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Excitation of solitons by an external resonant wave with a slowly varying phase velocity
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A mechanism is proposed for the excitation of solitons in nonlinear dispersive media. The mechanism

employs an external pumping wave with a varying phase velocity, which provides a continuous resonant
excitation of a nonlinear wave in the medium. Two different schemes of a continuous resonant growth
(continuous phase locking) of the induced nonlinear wave are suggested. The first of them requires a
definite time dependence of the pumping-wave phase velocity and is relatively sensitive to the initial
wave phase. The second employs the dynamic autoresonance effect and is insensitive to the exact time
dependence of the pumping-wave phase velocity. It is demonstrated analytically and numerically, for a
particular example of a driven Korteweg —de Vries (KdV) equation with periodic boundary conditions,
that as the nonlinear wave grows, it transforms into a soliton, which continues growing and accelerating
adiabatically. A fully nonlinear perturbation theory is developed for the driven KdV equation to follow

the growing wave into the strongly nonlinear regime and describe the soliton formation.

PACS number(s): 03.40.Kf, 52.35.Mw, 47.35.+ i

I. INTRODUCTION

Consider a medium that admits propagation of soli-
tons. The question that we are going to address in this
work is the following: is it possible to use an external
driver for an efficient, selective excitation of solitons in
such a medium? Mathematically, a driver means a per-
turbation term in a "soliton equation. " Genera11y, such a
term must be small enough in order not to "deform" the
soliton solution too much. On the other hand, we need
an efficient excitation. We are going to show that this
aim can be achieved if the driver presents a small-
amplitude pumping wave, which resonantly acts on a
medium.

Various schemes of resonant excitation of waves by
external pumping waves have been extensively studied in
numerous applications. The plasma wave excitation by
two copropagating laser waves, whose frequency and
wave-number differences match the frequency and the
wave number of the plasma wave (the so-called beat-
plasma-wave excitation) presents an important example
of such a process. For this particular case, Rosenbluth
and Liu [l] showed that the resonant growth is saturated
at a relatively small amplitude, which scales like e' (e is
a small parameter characterizing the laser drive). The
saturation occurs as the excitation enters the weakly non-
linear stage, and it results from dephasing between the
pumping and excited waves. This result was generalized

by Vainberg, Meerson, and Sasorov [2], who considered
resonant excitation of waves from a low (even zero) level
for four other typical driven nonlinear wave equations
[Korteweg de Vries —(KdV), modified KdV, sine-Gordon
and nonlinear Schrodinger equations]. They showed that
the resonance is generally achieved, when the frequency

and wave number of the pumping wave satisfy the disper-
sion relation of the linear waves of the medium. Also,
they found that in all the cases considered, the evolution
equations for the amplitude and phase of the fundamental
mode are of the Rosenbluth-Liu type.

In order to go beyond the weakly nonlinear saturation
of the induced wave, one has to find a way of continuous
energy transfer from the pumping to excited wave, which
would continue into the fully nonlinear stage. It can be
achieved, if the driving force has a character of noise
with a sufficiently broad power spectrum density. It was
shown [3] that in this case the wave growth continues (on
the average), and can lead to the soliton formation, as
new harmonics of the broadband noise driving wave enter
the resonance interaction. However, the efficiency of this
statistical mechanism is relatively low.

A more efficient excitation can be achieved if we prop-
erly "tailor" with time the pumping wave frequency, i.e.,
employ a "chirped" pumping pulse. The chirp form
should be chosen to make up for the nonlinear frequency
shift of the excited wave and preserve the phase locking
between the waves. There are two possible schemes of
such a chirping.

In the first of them, we are "tuned" to specific initial
conditions (initial amplitude of the excited wave and ini-
tial relative phase between the pumping and excited
waves) and require that an exact resonance is preserved
forever. This condition gives a concrete formula for the
time dependence of the frequency. Such a scheme (which
can be called "the rigid frequency chirping" ) presents a
space-time generalization of many schemes encountered
in charged-particle accelerators (see, e.g., Ref. [4]).

