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Analysis of quantal synaptic noise in neural networks using iterated function systems
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It is shown how the dynamics of a discrete-time leaky-integrator (time-summating) neural network
with quantal synaptic noise may be formulated in terms of a random iterated function system. Condi-
tions are derived for which the limiting behavior of the system is described by an invariant probability
measure on the space of membrane potentials. Such an invariant measure typically has a fractal-like
structure, which is illustrated by a simple example of a single neuron with inhibitory feedback. The
effects of synaptic noise on the response characteristics of the neuron are also considered. Finally, learn-

ing in networks with synaptic noise is discussed.

PACS number(s): 87.10.+e¢, 02.50.+s, 05.20.—y

I. INTRODUCTION

In a previous paper [1] we analyzed the stochastic dy-
namics of a time-summating binary neural network with
additive white noise, based upon a discrete-time version
of a leaky-integrator shunting network [2]. In such net-
works the neuron is taken to be a binary threshold ele-
ment, which is either on or off depending on whether or
not its membrane potential (local field) exceeds threshold,
and the membrane potential is a slowly decaying function
of time with a decay rate of y, ¥ <1. Thus, each neuron
maintains an activity trace of all previous inputs to that
neuron. If shunting effects are ignored (as assumed here),
then this trace is a linear function of inputs. Time-
summating networks are of interest for a number of
reasons: (i) They incorporate certain temporal aspects of
the process by which real neurons integrate their inputs
[2], (i) they exhibit complex dynamics at both the single-
neuron [3,4] and network levels [1], and (iii) they have
certain advantages over standard networks in the pro-
cessing of temporal sequences [S-9]. In Ref. [1] we for-
mulated the stochastic dynamics as a linear Markov pro-
cess and, using results from the spectral theory of linear
Markov operators due to Lasota and Mackey [10], we de-
rived conditions under which the network converges to a
unique limiting density on the space of membrane poten-
tials (asymptotic stability). The limiting density was also
shown to be a differentiable function of the parameters of
the network including the connection weights and decay
rates.

However, additive noise does not take into account
sources of noise intrinsic to the neuron. The most
significant of these is synaptic noise arising from random
fluctuations in the number of packets or quanta of chemi-
cal transmitters released into the synaptic cleft on arrival
of an action potential [11]. Such (multiplicative) noise
can be incorporated into binary networks by taking the
connection weights to be independently updated at every
time step according to fixed probability distributions
[12,13,2]. That is, the connection weight at a given
synapse and time ¢ is decomposed as w(#)=gyeu(t),
where Iqol is related to the amount of transmitter in a
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single packet (vesicle), the sign of g, indicates whether or
not the synapse is excitatory or inhibitory, € is the fixed
postsynaptic efficacy (indicating the efficiency with which
chemicals bind to receptors in the postsynaptic cell mem-
brane), and u(t) is a random variable representing the
number of packets released at time ¢. If an action poten-
tial arrives at the synapse time ¢, then u (¢)=u, where u is
generated from a fixed distribution p; otherwise, u (¢)=0.
The distribution p is realistically described by a binomial
of size L, where L is the maximum number of vesicles
released with L =1-10 for the central nervous system
[14]. Recent evidence [15] suggests that the case L =1,
the so-called one-vesicle model, may occur in certain
cortical neurons.

One consequence of the quantal nature of synaptic
transmission is that each random weight only has a finite
number of possible values (assuming that p is binomial
rather than Poisson, say). If this is combined with the
fact that the number of output states of a binary network
is itself finite, then it follows that the stochastic dynamics
of a time-summating binary network with synaptic noise
(and fixed external inputs) is described by a random
iterated function system (IFS) on the space of membrane
potentials /M CR”Y, where N is the number of neurons. A
random IFS [16] consists of a finite set of continuous
maps acting on some metric space and a corresponding
set of probabilities for choosing one such map per itera-
tion. In the case of the above network model, we can
take the metric space to be /Ml with the Euclidean metric.
Each map is affine and is associated with particular
configurations of weights and output states, giving a total
of (L +1)¢W™ maps, where C(N) is the number of
weights in the network. [C(N)=N(N —1) for a fully
connected network.] Moreover, the maps are contracting
(since ¥ <1) and the underlying IFS is said to be hyper-
bolic [16]. The probability of choosing any map at a
given time step is generally state dependent, i.e., it is a
function of the current values of the network’s membrane
potentials. The above picture is essentially unaltered if
the less biologically significant source of intrinsic noise,
threshold noise, is included as well.

In this paper we analyze the asymptotic behavior of
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time-summating networks in the presence of synaptic
(and threshold) noise using results from the theory of hy-
perbolic random IFS’s [16—19]. We begin by construct-
ing the model in Sec. II and showing how quantum
synaptic noise leads to the underlying structure of ran-
dom IFS’s. We investigate the limiting behavior of the
model in Sec. III following the statistical approach of
Norman [19], who carried out a detailed study of IFS’s,
under the name of distance diminishing models, within
the context of mathematical psychology. One of the in-
teresting features of a random IFS is that if the stochastic
dynamics, which is described by a Markov process, is er-
godic, then the asymptotic behavior of the system is often
characterized by a unique invariant measure with a
fractal-like structure. This fact underlies more recent in-
terest in IFS’s, which has been concerned with the gen-
eration of fractal images and their application to data
compression [20,21]. It also indicates a major difference
between the behavior of networks with synaptic noise, as
presented here, and networks with additive noise dis-
cussed in Ref. [1]. For the invariant measures of the
latter are smooth and allow probability densities on the
space of membrane potentials to be defined. This is often
no longer possible in the case of synaptic noise. We illus-
trate the fractal-like nature of the invariant measures in
Sec. IV by considering a stochastic version of the
Nagumo-Sato model of a single neuron [22]. It turns out
that the invariant measure of the resulting IFS belongs to
a class of measures studied originally by Erdos [23]. (It is
interesting to note that the same IFS has recently arisen
in a formulation of associative reinforcement learning in
neural networks [24], as well as in a model of stochasti-
cally forced oscillators [25]. A review of IFS’s and their
diverse applications is presented in Ref. [26].) We also
consider the effects of synaptic and threshold noise on the
response characteristics of the neuron. Finally, in Sec. V
we briefly discuss the issue of learning in neural networks
with synaptic noise.

II. TIME-SUMMATING NETWORKS
WITH SYNAPTIC NOISE

We define a network of N time-summating neurons
with synaptic noise as follows [2].

