1

to overcome the threshold. In this case the capacity is
that of a single perceptron 2/K. If the output is negative,
g= —1, it is sufficient to have one ~1= —1. Hence the
critical perceptron only has to be modified if it has the
smallest value of the noise.

The general expression for a, (80) [Eq. (54)] is an even
function of 00, as one would expect for random unbiased
output q. To show that it has a maximum at 80=0 we
calculate
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a '(2) —a '(0)=— Dt t' [H(t)]' " '[1—H(t)]'E
C C

(I(: —1)!

K+1 E —3
'f t

2 2

[H ( t) ](K—1)/2[ 1 H ( t) ](K—1)/2 (E —1)!
lt —1

t

2
K —1

't

2

E f dt t[H(t)](K —1)/2[1 H( t)](K+1) /2&0
0

2

(5g)

We conclude that thresholds cannot increase the capacity for random, unbiased input-output relations. Carefully
chosen thresholds should, however, improve the storage abilities of the network if the patterns are drawn from a biased
probability distribution. Although we have only studied the replica-symmetric theory these qualitative conclusions
should remain true also in the context of replica-symmetry breaking. Note, however, that already in the single-layer
perceptron replica symmetry is broken for K (0 [4] [cf. (55)].

C. Adaptive hidden-to-output couplings

It is of special interest to generalize our results to two-layer networks for which the couplings wl from the hidden

units to the output are not fixed but can be adapted in the process of learning. The fractional volume in the phase space
of interactions stabilizing all patterns is then given by [cf. (3)—(5)]

where

M
D

(59)

~=f" II II'„„,f" IId, IIs gJ,', „,—z s X,' rc IIe q X— , g
1=1 j(l) l =1 1=1 j(l) 1=1 p, 1=1

' 1/2
K

X Jlj((4j(l)
j(l)

(60)

and

K K K K
D=f II rId~, f, IId II~ r J'j ——5

l =1 j(l) 1=1 1=1 j(l) 1=1
(61)

Since the w, do not couple directly to the disorder variables gj)'()) the average can be performed as in Sec. III and we get
similar to (9)

dE dIl ~dq ~
&«"&&=f rr,.' rI,.', ' rrd rr& r(

l, a l, a&P l, a a 1=1

X exp N Q E( QF( ~q)—~+ G2(E),F( ~)+—aG)(q( ~, w( ) —[I+in(2n. )]-
l, a l, a&P

where G2(E(,F( ~) is again given by (10) and

(62)

dA, l dxl
G)(q(~, w( )=in f II

l 2
exp i gx) i,, —

—,
' g(x) ) —

—,
' g x)xt'qt t' X II 8 g w(sgnA,

l, a l, a l, a,P a I
aWP

(63)

(63) differs from (11)just by the argument of the e func-
tion.

From (62) we infer that the w( integral can be per-
formed by the saddle-point method. Since after averag-
ing all hidden units are equivalent the saddle-point values
of the wt should not depend on 1 [analogous to (14) for
the other integration variables]. Note that the indepen-

I

dence of I of the saddle-point values holds for the
replica-symmetric solution and the solution with broken
replica symmetry. Then the 5 function in (62) requires
wl =1 for all l and a and the storage properties are the
same as for the committee tree.

The reason for this at first sight surprising result is the
special architecture of our network. The number of in-
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puts of the hidden units is 0 (N) whereas the output unit
receives input from O(1) hidden units only. It is impossi-
ble to adapt the K variables w& to the correlations of
infinitely many patterns [P~&~]. In other words, the com-
mittee tree has N adjustable parameters, a tree with a
variable hidden-to-output relation has N +E and to lead-
ing order in N the same number of input-output map-
pings can be implemented. Consequently for K =O(1)
the committee machine has the highest storage capacity
of all two-layer networks of the discussed type.

Many other generalizations and extensions are of in-
terest. We just mention two:

Other pattern statistics. For example, the tree architec-
ture seems not we11 suited for random uncorrelated pat-
terns. One may hope to gain considerably in capacity, if
patterns are used, which are correlated within a receptive
field [i.e., within of O(N/K) bits] but uncorrelated for
different receptive fields. In general the question what ar-
chitecture to choose for a given patterns statistics or vice
versa which class of patterns is easily learned by a given
architecture is not well understood.

Other architectures An . example is a committee
machine with a large number of hidden units, each con-
nected to a finite number of inputs only. In this case a re-
plica analysis is more complicated since higher cumulant
order parameters have to be introduced similar to the
case of diluted spin glasses [30]. Another architecture,
which presumably can be treated analytically, is charac-
terized by random dilution of the fully connected net, so
that the hidden units have partially overlapping receptive
fields. Finally one may want to consider hidden units,
whose receptive fields are defined in one- or two-
dimensional space and which can be used to handle
geometrical objects.