The second scheme employs a sufficiently slow frequen-

cy chirping with an arbitrary form ("the loose frequency
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chirping"), proceeding in the right direction and compen-
sating for the nonlinear frequency shift on the average.
This scheme also generalizes a number of schemes, en-
countered in charged-particle acceleration schemes [5-7]
and other applications [8,9], where it was called the dy-
namic autoresonance.

Once the continuous phase locking is achieved, the in-
duced wave will grow into a strongly nonlinear stage. We
are interested in the cases when nonlinear media admit
existence of solitons. Whether solitons develop may de-
pend on additional constraints imposed on the system.
We shall consider a driven KdV equation in a system
with periodic boundary conditions (for example, a ring
resonator). The periodicity plays an important role in the
present mechanism of the soliton formation because of
two additional integrals of motion [3] (see below). Our
aim is to show, both analytically and numerically, that
the continuous nonlinear growth of the phase-locked in-
duced wave in such a system necessarily leads to the soli-
ton formation.

The organization of the paper is the following. In Sec.
II we present a perturbation theory, which describes the
continuous growth of a weakly nonlinear wave due to the
frequency chirping and generalize the results of Vainberg,
Meerson, and Sasorov [2]. The evolution equations for
the amplitude and phase of the fundamental, obtained in
Sec. II, are used to present the two above-mentioned
chirping schemes, rigid and loose. The continuous wave
growth predicted by the weakly nonlinear theory necessi-
tates the development of an adequate, fully nonlinear per-
turbation theory. In Sec. III we develop such a theory,
which is then used in Sec. IV to follow the excited wave
into the strongly nonlinear stage and describe the soliton
formation. In Sec. V we perform direct numerical simu-
lations with the driven KdV equation and compare the
numerical results with the theory. Section VI presents a
brief summary of the results.

II. WEAKLY NONLINEAR THEORY
AND TWO SCHEMES OF A CONTINUOUS WAVE

GROWTH

u (x, t ) =a(t )sin[)+(((t )]+u(g, a, P)

+w(g, a, P)+ ", (2)

where a (t ) and P( t ) are the slowly varying amplitude and
phase of the fundamental, g=kx 4(t—) is the "fast"
variable, v and w are the second and third harmonics, re-
spectively, w « U «a. We substitute Eq. (2) into Eq. (1),
keep only the terms of a leading order and find equations
for a and P from the condition of the absence of the secu-
lar growth of the third harmonic:

a = —icos/,
2

/=co(t )+k — +—sing .
24k a

(3)

(4)

Once a(t) and P(t) are known, the second harmonic
correction v is also easily found:

We are interested in the wave excitation from a small
initial level, u(x, t =0)«1. Therefore, at the initial
stage, we can neglect the nonlinear term in Eq. (1). The
dispersion relation for undriven (a=0) linear perturba-
tions of the media has the form of Q = —~, where Q and
~ are the frequency and wave number of the sinusoidal
perturbations. If, for a given wave number ~ of the exter-
nal wave the initial value of the driving frequency co(0) is
close to the resonant value —~, the resonant growth of
the induced sinusoidal wave starts [2]. In the case of
co=const the wave growth saturates at relatively small
wave amplitudes, u (& 1. Therefore the nonlinear term in
Eq. (1) can be treated perturbatively for all times, and the
fundamental mode saturation is accompanied by genera-
tion of the (relatively small) second harmonic, while the
higher harmonics are negligible [2]. In the case of a con-
tinuous wave growth we are interested in now, such a
weakly nonlinear theory can work only for a limited time.
However, it is instructive to briefly outline the initial,
small-amplitude stage of the excitation.

Following Ref. [2], we are looking for an approximate,
weakly nonlinear solution of Eq. (1) in the following
form:

A. Basic equations U(g, a, p)=—
2

cos(2(+2/) .
1 a

(5)

Consider the KdV equation driven by a small-
amplitude traveling wave with a slowly time-dependent
(chirped) frequency:

u, +uu„+u„„=—esin[kx 4(t)], —

where 4( t ) is the external wave phase, &0( t ) =co( t ) is the
frequency, and k is the wave number. The small positive
parameter e describes a weak coupling between the exter-
nal wave and the medium. Equation (1) is written in the
reference frame, moving with the "acoustic" speed of the
medium [10,11].