(a) Time is discretized in terms of the smallest unit of
time 7, taken to be equal to the absolute refractory
period. (For simplicity we set 7=1.)

(b) The output of the ith neuron at time m is denoted
by a;(m), with a;(m)=1 if the neuron fires an action po-
tential and a,(m)=0 otherwise. The output state of the
network is specified by the vector a=(a,...,ay).

(c) The arrival of an action potential from the jth neu-
ron causes the release of u,; packets of transmitter chemi-
cal into synapse (ij). The efficiency with which these
transmitters bind to receptors on the postsynaptic mem-
brane is given by the postsynaptic efficacy €;;. The size of
a single packet or vesicle is denoted by g;;, with positive
and negative values of g;; corresponding, respectively, to
excitatory and inhibitory inputs. More precisely, g;; indi-
cates the change in the membrane potential of the ith
neuron induced by the release of a single vesicle when
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€;=1. (The synaptic delay between the arrival of an ac-
tion potential and the resulting change in the membrane
potential is taken to be a single time step.) The stochastic
nature of synaptic transmission is incorporated by taking
each u;; to be independently generated from a fixed prob-
ability distribution [12,13]. Following Ref. [14], we shall
take this distribution to be a binomial of size L (where,
for simplicity, L is assumed to be synapse independent).

(d) The membrane potential V; of the ith neuron
evolves according to the equation

Vim)=y,V.im—1)+ 3 w;;(m—1)a

i (m—1)+1, ,
Jj(Fi)

J

2.1

where I, is a fixed external input and y; <1 is a decay fac-
tor. The connection weights in Eq. (2.1) satisfy

w,J(m):queuu,j(m) . 2.2)

The random variable u;;(m) is equal to the number of
vesicles released at the discrete time m. If a;(m)=0, then
u;;(m)=0, whereas if a;(m)=1, then u;;(m) is generated
by a binomial distribution. Hence, for a given output
a;j(m)=a, the conditional probability that u;(m)=u is
given by

P,-j(u|a)=Prob(u,-j(m)=u |aj(m)=a)

L
=a | |M(1—A)F “+(1—a)s,, u<L 2.3)

u

where A;; are constant parameters.
(e) A neuron fires whenever its membrane potential V;

exceeds a threshold 4;,

a;(m)=06(V,(m)—h,(m)) , (2.4)

where each h;(m) is an independent random variable gen-
erated from a fixed probability density p;. In the pres-
ence of such threshold noise, the probability of the jth
neuron firing when its membrane potential is equal to V;
is

(V)= [ dhp,(h)OV,—h;) . (2.5)

The above model can be interpreted as a discrete-time
version of a leaky-integrator network in which details of
quantal synaptic transmission have been included [2].
The major difference between a time-summating network
and a standard binary network is the presence of the de-
cay term ¥, ¥; in Eq. (2.1). This term represents, in ideal-
ized form, the persistence of cell activity over extended
time intervals, with the rate of decay y; being determined
by the electrical properties of the neuron, such as the
leakage capacitance and resistance. Time-summating
networks have been studied extensively elsewhere, both
from the viewpoint of network dynamics [1,3,4] and
temporal-sequence processing [5-9]. In particular, the
stochastic dynamics of a time-summating network with
additive noise and fixed weights and thresholds was stud-
ied in Ref. [1].

Extensions of the model are also possible, although we
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shall not consider these in any detail here. For example,
spontaneous emission of vesicles in the absence of an in-
coming action potential can be incorporated by replacing
the second term on the right-hand side of Eq. (2.1) with

S gj€;fui(m —1a;(m—1)
JFED

+uP(m—1D[1—a;(m —1]},

where both stimulated (st) and spontaneous (sp) processes
are generated according to binomial distributions so that
Eq. (2.3) becomes

L (A1
u |\

_ _ast\L—
P,-j(u|a)—a AT

L
+(1—a) u (kf}’)"(l-—?&?}’)’“ “

b

where A{; >>A{. Another extension takes into account
the fact that changes in the membrane potential V; in-
duced by a synaptic input from another neuron j depend
on the size of deviation of V; from some local, fixed rest-
ing potential S;;. These so-called shunting effects can be
incorporated into the time-summating model by multi-
plying the right-hand side of (2.1) by the exponential fac-
tor [2]

jim —1
*p|= 3 g

J (i) ij

Finally, some of the details of the geometrical structure
of neurons can be included by splitting each neuron into
a number of distinct compartments, each with its own lo-
cal membrane potential [2]. All of these features can be
accommodated within the analytical framework of IFS’s
presented below.

We now show how the dynamics of a time-summating
network with synaptic noise, as expressed by Eq. (2.1),
may be formulated as a random IFS on the space of mem-
brane potentials M CR”. (Since the dynamics is bound-
ed, we may take J to be a compact subset of R".) Associ-
ate with each synapse (ij) an integer u;; €(0,1,...,L)
and denote the set of such integers by

a={u Uy by j = S NiFEf) .

Introduce the index set

={ala€{0,...,L}M} |

where C(N) is the number of connections in the network.
[In the case of a fully connected network without self-
interactions, C(N)=N(N —1).] For each set a, define
an affine mapping F /M —J/M by

[Fo(V)]); =y, V;+ >
Jj (i)

€;q;u;+1; (2.6)
We identify a(m)€EQ as the event that u,;(m) vesicles are
released into synapse (ij), for i¥j, at the mth time step.
From Eqgs. (2.3) and (2.5), the probability of an event a,
for a given state V, is

®,(V)=Probla(m)=a|V]

= 3 P(ala)P(a|V) 2.7)
ae{0,1}V
where
P(ala)= [T Pylu;la)) (2.8)
i, jUi# )

is the probability that the event a occurs given the output
a, and

N —a
IR AN XA 2.9)

i=1

P(a|V)=

is the probability that the output of the network is a
given the state V. The distributions ®, satisfy ®,(V)=0
and ¥ ,cq®P(V)=1forall VEM.

The set {(F,,®,)|laEQ} determines a random IFS F
on the space of membrane potentials M, endowed with,
say, the Euclidean metric. That is, & consists of a finite,
indexed set of continuous mappings on some metric
space, together with a corresponding set of probabilities
for selecting one such map at random per iteration. It is
clear from the definitions of F, and ®, Eqgs. (2.6) and
(2.7), that the dynamical evolution of the membrane po-
tentials, as described by Eq. (2.1), corresponds to an orbit
of the IFS #. In other words, we may rewrite Eq. (2.1) as

where F,,, _,=F, with probability ®,[V(m —1)], so
that a particular trajectory of the dynamics is specified by
a particular sequence of events

{a(m)m=0,1,...la(m)EQ]},

together with the initial point V(0).