Note added. After completion of this work we received
a copy of unpublished work by E. Barkai, D. Hansel, and
H. Sompolinsky in which similar questions are discussed.
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at (18). It is convenient to first rewrite the t, integrals us-

ing once more (14) in the form

Tr Dtlln
t~(=+&)

Tr 8 g ( gH(Qt(g(r()
~ (=+i~

(Al)

For q~1 we have Q =(q/1 —q)' ~~ and, depending
on the sign of g&~&, the H functions either tend to 1 or
zero. Consider first an i)& configuration with g& i)t (0,
i.e., with more g&

= —1 than qt =+1. Then ~&
= —

g& is
an allowed r& configuration (since g& r& &0) which doin-
inates the ~& trace because all H functions have negative
arguments and tend to 1 for Q~ oo. Taking the loga-
rithm one realizes that these g& configurations give negli-
gible contributions to the g& trace. For all
configurations with g& i)~ & 0 all allowed
configurations will produce some H functions with posi-
tive arguments. These tend to zero for Q~ ~ giving rise
to contributions to the g& trace of large absolute value.
Now

1 XH(x}- exp
(2n)' x

(A2)

and hence

H(Qti)
H(Qr )

Q2
exp —

(t~ t~)— (A3)

D~) ti K! Dt, Dt 2 Dt~ t, )
0 O 11 K —1

(A4)

Hence for every il& configuration with g~ r)~ &0 the &~

trace is for Q —+m dominated by a single term. This
term has r&= —1 for as many t as possible, i.e., for
(K —1 )/2. These r&

= —1 are distributed such that
z) = —1 only if g) =+ 1 and that those l with
~&=g&=+1 correspond to the smallest t&. In order to
extract the dominant term from the ~& trace we have
therefore to know the relatiUe order of the integration
variables t&. It is convenient to fix this order by using

APPENDIX A

In this appendix we perform explicitly the limit q~ I
in the replica-symmetric expression for a, (17) to arrive

which holds for all integrands f (t& ) which are symmetric

with respect to permutations of the t&. So we can write

(17) in the form

a, '= —lim 2(1 q) Tr 8 pi)—&
K!f Dt, . fq~l t» =+i], ,

'
o K —1

Dt ln Tr 8 g r& g H(Qt&r&rh ) . (A5)

Now we can calculate the asymptotic behavior of all allowed contributions to the g& trace one after another. It is useful

to introduce the abbreviation K'=(K +1)/2. We start with 7)& =+1 for all 1: in this case the integral in (A5} is given

by
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K! Dt1 . DtKln H t1 H t2 . .H tK.
0 K —1

=K! Dt1lnH t1 H t1 '+K'! Dt1 Dt2lnH t2 H t2 +
0 t)

K' —1

=K! Dt1lnH t1 H t, '+K! Dt2lnH t2 erf t2 H t2 +

+K!f Dttt. lnH(gttt. ), [erf(tx. )] (A6)

where

erf(x)= Dt =—' —H(x) .
0 2

Therefore the contribution of this gl configuration to the gr trace is given by

K' —1 !
DtlnH t H t K

0 k=0

(A7)

(A8)

Next we consider g& configurations with all but one gI =+1: There are K equivalent configurations of this type, so
without loss of generality we can take g& =+1 for I =1, . . . , K —1 and gK = —1. The dominant term in the ~1 trace
has rx =+1 hence H (Qrttrttt tx )~1 and the integral over tz gives just a factor —,

' in (Al}. Moreover we have one H
function with positive argument less than in the previous case. The remaining integrals are handled as in (A6) and we
find for this particular gl configuration

, (E —1) f—D.t, . f Dtx &ln[H(gt, )H(gtz) H(gtx. i)]
0 K —2

K' —2 K)
DtlnH t H t erft . A9

K' —m —i

k=0

In order to get the contribution from all ri& configurations with a single ri&
= —1 we have to multiply (A9) by E. It is

straightforward to obtain the leading term of the integral in (A5) for an g& configuration with m, ill = —1, and (E —m),

gI =+1: In this case we find

K
2 f DtlnH (Qt) (A10}

For m =0 and m = 1 we recover (A8) and (A9) multiplied by E, respectively.
The largest possible m is m =K' —1 since otherwise g, rt& & 0. Therefore we get for (A5)

K' —1 Kt K' —m —1 1
a, '= —lim 2(1—q) f DtlnH(gt) g '

2 g, [H(t)] " '[erf(t)]"
q~1 0 o m! k o (E —m —1 —k)!k!