The number of parameters in Eq. (1) can be reduced, if
we transform to a new variable kx =x'. The transformed
equation coincides with Eq. (1) (but with k =1), if we re-
place k t ~t, k u ~u, and k e~e. We shall use this
scaling later, when comparing the results of our theory
with numerical simulations.

T„[=e 2' 3 ' F(7r/15')=22. 2e

where F is the elliptic integral of the first kind.

(6)

Equations (3) and (4) will coincide with those found in
Ref. [2] if we consider the case of a constant frequency
co= —k3. In this case Eqs. (3) and (4) are autonomous,
therefore integrable. Figure 1 shows the phase trajec-
tories of Eqs. (3) and (4) for the case of k =1, E=O 1, and.
co= —k = —1. Both phase-locked and phase-unlocked
trajectories are shown. (It is convenient to work with
both the positive and the negative amplitudes. ) There is a
special limiting trajectory (starting at a =0, /=0), for
which a =(96kesing)'~3, therefore the maximum attain-
able amplitude of the fundamental is (96k@)' . For this
special trajectory, the time T„j it takes the amplitude a to
complete one oscillation cycle ("nonlinear period") is [2]
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Taking the time derivative of Eq. (8) and using Eqs. (8)
and (9) to eliminate 5$ and d(5$)/dt, we arrive at the fol-

lowing second-order equation:

d (5a)
&

d(5a)e[a—o(t)] 'cosP, eb(t—)sing„5a=0.dt' dt

-4
-3.2 -1.6 0.0 1.6 3.2

PHASE

FIG. 1. Phase portrait (P,a) of system of equations (3) and (4)
for a=0. 1, k =1, and co=const= —1.

Now let us return to the case of a time-dependent fre-
quency co(t) and consider the two schemes of continuous
excitation.

B. Rigid frequency chirping

Let us select a "seed" wave with a fixed initial ampli-
tude a, and phase P„and require that the phase remains
constant: P(t)=P, . This immediately follows a linear
growth of a with time:

(ta)= (ato)= „act cosP, .—

(For the growth to occur it is necessary that cosP, &0.)
Now, from Eq. (4) we easily find the specific co(t ) depen-
dence which provides the constancy of P and linear
growth of a:

op(t)= —k + (a, et cosP,—)
1

24k
—e sing, (a, et cosP,)—

It follows from Eqs. (10) and (11) that the sufficient condi-
tion for stability is sing, )0 (remember that cosP, &0).
In this case Eq. (11) describes a linear oscillator with a
time-dependent oscillation frequency and dissipation. In
the course of time, small oscillations of the amplitude a
around the linearly growing solution ao(t ) will be
damped. Therefore, if the test wave phase P, satisfies
simultaneously the two inequalities, cosP„&0 and

sing, )0 (i.e., if m. /2&/, &~), the excitation process is

always stable: not only the "seed" wave, but also its close
neighbors on the phase plane (P, a) are excited. Numeri-
cal calculations enable us to reinforce this statement:
even relatively distant neighbors (whose initial phases Po
belong to the same interval m. /2 & Pp & 77) get phase
locked and excited to large amplitudes. Figure 2 shows
two examples of such a process. Here a rigid frequency
chirping prescribed by specific initial conditions provides
an efficient excitation for other initial conditions as well.
It is seen that the wave phase quickly gets phase locked
close to P„and then performs small oscillations around

P, . Meanwhile, the wave amplitudes in the two examples
grow almost linearly with time, and the two plots of the
wave amplitudes versus time are almost indistinguishable.
In addition, we found that, in many cases, "seed" wave
phases lying outside the favorable interval ~/2&/, &m.

also provide an efficient excitation. In these cases, the
phase P quickly jumps to a regime of oscillations around
some value belonging to the favorable interval. Simul-

taneously, the wave amplitude is growing on the average
(see Fig. 3).

As ao(t) becomes of the order of unity, Eqs. (3) and (4)

are no longer valid, and we need a fully nonlinear theory
to describe the subsequent wave evolution.