It is important to note that ¥ is in fact an hyperbolic
IFS (using Barnsley’s terminology [16]); the affine maps
F, of Eq. (2.6) are contraction mappings on /M, i.e., the
contraction ratio A, of F,, defined by

‘o |F(V)—F (V")
a” 3P V—v|

(assuming the Euclidean metric), satisfies A, <1 for all
a€ Q. This follows from the fact that the decay factors
in Eq. (2.6) satisfy y; <1 and A,=y =max;(y;). Then by
the contraction mapping theorem [16], there exists a
unique fixed point V* of F, such that
lim,, , ,(F,)™(V)=V® for all VEM. This may trivially
be seen from Eq. (2.6) with

ve= (I,+ Eq,] ,]]/(1 y:)
(1)
The fact that 7 is hyperbolic will allow us to apply a
number of known results concerning the limiting behav-
ior of random IFS’s in Sec. III.

Two features emerge from the formulation of the dy-
namics in terms of random IFS’s. First, the neurons cou-
ple dynamically through the probabilities ®, and not
through the mappings F, which are diagonal [see Eq
(2.6)]. Second, the welghts w;;(m), Eq. (2.2), decompose

(2.11)
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into the product of a fixed postsynaptic term €; and a
random presynaptic term u;;(m). These two factors enter
the IFS in different ways. The former parametrizes the
mappings F,, whereas the distribution of the latter con-
tributes to the probabilities ®,. An important question
is, where does learning take place? That is, do
modifications occur postsynaptically in terms of the
efficacies ¢;;, leading to changes in F,, or do they occur
presynaptically in terms of the parameters A;; of the dis-
tributions (2.3), leading to changes in ®,? (It is assumed
that the vesicle size g;; and the maximum possible num-
ber of vesicles L are not adaptive parameters.) We shall

consider the issue of learning in Sec. V.

III. ANALYSIS OF DYNAMICS USING IFS’S

In this section we apply some general results concern-
ing the properties of random hyperbolic IFS’s on com-
pact metric spaces to determine the limiting behavior of
the neural network model introduced in Sec. II. Consider
an ensemble of such networks describing different orbits
of the same IFS &, Eq. (2.10). The dynamics of this en-
semble may be formulated in terms of the time evolution
of probability distributions on the space of membrane po-
tentials M. Let pu,, (B) be the probability that an orbit of
the ensemble passes through the subset B C M at time m,
i.e., V(m)EB. More formally, let B(,M) be the Borel o
field of M [27,28] and P(M ) the space of probability mea-
sures on B(M). Then we have u,, EP(M) such that

p,, (B)= deum(V)ZProb[V(m)EB] , BEBUM) .
(3.1)

Note that, in contrast to the analysis of additive noise in
Ref. [1], we cannot assume that the measures pu,, are Le-
besgue and introduce smooth probability densities on J1
accordingly. For, as will be made clear below, there is
the possibility of fractal-like structures emerging.

The sequence of measures {u,, ]} describes a Markov
process. Introduce the time-independent transition prob-
ability #(V,B) that given V(m)=V at time m, then
V(m +1)E€B. This is equal to the probability of choos-
ing amap FE{F,,a€ Q] such that F(V)EB. Thus,

H(V,B)= 3 @, (V)xp(F,(V)), BEBM) (3.2)
aEN
where Y is the indicator function
1 f VEB
X8(V)= 10 otherwise . (3.3

Given an initial probability measure u,E?P(M), the fol-
lowing sequence of measures is induced by #:

= _ , 3.4
Lm(B) fmff(V,B Ydp,, (V) (3.42)
which, from Eq. (3.2) can be rewritten as
= Vv 3.4b
pn(B)= 3 fF_l(B) @ (Vdp,, (V) , (3.4b)

aE) a

where the inverse set
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F;YB)={VEM|F,V)EB] .

Hence, the long-term dynamics of a network of the en-
semble can be characterized by the asymptotic behavior
of the sequence of measures {u,,} generated according to
Eq. (3.4).

In the following we shall take ¥ to be an arbitrary hy-
perbolic random IFS on some metric space (M,d) and
summarize certain results concerning the limit of the se-
quence {u,,} (see also Refs. [24,26]). Note that the dy-
namics of an IFS is independent of the particular metric
d chosen; the introduction of a metric structure allows
certain mathematical results to be proven and is useful in
characterizing geometrical aspects of the system’s attrac-
tor. We begin by discussing the simplest case, that of an
IFS with probabilities ®,>0 which are independent of
the state variables V. (An explicit example of this will be
given in Sec. IV in terms of a single-neuron model.) Un-
der such a simplification, Eq. (3.4b) becomes

b (BY=K [t JB)= 3 o, ,[F;'(B)],
a€N

where K is a linear Markov operator on (/) [28]. That

is, K: PM)—-P(M) with (1) K[p]=0 and (i)

J 44K [p]1=1 for all uEP(M). Since the space M is a

compact metric space, it can be shown that P(M) is a

complete metric space with respect to the Hutchinson
metric dy defined by [29],

(3.5)

, U, VEP(M) ,

de,v):;lé%[fﬁdu*fmwdv

(3.6)
where
C={@M—R|p(V)—p(V')|[<d(V—V')
for all V,V'eM] .

Moreover, it turns out that since the mappings F, are
contracting with respect to d on J, the operator K is
contracting with respect to dy on P(M). (In the case of
the time-summating network of Sec. II, with d Euclidean,

dy[K(u),K(v)]<ydy(u,v)

for y =max;{y;}.) It can then be deduced from the con-
traction mapping theorem [16] that the limit of the se-
quence {u,,} is the unique fixed point u4 of K| i.e.,

Klus]=py, lim K™[ul=py for all uEP(M) .

(3.7

The fixed point ug is said to be the unique invariant mea-
sure of F and the dynamics is said to be asymptotically
stable.