It is easy now to perform the limit q ~1 using (A2). Moreover introducing n = (m +k) we can simplify (Al 1) to
n

&
—1 K Dtt2 H t K —n —1 . 2k —n erf t k

o (K —1 n)!n!—n=0 k=0 ( n —k)!k!

which is the saine as (18).

(A 1 1)

(A12)

APPENDIX B

In this appendix we determine the critical capacity a, for a committee machine with K=3 hidden units using (26}
and (25). The main problem is to accomplish the limit m —+0 in (25) explicitly. This is turn requires us to find the dom-
inating terms in the trace over r& for m ~0. To this end we first rewrite (25) in the form

1/2 m
00 ti 7 I lyre

g(po, c)= lim f gDziln. Tr f gdtrf(ti, z&, ril) Tr 6 +1I gH
m m '~' (B1)

where
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f (tl, zt, gt ) = [2n(1 —
qp )] ' exp

(tt —g q' z&}

2(1—qp)
(82)

As in the replica-symmetric case of Appendix A there is for all gl configurations and all values of the integration vari-
ables tI a unique ~1 configuration, which dominates the trace over the ~l. To find it we have to fix the relative order of
the tI. This is now, however, more difficult because the integrand of the tI integral is no longer a symmetric function of
the tt due to the appearance of the functions f (t&, z&, hatt ). Instead of (A4) we must therefore use the identity

f g dt&F(tt)= f dt, f dt's
. f dtxF(t&)+(perm. ), (83)

0 0 K —1

where perm. stands for all analogous terms with permutations of the indices 1, . . . , E. Moreover all gl configurations
contribute in (81) and not only half of them as in the replica-symmetric case. These complications are the reason why
we restrict ourselves in the following to %=3. Let us then calculate the tI integrals in (Bl) for all eight possible rt&

configurations and take the limit m ~0. We start with g1=g2=g3=+1: The dominating term in the ~1 trace has
'r( ——1 for the index l which corresponds to the largest tt and rk = + 1 for k@1. Hence we get

dt&dt2dt3 f (t»z&, +1)f (t2, z2, +1)f(t3pz3p+ 1)
0

tI 7 I gI C
Tr 8 $r, gH

m
T

C1/2 I C1/2
=f dt, f(t, ,z„+1)f dt2f (tz, zz, +1)f dt3f (t3,z3, +1)H

~/2
H

0 t2 m'
2

+(perm. )m'"
—ct2 /2 —ct /2

dt, f (t„z„+1)e ' f dtzf (t2, z2, +1)e ' f dt3f (t3,z3, +1)+(perm. ), (84)
0

2 2& 2&

where in the last step we performed the limit m ~0 using (A2).
Next consider the gI configuration g1= —1, g2=g3=+1. Now the dominating term in the ~I trace has ~, =+1 and

72= + 1, w3= —1 if t2 & t3 or ~2= —1, ~3= + 1 if t2 ) t3. Hence we get for the tI integrals in this case

—ct2/2f "dt,f(t„z„1) f d—tzf(tz, z3, +1)e ' f dt3f(t3 z3+1)
0 0

—ct2/2+f dt3f(t3, z3, +1)e ' f dt2f(t2, z~, +1)
0 t3

(85)

Similar expressions result for the other gI configurations with exactly one gr = —1 and their joint contribution to the gI
trace is therefore

—ct 2/2f dt& f (t&,z&,
—1)f dtzf (tz, z2, +1)e

' ' f dt3f(t3, z3, +1)+(perm. ) . (86)
0 0 t2

For the remaining gI configurations the dominant term in the ~I trace tends always to 1 for m ~0. The relative order
of the tI is no longer relevant and therefore the tI integrals factorize. Observing finally that

X 'gq0 Z
dt f(t, z, rl)=H

(1—qp)' '

and introducing Qp = [qp /(1 —
qp ) ]'/ we find from (81), (84), and (86)

(87)

OO
—ct

1
/22

g(qp C)= fDz, Dz2Dz3ln ' dt&f(t&, z&, +1)e
0

—ct 2/2
x f "dt2f(t2, z2, +1)e

tl
Qpt3 + (perm. )

)
1/2

—t2/2+ H(Qpz& )f dt2f (t2, z2, + 1 )e ' H
0

I2 —Qpz3 +(perm. )
)
1/2

+ [H(Qpz& )H (Qpzz)H( —Qpz3)+(perm. )]+[H(Qpz, )H (Qpz2)H(Qpz3 }] . (88)

The I, 1 integral in the first term under the logarithm can still be performed analytically. The remaining four integrals as

well as the minimization in c and q0 have to be done numerically. The results are discussed in Sec. IV.
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