It is clear from Eq. (7) that the rigid chirping scheme is
sensitive to the initial phase and amplitude of the wave.
Therefore it is interesting to find out whether it works
when there are small deviations of the initial amplitude
and phase from the prescribed values a and P~. We are
looking for solutions of Eqs. (3) and (4) in the form of

(t )a= (ta)0+5 (t )aand P(t ) =P, +$5(t ), and linearizing
Eqs. (3) and (4) with respect to small deviations
5a(t) «ao(t) and 5$(t) «P, . We obtain the following
set of linear equations:

C. Loose frequency chirping

Let us assume now that we are starting from an exact
resonance, co(t =0)= —k, and select an arbitrary phase-
locked trajectory not too close to the limiting trajectory
(see Fig. 1). If we slowly increase the frequency cu(t ) (i.e.,
do it on a time scale much longer than the "nonlinear
period" T„&, encountered in the problem with co=const),
we shall permit the nonlinear oscillations of a, shown in
Fig. 1. In addition to these oscillations, however, the am-
plitude a will experience a slow upward drift. In other
words, the wave will grow on the average. The average
amplitude behavior at large times is universal for all the
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phase-locked trajectories and has the following form:

a =2(3k) ~2[ra(r )+k j
~ (12)

which follows from the dynamic autoresonance condition
co(t)+k —a /24k =0. This mechanism is obviously in-
sensitive to the exact form of co(t ) (once it is slow enough,
~T„,/ra ((1), and it must work equally well for the ma-

jority of initially phase-locked trajectories. For a given e,
some optimal chirping rate can always be found: too low
a chirping rate means inefficient excitation, while too
high one leads to the phase unlocking and termination of
the excitation. Figure 4 shows an example of excitation
in the loose chirping case. We put k =1, started with a
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FIG. 3. Rigid chirping scheme as described by the weakly
nonlinear equations (3) and (4). Shown are the amplitude a
(solid line) and phase P (dashed line) vs time. The "seed" wave
phase pe=4. 0 and initial phase $0=3.5 do not belong to the
"favorable" interval (~/2, m).
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small amplitude and chose a simple linear chirp
ra(t) = —I+at. It can be seen from Fig. 4 that, at large
times, the time-average amplitude grows like (24at )'~ in
agreement with Eq. (12). Calculations with other initial
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FIG. 2. Rigid chirping scheme as described by the weakly
nonlinear equations (3) and (4). Shown are the amplitude a(a)
and phase 4)(b) vs time. The parameters are the following:
a=0. 1, k=1, co(t) is given by Eq. (7) with a~ =0.1 and
Pe =2.5, which corresponds to the favorable interval (~/2, m. ).
The initial conditions are ao=ae, $0=2.0 (solid line) and 3.0
(dashed line). The amplitude plots for the two initial conditions
are indistinguishable.

TIME

FIG. 4. Loose chirping scheme as described by the weakly
nonlinear equations (3) and (4). Shown are the amplitude a
(solid line) and phase P (dashed line) vs time. Parameters are
the following: @=0.1, k=1, co(t)= —1+at, and a=0.005.
The initial conditions are ao =0. 1 and $0= 1.5.
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phases and other forms of co(t ) give similar results.
Therefore the wave excitation in this regime is insensitive
to the exact form of the chirp, and depends only on its
rate.

In summary, we have shown in this section that prop-
erly varying with time the external wave frequency, we
can achieve a continuous wave growth. As the wave
grows, it reaches large amplitudes. Therefore a weakly
nonlinear theory breaks down, and an adequate fully non-
linear theory must be developed.

III. FULLY NONLINEAR
PERTURBATION THEORY: EVOLUTION EQUATIONS

Our aim is to develop a perturbation theory for Eq. (1),
which would use the smallness of e, but hold true for any
amplitude of the excited nonlinear wave.

Let us start with an arbitrary traveling-wave solution
of the unperturbed KdV equation. Such a solution,
u(x, t) =u (g),g=x —Vt, satisfies the following equation:

—Vu +—,
' {u ) + u t&

=C =const . (13)

Its general bounded solution presents a "cnoidal" wave
[10,11],which we write down in the following form:

1/2

u (g)=A dn
12

(k —xo) +y (14)

(15)

[K=K(m) and E=E(m) are the complete elliptic in-
tegrals of the first and second kind, respectively], and by
its spatial period,

A, =4I( 3

A

1/2

(16)

Constant C in Eq. (13) is determined by the three in-

dependent constants and equal to

yC= —Vy+ —(1—m )
2 6

The modulus 0 & m & 1 of function dn serves as a measure
of the wave nonlinearity. If m «1, the wave form is
close to a cosine, while m approaching unity corresponds
to a sech -like soliton solution [10,11].