An important property of uy, as proven originally by
Norman [19] and later independently by Elton [18], is
that for almost all event sequences {a(m),m=1,2, ...},
time averages are equal to space averages. In other
words,
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. 1 M-—1

Jim - mz=O f(V(m)) fmf(V)d,uy(V) (3.82)
for all continuous functions f: M —R and all initial con-
ditions V(0). Equation (3.8a) is a stronger condition than
that of ergodicity, since the latter simply states that the
two averages are equal for almost all initial conditions
with respect to the measure 4. An equivalent result is
that for almost all event sequences [18], the frequency
with which an orbit { V(m)} visits a subset B is u(B),

. R{(Vm)EB: 1=m=M]} _
lim =
M- w M

pAB), BEBM) .

(3.8b)

It is interesting to note that the support of ©y, which is
a closed invariant subset 4 4CJ, called the attractor of
%, can be generated by a purely deterministic process in-
dependently of the probabilities ®, [16]. Let F(M) be
the space of closed subsets of Jil. Then it can be shown
that this is a complete metric space with respect to the
Hausdorff metric d;, where [30]

d,(A,B)=max[d (A4,B),d,(B,A)], A,BEF(M)
(3.9a)

and
d,(A,B)= max min d(V,V’). (3.9b)

VeEA V'EB

Define the operator T on #(M) by

T(A)=F (AU --- UF,(4), A€HM), (3.10)
J

Do) (V)P (Fo (V) - -

Then Eq. (3.4) may be rewritten as

P = fmif""’(V,. )dpo(V) (3.12)

and the asymptotic behavior of # may be formulated in
terms of the sequence {#'™,m=1,2,...}. Such a se-
quence will be said to converge uniformly to some %, if
for any (Borel) subset B C M and any € > 0, there is an in-
teger M for which

H (V,BO)—e<H'"™(V,B)<H _(V,B)+e

for all m > M and VEM. Here B is the interior and B
the closure of B [27]. In particular, Norman distin-
guishes two important types of limit for the sequence
{#'™}. To describe these, it is useful to introduce some
extra notation. Let T,,(V) be the set of values that V(m)
has with probability greater than zero for a given
V(0)=V. Thus,

T, (V)={V'|H™(V,{V'])>0} . (3.13)

Next, define an absorbing state as one which satisfies
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where ¢ is the cardinality of the index set Q. [Recall that
g=(L +1)¢™ for the IFS of a time-summating neural
network.] It can be proven that if the F, are contrac-
tions on /M, then T is a contraction on #(M) [16] (with

d,[T(A), T(B)]<yd,(A4,B)

in the case of a time-summating neural network). Hence,
the contraction mapping theorem may be used to deduce
that 7 has a unique fixed point A5 such that
lim,, , ,T™ A)= A4 for all A E€F(M). The fixed point
A4 is also the attractor of the random IFS ¥ in the sense
that for every orbit {V(m),m=0,1,...} of &,
V(im)—> Agas m— .

A major reason why IFS’s have attracted interest re-
cently, within the context of image generation and data
compression [20,21], is that both the attractor 44 and
the invariant measure @4 typically have a rich fractal-like
structure. We shall illustrate this from the viewpoint of
neural-network dynamics in Sec. IV. However, it is first
necessary to see how the above picture extends to the
more general case of state-dependent probabilities. We
shall find that an extra nonergodic feature emerges—that
of an absorbing state.

We shall follow the approach of Norman [19], who
considered random IFS’s (distance-diminishing models),
in the context of mathematical learning theory. (Random
IFS’s with state-dependent probabilities have also been
discussed by Barnsley et al. [17] and by Elton [18].) To
proceed, introduce the m-step transition probability that
V(m)€E B given V(0), which has the explicit form

Pom)(Fam—1° "+ 0 F o) (VIXB(Fy(m)o =+ 0 Fypy(V)) .
(3.11)
l
T,(V)={V]}. In other words, once such a state is occu-

pied, it remains so with probability 1. Finally, set
d(A,B) to be the minimum distance between any two

subsets 4 and B of M,

d(A,B)= min d(V,V'). (3.14)
{VE 4,V'EB)
Norman has shown the following [19]:
(a) If a random hyperbolic IFS satisfies
lim d(T,(V),T,(V')=0 forall V,V'EM , (3.15)
then the sequence {7{("'),m =1,2,...} converges uni-

formly to # , such that # (V,.) is independent of the
initial state V. Thus, the sequence of measures
{#,,,m=0,1, ...} converges to a unique invariant mea-
sure g, where pg=%,(V,.) for any V. Moreover, ux
satisfies Eq. (3.8) so that time averages are equal to space
averages.

(b) Suppose that a random hyperbolic IFS has D >1
absorbing states U;,...,Up such that for any VEM
there exists some Uy, for which
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lim d(T,,(V),{U;y)})=0. (3.16)

m— o
Then the sequence of states {V(m),m=0,1,...} con-
verges with probability 1 to a random absorbing state
V. This means that

Prob{ lim V(m)=V_,V_€{U,,...

m—

,Upli=1.

(3.17)

Moreover, given an initial state V, Feim) converges uni-
formly to # , where, for any subset B,
D

HL(V,B)= 3 Fj(V)SUj(B). (3.18)

j=1
In Eq. (3.18), 6y is the pointlike measure defined by
J
SUJ(B)=1 if BOU; and O otherwise, and I';(V) is the

nonzero probability of arriving at the absorbing state U;
from V,

[;(V)=Prob{ lim V(m)=U,;| V(0)=V} . (3.19)

m-— oo
We end this section by relating the above results to the
dynamics of an ensemble of time-summating neural net-
works, expressed in the space of binary outputs {0,1}".
Let P,,(a) be the probability that the output of a network
at time m is a. Then P, (a) may be obtained from the
measure (,, by the projection

Pm(a)=fn}~’(a|V)dym(V) , (3.20)

where P(a|V) is defined by Eq. (2.9). Thus the sequence
of densities {u,,} on /1 induces, according to Eq. (3.20),
the sequence of probability distributions {P,,} on {0,1}".
Furthermore, if the dynamics of the underlying IFS F,
defined by Egs. (2.6) and (2.7), is ergodic [case (a)], then
the sequence {P,,} converges to a unique distribution Py
with

Pya)= lim P,(a)=[ P(a|V)duyV)

m— n

J

(3.21)

independently of the initial distribution. On the other
hand, if the dynamics is nonergodic or absorbing [case
(b)] and each network of the ensemble has the initial state
V(0) with probability 1, then

D
lim P,(a)= 3 T;(V(0))P(a|U)).

m-— =1

(3.22)

In the ergodic case, it can be shown that the invariant
distribution Py of Eq. (3.21) is generally a differentiable
function of parameters such as the decay rates y; and
external inputs I,. This follows from a theorem due to
Withers [31]: Suppose that the mappings F, and proba-
bilities ®, of an hyperbolic IFS F on a compact metric
space JI are smooth functions of VEM and a parameter
£. Also assume that the system converges to a unique in-
variant measure py (Both puy and its support 445 are
functions of £.) Then [31], for any smooth function f:
M —R the average

= fuf dp (3.23)
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is a differentiable function of the parameter §. In the par-
ticular case of our neural-network model, the theorem
holds for each P4(a), a€ {0,1}%, as a function of y,; and
I,, provided that P(a|V), Eq. (2.9), is a differentiable
function of V, i.e., the probability density p; associated
with threshold noise is differentiable. (Thus, one situa-
tion in which the result fails is the absence of threshold
noise.) We shall illustrate this in Sec. IV using a single-
neuron model.

Another feature of the ergodic case, which follows
from Egs. (3.8) and (3.21), is that time averages are in-
dependent of initial conditions and may be replaced by
ensemble averages over the limiting distribution Pg.
Thus, for any state variable X: {0,1 }N—>]R,

M—1
lim 2%: S Pya)X(a). (3.24)
M=o m=o ae{o, 1}V

In Ref. [1] we considered the behavior of a time-
summating network in the thermodynamic limit N — .
In particular, we derived dynamical mean-field equations
for a time-summating neural network with threshold
noise and fixed weights and external inputs. These
mean-field equations had periodic and chaotic solutions,
implying a breaking of asymptotic stability, as expressed
by Eq. (3.21), in the large-N limit. [Note, however, that
in Ref. [1] it was incorrectly assumed that threshold noise
was effectively equivalent to additive noise. In fact, the
former, like synaptic noise, is described by a stochastic
process involving a finite set of maps (IFS), whereas the
latter involves an infinite set (continuum) of maps. The
techniques used to study the two cases differ consider-
ably. Moreover, IFS’s are distinguished by the possibility
of fractal-like structures emerging.] The emergence of
complex behavior in the thermodynamic limit is well
known in the spin-glass approach to associative memory
in Hopfield-Little networks [32].

Finally, observe that, in general, the sequence {P,,} of
Eq. (3.20) does not evolve according to a Markov chain,
but is described by a non-Markovian process. This
reflects the fact that the membrane potential of a neuron
is a function of all previous inputs to that neuron [as may
be seen by iterating equation (2.1)]. An exception occurs
in the limit ¥, —0. To see this, set ¥; =0 in Egs. (2.6) and
(3.2) (so that F, is now V independent) and use equations
(3.4a), (2.7)=(2.9), and (3.20) to obtain the Markov chain

P,(b)= 0. P, _(a), (3.25)
a
where the transition matrix Q satisfies
Qu.= 3 [P(b|V(a))P(ala)],
et (3.26)
Vila)= 3, que€;+1; .
Jj (i)

Equation (3.26) may be rewritten in the more familiar
form [12,13]
N b, L 1—b;
Qu.= [T plila)'[1—p(ila)] ™, (3.27)
i=1

where
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L U L—u.. ©
plila)z= 3 I |, |Ma=2)" " [T pih)O [ 3 ayeyuya;+I—h; |dh; (3.28)
{u; SL,j#i}) [j (=0 ) *® j (i)

is the conditional probability of neuron i firing given the
output state a at the previous time step. In the absence
of synaptic noise, with u; =1, say, and if the density p; is
defined by

d 1

(h)=—— ,
pl( 1 dhl 1+e3h,

(3.29)

then Eq. (3.29) reduces to the firing probability of the Lit-
tle model [33]. For a detailed analysis of the stochastic
dynamics of the Little model, see Ref. [34].

IV. EXAMPLE: SINGLE-NEURON MODEL

To illustrate the analysis of Sec. III, we consider a sim-
ple example consisting of a single time-summating neuron
with inhibitory feedback. Thus,

Vim)=yV(m —1)
—wim—10[V(im—1)—h(m—1)]+I, 4.1)

where w(m)=gqgeu(m), q,€>0, and u(m) is the random
number of vesicles released at time m. For a given out-
put

a(m)=0[V(m)—h(m)]=a ,
u(m) is generated according to
P(ula)=Prob(u(m)=ula(m)=a)

=a| |A(1—-MF"*+(1-a)s,, u<L.

u

4.2)
The random threshold A (m) is generated from the densi-
ty (3.29) so that

Y(¥)=Probla=1|¥)=~ 1 .3)

+e BV
There are two possible interpretations of the inhibitory
feedback.

(a) An inhibitory interneuron mediates the feedback so
that whenever the excitatory neuron represented by Eq.
(4.1) fires, it excites the inhibitory neuron, which in turn
fires, leading to the excitatory neuron receiving a negative
feedback.

(b) The feedback represents the effects of the relative
refractory period [22]—the time interval, after the abso-
lute refractory period tg, over which a neuron is capable
of firing but its likelihood of firing is suppressed. Such a
phenomenon is often described (in continuous-time mod-
els) in terms of a time-dependent threshold «(At), where
At is the time after emission of an action potential. In
particular, k(At)=oc for 0 <At <tz and k(At) is con-
tinuous and monotonically decreasing for At > ;. An al-
ternative way of implementing such an effect is to assume

that a neuron receives a negative feedback a time 75 after
firing, which then decays due to leakage [2]. In Eq. (4.1),
this corresponds to the presence of the term

—wO[V(im—1)—h(m —1)]

with w fixed. [In contrast to case (a), the feedback does
not involve synaptic processing and, hence, w is not a
random variable.]

We shall use interpretation (a) in the following and as-
sume that synaptic noise is described by a one-vesicle
model [14], which corresponds to setting L=1 in Eq.
(4.2). Equation (4.1) then determines a random IFS ¥
consisting of the two maps Fy,F: [V,Vy]—[V,V,]
with associated probabilities ®,, P, where

Fo(V)=yV+I, ®(V)=1—Ap(V)
Fi(V)=yV—gqe+I, & (V)=Ap(V),
y<1, A<1 (44

and Vy=I/(1—y), Vi=(I—qe€)/(1—y) are the fixed
points of F, and F,. [For nonzero temperatures (T >0)
the membrane potential ¥ (m) converges to the interval
[V, V,] for all initial conditions ¥ (0).] The dynamics of
this system will be described for various parameter re-
gimes.