Now we return to the perturbed problem and look for
the solution to Eq. (1) in the form of a general (cnoidal)
traveling wave with slow1y Uarying parameters plus a
small correction:

where A is the wave amplitude, V=( A /3)(2 —m )+y is
the velocity of the wave, dn is the Jacobian elliptic
function [12] with the modulus m, and y is an arbitrary
constant ( a constant pedestal). Generally, solution (14) is
characterized by three independent constants: A, y, and
m. The cnoidal wave is characterized by its average-
over-period value,

u (x, t ) = A (t )dn (,)

A(t)
12

1/2

[g—x()(t )]

+y(t )+ g W'"'(x, t ) . (18)

a
( —VW'"'+ u'W'"'+ W'"') =H'"'

a g (19)

where functions H(")((,t) do not contain function W'"'.
For example, in the first order

H" '= —u —e sin kg+i J V(t')dt' —(P(t )
0

(20)

Integrating Eq. (19) once, we obtain

VW(n)+u(()) W(n)+ W(n) — H(n)dg~—Z/2+x,
{21)

The main, "adiabatic" part of the solution,
u (g, t)= A dn ( )+y, depends on the "fast" variable,
which now becomes

g=x —j V(t')dt
0

and the "slow" variable t. The small correction to the
slowly varying cnoidal wave is sought for perturbatively,
in the form of a power series of e. Once the form of the
solution is prescribed, we should obtain the evolution
equations for A(t), m(t), y(t), and xo(t). It appears,
however, that only two evolution equations are actually
needed, if our problem is spatially periodic. First, if
L =2m jk is the spatial period of the problem, then we
have to demand A, =L, which gives an additional algebra-
ic relation between the parameters A (t), m(t), and y(t).
Second, it can be easily checked that the average-over-
period value

Z/2—f u (x, t )dx
L

remains constant even in the presence of the perturbation
[3]. In particular, if we start excitation from the zero lev-

el, u(x, 0)=0, then the average-over-period value (16)
must be equal to zero for all times. Therefore we have
one more algebraic relation between the parameters.
These two relations reduce the number of parameters
characterizing the cnoidal wave to two, the first of them
xo(t) and the second any of the parameters A (t ), m (t ),
and y(t ). It is convenient to choose the modulus m (t) as
the second parameter, because in the case of continuous
wave growth, m approaches unity, which means the for-
mation of a soliton.

The evolution equations for m(t) and xo(t) in every
order of e can be obtained from the necessary conditions
of boundedness of the functions W'"'(x, t), which have
the form of orthogonality relations. (Similar perturbation
theories were developed earlier for single-soliton and
multisoliton solutions [13].) Substituting Eq. (18) into Eq.
(1), and linearizing the obtained equation with respect to
8'"', we obtain the following relationships in each order
of@:
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( For de5niteness, we consider Eq. (1) on interval

[ —L/2, L/2] and require that periodic functions W'"'

vanish at g= L—/2+xo. ) The homogeneous equation,
associated with Eq. (21), has the following general solu-
tion:

W'"'=C, u +C2u (u ) ~d(',—L /2+x0
(22)

where C& 2 are arbitrary constants. Therefore we can
write down the following general solution of Eq. (21):

0 0 0 0
(23)

Function u
&

takes the zero values at two points of the in-
terval [ L/2, —L/2]: g=xo and g=xo+L/2 or
xo L/2—. Therefore, as can be easily seen from Eq. (23),
boundedness of functions 8'"' necessitates C2 =0, and

f'" uPgf' H'"'dg'= f dgu H'"'=0 (24)—L/2 —L/2 —L/2

and

(25)

where we have shifted the variable, g —xo —+g, and used
the periodicity of function u& (from now on g means

g
—xo). Conditions (24) and (25) give, in each order of

the perturbation theory, the evolution equations for m
and xp we are looking for. In the following we obtain the
explicit form of these equations in the 6rst order of e.
Prior to that, however, let us simplify Eqs. (24) and (25).
Using Eqs. (18) and (20), we rewrite Eq. (24) as