First, consider the high-temperature limit 7 — oo
(B—0) in which ¥(¥)—1 for all V. Without loss of gen-
erality, we set gée=1I and I=1—y, so that F,, ; are map-
pings on the unit interval [0,1] and Eq. (4.4) reduces to

FoV)=yV+1—y, ®&,=1—1/2,
F\(V)=yV, ®,=A/2.

4.5)

Since Eq. (4.5) describes an hyperbolic IFS ¥ with state-
independent probabilities, there exists a unique invariant
measure /Ly (see Sec. ITI). It is interesting to note that the
same IFS or, rather, family of IFS’s has arisen in a num-
ber of different contexts, including a learning rule for a
stochastic learning automaton [24] and a model of sto-
chastically forced oscillators [25]. Moreover, the invari-
ant measure ug in the case A=1 has been an object of
considerable mathematical interest for at least 50 years
[23]. Although many of its properties are still not very
well understood, its behavior as a function of y can be
characterized as follows [23,24,26].

(i) For ¥ <1 the support A5 of pg is a Cantor set
whose Hausdorff dimension is —log2/logy. In particu-
lar, for y =1/3 one obtains the middle thirds Cantor set
and pg is the uniform measure.

(ii) For ¥ = 1/2 the support of p4 is the whole unit in-
terval and for many values of ¥, u5 exhibits a rich fractal
structure. This is illustrated in Figs. 1(a)-1(c) for the
values
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(a)

Visiting
Frequency

(b)

Visiting
Frequency

Visiting
Frequency

FIG. 1. The invariant measure of the random IFS, Eq. (4.5),
is shown for A=1. The unit interval is partitioned into 2100
equal subintervals and the frequency histograms displayed for
different values of the decay rate y. (a) y=0.52; (b)
y=(V5-1)/2;(c) y=2"""4
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(a) y=0.52,
(b) y=(V'5—1)/2=0.618 ,

which is the inverse of the golden mean, and
(c) y=2"1%=0.841 .

For each value of y, a frequency histogram is plotted
displaying how often an orbit { V(m)} visits a particular
subinterval of [0,1]. The fact that such a histogram is a
reasonable approximation to the invariant measure py
follows from Eq. (3.8b). One feature that emerges from
Fig. 1 is that the measure becomes progressively smooth-
er as Yy —1. A formal way of characterizing the smooth-
ness, or lack thereof, of the measure uy is to compare it
with the Lebesgue measure m on the unit interval. (In-
tegration with respect to Lebesgue is equivalent to stan-
dard Riemann integration.) Thus, uy is said to be abso-
lutely continuous with respect to m if u4(B)=0 for every
Borel subset BEB([0,1]) for which m (B)=0. In this
case it is possible to define a density for py so that
p#B)= [ ;pdm. On the other hand, py is said to be mu-
tually singular with respect to m if there exist two dis-
joint Borel sets 4 and B such that (1) u4(C)=0 whenev-
er CNA=¢ and (2) m(C)=0 whenever CNB=¢ [27].
In this case a density p does not exist. It can be shown
[23] that uy satisfies one of these two properties for all
v €[0,1]. However, it is not known into which category
1 falls for particular values of ¥ except in special cases.
For example, y=(V'5—1)/2 is singular [Fig. 1(b)],
whereas y ="4/1 is absolutely continuous for n >2 [Fig.
1(c)]. (Similar behavior occurs when A <1. However, the
histograms are no longer symmetric about the point
V=1, but are weighted towards unity. This reflects the
fact that &,> d, when A < 1.)

In the presence of finite, nonzero temperatures 7, the
IFS of Eq. (4.4) has state-dependent probabilities and
satisfies Eq. (3.15). Hence, the limiting behavior of the
system is still characterized by a unique invariant mea-
sure [y Moreover, the measure exhibits fractal-like
structures similar to those described above. Differences
do occur, however, at zero temperatures (7’=0), i.e., in
the absence of threshold noise. For example, there are
changes in the interval over which the long-term dynam-
ics is confined as well as in the response characteristics of
the neuron. Moreover, absorbing states can occur.

Consider for the moment the deterministic case A=1,
T=0 (zero synaptic and threshold noise) in which Eq.
(4.1) describes the Nagumo-Sato model of a neuron [22].
Also assume that 0 <I <ge. The membrane potential V'
then converges to the interval [I —q€,I]C[V,,¥,] and
the dynamics is generated by a piecewise-linear map F,
F(V)=yV—qeO(V)+I (see Fig. 2). The typical limiting
behavior of the system is periodic. (For other values of I
the dynamics is trivial.) Moreover, the average firing rate
defined by

M
a= A}leﬁmzila(m), a(m)=6[V(m)] (4.6)

is independent of the initial state ¥ (0) and, as a function
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FIG. 2. Graph of the mappings F, and F, of Eq. (4.5).
Dashed rectangles indicate regions of convergence.

of the external input I, forms a complete devil’s staircase.
That is, @ is a continuous, monotonic function of I which
assumes rational values on nonempty intervals of I and is
irrational on a Cantor set of I [see Fig. 3(a)]. If @ is ra-
tional, @=p /g, then there is a periodic orbit of period ¢
that is globally attracting. On the other hand, when a is
irrational, there are no periodic points and the attractor
is a Cantor set [35,3].

If synaptic noise is now introduced (A <1, T=0), the
long-term dynamics is confined to the interval
[I —qge€, V,] assuming, as before, that 0<I <ge; N.B., for
V <0 the dynamics is generated by the map F, along
(Fig. 2). Although the dynamics is no longer periodic,
the steplike nature of the neuron’s response characteris-
tics tend to be preserved even for high values of synaptic
noise [Fig. 3(b)]. This should be contrasted with the
effect of threshold noise (T >0, A=1), which smooths the
response characteristics of the neuron [Fig. 3(c)]. This
feature may be understood by noting that Egs. (3.21) and
(3.24) imply that the average firing rate may be rewritten
as

a= [Y(V)dug ),

where the right-hand side of (4.7) is a differentiable func-
tion of the external input I provided that ¢ is a smooth
function of V, i.e., T >0.

Finally, note that if T=0 and I <0, then the fixed
point V=V, <0 is a unique absorbing state. This follows
from the fact that for all initial conditions, there exists an
integer M such that V(m)<0 for m >M and ®,(V)=0
whenever V <0.

4.7

V. DISCUSSION

In this paper we have formulated the stochastic dy-
namics of a time-summating binary network with quantal
synaptic noise in terms of a random IFS on the space of
membrane potentials. We have then used results from
the theory of IFS’s to determine the limiting behavior of
the network, which was illustrated by a simple example
of a single neuron with inhibitory feedback. In this final
section we discuss some of the implications of the above
for learning in neural networks.

As briefly mentioned at the end of Sec. II, there is a
significant difference between the dynamical role of
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FIG. 3. Response characteristics of a single neuron with in-
hibitory feedback. The average firing rate @ is plotted as a func-
tion of the external input I for various values of the decay rate ¥
and different sources of noise. (a) A=1.0, T=0 (zero noise); (b)
A=0.5, T=0.0 (synaptic noise); (c) A=1.0, T=0.04 (threshold
noise).
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presynaptic and postsynaptic contributions to the synap-
tic weight w(m)=gq,u (m)e. The presynaptic part is as-
sociated with the stochastic release of u(m) packets of
chemical transmitters according to a binomial distribu-
tion of the form (4.2). The postsynaptic part corresponds
to the efficiency with which transmitters bind to recep-
tors in the postsynaptic membrane and is characterized
by the efficacy €. The mean and variance of the random
weight w(m) are given by W=goeAL and
Aw =(gq€)*AL(1—A), respectively, where L is the (fixed)
maximum number of packets that can be released. Thus,
at each synapse there are (at least) two control parame-
ters € and A, with the latter controlling the local level of
noise. It is clear that if learning only involves presynap-
tic modifications in which A gradually increases from O to
1, for fixed €, then the noise generated by a single synapse
is small at the initial phase of the learning period, in-
creases to a maximum at A=1, as the learning proceeds,
and then decreases to zero at A=1 [36]. Such a mecha-
nism can enhance learning by preventing the system from
becoming trapped in local minima, as suggested original-
ly by Taylor [12]. (A more sophisticated way of control-
ling synaptic noise during learning has been proposed by
Hanson [37].) On the other hand, if learning is purely
postsynaptic, with € increasing for fixed A <1, then the
variance increases monotonically as learning proceeds.
The presence of residual noise after training can enhance
the generalization ability of a network [38].

Turning from the local synaptic description to a more
global IFS formulation of network dynamics, one can
consider learning in terms of the following inverse prob-
lem. First, not that for fixed threshold noise, decay fac-
tors v;, and external inputs I;, the set {(F,,®,)|la€Q]},
defined by Eqgs. (2.6) and (2.7), determines a family of ran-
dom IFS’s acting on /M, which is parametrized by the set
FZ{(E,»j,kij)|z',j=1, oG NLIFEG
We shall also assume that the dynamics is ergodic in the
sense of case (a) of Sec. III. [An alternative mode of net-
work operation is to work in nonergodic regimes, either
by allowing absorbing states or by taking the thermo-
dynamic limit, so that there is then a dependence on the
initial condition V(0).] The inverse problem is to find a
set I' such that the invariant measure p4 of the associated
IFS ¥ is “‘sufficiently close” to some desired measure la-
beled by the external input I. (More generally, learning is
concerned with matching invariant and desired measures
for a whole set of external inputs.) A number of com-
ments are in order.

(a) The inverse problem for IFS’s has attracted a great
deal of attention recently in the area of fast image genera-
tion, since the encoding of a pixel image in terms of a rel-
atively small number of IFS parameters could improve
greatly on standard methods of date compression [20].
One approach to the inverse problem, for state-
independent probabilities ®,, is based on the collage
theorem [16]: Let v be a probability measure on /1 and
suppose that the Markov operator K, defined in Eq. (3.5),
satisfies

dy(v,K[v])<e, (5.1

PAUL C. BRESSLOFF 45

where d; is the Hutchinson metric, Eq. (3.6). Then

dylugv)<e/(1—y), (5.2)
where py is the invariant measure and y =max;{y;]}.
Thus, the collage theorem implies that one can forget
about the invariant measure py and simply concentrate
on finding an IFS such that dy(v,K[v]) is minimized.
Such a search usually exploits the self-similarity of the
fractal structures inherent in typical IFS’s. It would be of
interest to see whether these techniques can be extended
to the neural-network context.

(b) In practice, one is interested in specifying a distri-
bution P on the space of binary outputs {0,1}N, rather
than a probability measure p on J/, with the two related
by the projection (3.20). Obviously, such a specification
does not determine the underlying measure uniquely.
This has certain similarities with the moment method for
the inverse problem [39]: to match a prescribed number
of moments x, , of the invariant measure 14 to those of a
target measure, where

Xiw= [ (ViVdugV) .

(c) One of the features of the IFS analysis is the intro-
duction of metric structures, e.g., the Euclidean metric
on the space of membrane potentials M and the corre-
sponding Hutchinson metric on the space of probability
measures P(M). An interesting issue is whether or not
this metric structure can be used to develop an informa-
tion theoretic approach to neural networks along lines
analogous to the geometric method of Amari [40]. Note,
however, that a major difference between the IFS formal-
ism and Amari’s formalism is that the presence of
fractal-like structures in the former prohibits the use of
standard differential geometry.

In conclusion, there are two major aspects of our work
that warrant further study. The first aspect is that the
discrete-tiime, leaky-integrator model considered in this
paper incorporates a number of biological features miss-
ing from standard models such as Hopfield [32]. These
include leaky-integrator effects reflecting the temporal as-
pects of the process by which neurons integrate their in-
puts, nonlinearities such as shunting effects, and details of
the stochastic and quantal nature of synaptic processing.
Furthermore, the various parameters of the model may
be identified directly with their biological counterparts,
e.g., postsynaptic efficacy and the mean and the variance
of vesicular release. On the other hand, the model is
sufficiently simple for mathematical analysis to be possi-
ble. Hence, it provides a useful framework for investigat-
ing the roles played in information processing by a wide
range of biological features. In the case of noise process-
es, we have shown that presynaptic and postsynaptic con-
tributions to the weights have different dynamical roles
and lead to differences in the behavior of the variance
during learning. Moreover, the response characteristics
of individual neurons appear to depend on the particular
source of noise present, i.e., synaptic or threshold. Other
features of the model, such as the role of leaky-integrator
effects in temporal signal processing, are considered else-
where [2,8,9].
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The second aspect of our work concerns the dynamics
of networks of coupled random maps. Such systems are
of interest for a number of reasons. First, as discussed
above, some of the techniques developed to solve the in-
verse problem for random IFS’s may be applicable to the
problem of learning in neural networks. Second, in the
deterministic limit the system reduces to a network of
coupled circle maps [3], which has recently been shown
to provide a useful tool to simulate the behavior of the
temporal correlation and decorrelation of the spiking of
groups of neurons [41]; such behavior has been suggested
as a possible mechanism for linking together features to
form a single coherent object—the binding problem [42].
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Furthermore, if some spatial structure is imposed on the
network, then we obtain an example of a coupled map
lattice that can display a wide range of cooperative phe-
nomena [43]. Therefore, the results of this paper may be
useful in understanding the effects of noise on such sys-
tems.