H,"'=—u &xo e—cosp sink(, (29)

(u ) d(=CL=A L (2—m)—L/2 3K

contributes to the integrals entering Eq. (28). Therefore
Eq. (28) can be rewritten as

xp u u u 0 u

ec—os@f [u (g) —u (0)]sinkgdg . (30)—L/2

Now we have to calculate the integrals entering Eqs.
(26) and (30). The integral on the left-hand side of Eq.
(26) can be calculated with the help of Eq. (13). Integrat-
ing Eq. (13) over g and using the periodicity of u and the
fact that the average of u over the period is zero, we ar-
rive at the following expression:

—f -'(u')'d gBt —L/2

1 —m

6
(31)

ef —sin[kx(g) —4(t )]u (g)dg—L/2
T

eA sing f dn —v'A/12( coskgdg—L/2
(26)

where we have introduced the relative phase of the exter-
nal and excited waves:

p =k f V(t')dt' —4(t ) —kx, (t ) . (27)

Note that Eq. (26) can also be obtained by a direct "ener-
getic" approach. Indeed, if we multiply Eq. (1) by u, in-
tegrate both sides with respect, to x over the period L and
substitute the slowly evolving cnoidal wave solution into
the (small) right-hand side of the equation, we shall im-
mediately obtain Eq. (26).

Now let us integrate Eq. (25) by parts. We have

f u H"'dg —u (0)f H'"dg=0 .—L/2 —L/2
(28)

It is convenient to represent H'" as a sum of symmetric
and antisymmetric parts with respect to argument
H'"=H,"'+H,'". Using the symmetry and zero average
of function u and once again employing Eq. (24), we see
that only the antisymmetric part,

On the right-hand side of Eq. (26) appears a standard in-

tegral, which one encounters when expanding function
dn in the Fourier series:

f u (g)coskgdg= A f dn (&A/12$)coskgdg

2n. q&12A
K(1—

q )
(32)

where q =exp( mK'/K), K'=—K(1—m ). Now, taking
the time derivative of Eq. (31) and substituting the result
inta Eq. (26), we obtain, after some algebra, the evolution
equation for m(t ):

m= em. L mq sinp

24(1 q)EK(E —K)[K— E/(1 —m )]—(33)

u —u 0 sink d

= —&12/A m f sn /sin dg . (34)—K E

Now we proceed to Eq. (30). Taking the integrals on
the left-hand side and substituting the values of u (0)= A
and u ( L/2) = A(1 —m )—, we reduce the left-hand side
to xoA m /2. The right-hand side integral in Eq. (30)
can be rewritten as
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It is sufficient (see Sec. IV) to evaluate this integral, tak-
ing into account only the first two Fourier harmonics of
function sn . The result has the following form:

0 2 . 271f sn (sin K

4 2 22K
1 I+ 4mq 6( 4)

farm IC Q~(I —q4)
(35)

EI cosp, E 4s' g
12' 2m 2 It.

' g 2(1 q4)
(36)

Equations (33) and (36) form a closed set. It can be
checked that they are reduced to Eqs. (3) and (4) for the
fundamental Fourier harmonic of the cnoidal wave, if we
proceed to the limit of m &( 1 and substitute
)M

= p+ n—/2.
Once m(t) and p(t) [and therefore xo(t)] are found, we

can return, if necessary, to Eq. (23) and find the first-
order correction 8'" to the slowly evolving cnoidal
wave.