ACKNOWLEDGMENT

I would like to thank Jaroslav Stark of Hirst Research
Centre for introducing me to the family of IFS’s dis-
cussed in Sec. IV.

[1] P. C. Bressloff, Phys. Rev. A 44, (1991).

[2] P. C. Bressloff and J. G. Taylor, in Proceedings of the In-
ternational Neural Network Conference, Paris, 1990
(Kluwer Academic, 1990), p. 1009; Neural Networks 4,
789 (1991).

[3] P. C. Bressloff and J. Stark, Phys. Lett. A 150, 187 (1990).

[4] K. Aihara, T. Takabe, and M. Toyoda, Phys. Lett. A 144,
333 (1990).

[5] M. L. Jordan (unpublished).

[6] W. S. Stornetta, T. Hogg, and B. A. Huberman, in Neural
Information Processing Systems, edited by D. Anderson
(MIT Press, Boston, 1987).

[7] M. C. Mozer, Complex Systems 3, 349 (1987).

[8]J. G. Taylor and M. Reiss, Neural Networks 4, 773
(1991); J. G. Taylor, Int. J. Neural Syst. 2, 47 (1991).

[9] P. C. Bressloff and J. G. Taylor, J. Phys. A 25, 833 (1992).
[10] A. Lasota and M. C. Mackey, Physica D 28, 143 (1987).
[11] B. Katz, The Release of Neural Transmitter Substance

(Liverpool University, Liverpool, England, 1969).

[12]J. G. Taylor, J. Theor. Biol. 36, 513 (1972); G. L. Shaw
and R. Vasudevan, Math. Biosci. 21, 207 (1974).

[13] P. C. Bressloff, in New Developments in Neural Computing,
edited by J. G. Taylor and C. L. T. Mannion (Adam
Hilger, Bristol, England, 1989); P. C. Bressloff and J. G.
Taylor, Phys. Rev. A 41, 1126 (1990).

[14] H. Korn and D. S. Faber, in Synaptic Functions, edited by
W. M. Edelman, W. Gall, and W. M. Cowan (Wiley, New
York, 1987), p. 57.

[15] P. J. Harrison, J. J. B. Jack, and D. M. Kullman, J. Phy-
siol. (London) 412, 43 (1989).

[16]M. F. Barnsely, Fractals Everywhere (Academic, New
York, 1988); M. F. Barnsley and S. Demko, Proc. R. Soc.
London, Ser. A 399, 243 (1985).

[17] M. F. Barnsley, S. Demko, J. Elton, and J. S. Geronimo,
Ann. Inst. Henri Poincaré 24, 3 (1988).

[18] J. H. Elton, Ergod. Th. Dynam. Syst. 7, 481 (1987).

[19] M. F. Norman, J. Math. Psychology 5, 61 (1968).

[20] M. F. Barnsley and A. D. Sloan, Byte 13, 215 (1988).

[21]J. Stark, IEEE Trans. Neural Networks 2, 156 (1991);
Neural Networks 4, 679 (1991).

[22]J. Nagumo and S. Sato, Kybernetik 10, 155 (1972).

[23] P. Erdos, Am. J. Math. 61, 974 (1939); 62, 180 (1940).

[24] P. C. Bressloff and J. Stark, in Fractals and Chaos, edited
by A. J. Crilly, H. Jones, and R. A. Earnshaw (Springer-
Verlag, New York, 1991), p. 145.

[25] A. J. Irwin, S. J. Fraser, and R. Kapral, Phys. Rev. Lett.
64, 2343 (1990); J. Stark, ibid. 65, 3357 (1990).

[26] J. Stark and P. C. Bressloff, in Proceedings of the IMA
conference on Wavelets, Fractals and Fourier Transforms
(Springer-Verlag, Berlin, 1992).

[27] W. Rudin, Real and Complex Analysis (McGraw-Hill,
New York, 1987).

[28] A. Lasota and M. C. Mackey, Probabilistic and Deter-
ministic Systems (Cambridge University Press, Cambridge,
1985).

[29] J. Hutchinson, Indiana U. J. Math. 30, 713 (1981).

[30] K. J. Falconer, The Geometry of Fractal Sets (Cambridge
University Press, Cambridge, 1985).

[31] W. D. Withers, Physica D 28, 206 (1987); Ergod. Th.
Dynam. Syst. 10, 599 (1990).

(32] D. J. Amit, Modeling Brain Function (Cambridge Univer-
sity Press, Cambridge, 1989).

[33] W. A. Little, Math. Biosci. 19, 101 (1974).

[34] P. Peretto, Biol. Cybern. 50, 51 (1984); J. W. Clark, Phys.

Rep. 158, 91 (1988).

]J. P. Keener, Trans. Am. Math. Soc. 261, 589 (1980).

] P. C. Bressloff and J. G. Taylor (unpublished).

]1S.J. Hanson, Physica D 42, 265 (1990).

] D. Hansel and H. Sompolinsky, Europhys. Lett. 11, 687

(1990); G. Gyorgi, Phys. Rev. Lett. 64, 2957 (1990).

[39]E. R. Vrscay and C. J. Roehring, in Computers and
Mathematics, edited by E. Kaltofen and S. M. Watt
(Springer-Verlag, Berlin, 1989), p. 250; C. R. Handy and
G. Mantica, Physica D 43, 17 (1990).

[40] S-I. Amari, Neural Networks 4, 443 (1991).

[41] M. Bauer and W. Martienssen, Network 2, 345 (1991).

[42] C. M. Gray, P. Koenig, A. K. Engel, and W. Singer, Na-
ture 338, 334 (1989); R. Eckhorn, R. Bauer, W. Jordan, M.
Borsch, W. Kruse, M. Munk, and H. J. Reitbock, Biol.
Cybern. 60, 121 (1988).

[43] K. Kaneko, Physica D 41, 137 (1990).