The equation for p, (t) is now directly obtained from Eqs.
(27), (30), (34), and (35):

)L), =kV(m ) co(—t)

linear theory. However, in contrast to calculations of
Sec. II C, we took k =2m /12. 5 (the value we are using in
the next section when numerically solving the driven
KdV equation). From the dimensional analysis following
Eq. (1), we know that we should replace e by e'=k e, a
by a'=k a, and multiply function u (and hence the am-
plitude of the fundamental, maxima and minima, pede-
stal, etc. ) by a factor k, if we want to return to the case
of k =1, but retain the same "physical" parameters. As
initial conditions we chose those of the "seed" wave it-
self, ao =a, and Po=((), . Figure 5 shows that even under
such an inexact chirping form, a significant wave ampli-
tude is reached, and parameter m approaches unity,
which means soliton formation. Later, phase unlocking
occurs, and the resonant growth terminates because of

IV. FULLY NONLINEAR
PERTURBATION THEORY: CONTINUOUS WAVE

GROWTH AND SOLITON FORMATION

Equations (33) and (36) resemble those arising in vari-
ous applications referring to nonlinear resonance phe-
nomena. It is clearly seen from Eqs. (33) and (36) that the
continuous wave growth (the increase of m with time) re-
quires phase locking and, therefore, proximity to the
Cherenkov-type resonance co =k V between the phase ve-
locities of the pump wave and induced wave. Similar to
the weakly nonlinear stage of excitation, there are two
possible schemes of the frequency chirping: rigid and
loose. A proper chirping makes it possible to phase lock
the waves and provide a continuous excitation into the
strongly nonlinear regime. As m approaches unity, the
cnoidal wave must transform into a soliton with a "pede-
stal":

I /2

0'
0

-50-

500

TIME

1000 1500

gs A sech
12

(x —xo) 4L '(3A )'— (37)

where 3 =3V=12L ln [16/(1 —m)]. (We have used
the well-known asymptotic relations for dn, E and K at
m ~ 1). The increase of m means simultaneous
amplification, acceleration, and narrowing of the non-
linear wave because of the specific relations between the
wave amplitude, phase velocity, and width in the KdV
equation.

Figure 5 shows the numerical solutions of Eqs. (33) and
(36) for the rigid frequency chirping. We found it too
cumbersome to prescribe the rigid chirping form from

Eqs. (33) and (36) and employed in Eqs. (33) and (36) the
simple formula (7), which followed from the weakly non-

-100
0 500

TIME
1000 1500

FIG. 5. Rigid chirping scheme as described by the fully non-

linear equations (33) and (36). a=0. 1, k=2m. /12. 5, co(t) is

given by Eq. (7) with a~ =0.01 and P~ =2.5. Shown in (a) are
the parameter m (thin line) and the wave maximum A +y, cal-
culated from m (thick line). (b) shows the phase p. The initial
conditions are ao =a ~, $0 =P~.
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the inexact rigid chirping form used. We checked sepa-
rately that the initial stage of the excitation is described
very well by the weakly nonlinear theory of Sec. III.
Note that as m grows, the term proportional to e in Eq.
(36) becomes very small, which justifies using only two
Fourier harmonics of function sn in the evaluation of in-
tegral (35).

Figure 6 refers to the case of a loose frequency chirp-
ing. Again, we chose a linear frequency chirping and
started from the exact resonance with the linear modes of
the medium: co(t) = k—+a't We. see from Fig. 6 that
the simple linear chirping provides a continuous phase
locking between the waves and a persistent growth of the
induced wave. Parameter m is growing, on the average,
and approaching unity, which means formation of a soli-
ton. At this stage, Eqs. (33) and (36) can be simplified.

Using asymptotic relations for the complete elliptic in-
tegrals at m ~1 and transforming from variable m to the
soliton amplitude A, we can write down the following
equations for the adiabatic evolution of the soliton pa-
rameters:

4&3H . „,2&3~' .
A = —e sinh ' —sinp,L~v'A L A

A
JM

—
CO

3

(38)

(39)

where we have neglected the small term, proportional to
e, in Eq. (39). Equation (38) can be further simplified if
the excitation continues to very large soliton amplitudes,
so that A &)12m. jL . In this case we have simply
A = —2esinp. Therefore, if phase p is locked in the in-
terval m&@&2m, the soliton amplitude grows linearly
with time, the growth rate being twice as large as the
growth rate of the fundamental in the initial stage of the
process [see Eq. (3)]. Simultaneously, the soliton is ac-
celerated: its velocity grows linearly with time. Equa-
tions (38) and (39) can also be obtained directly from Eq.
(1) in the framework of the soliton perturbation theory.

V. NUMERICAL SIMULATIONS

0'
0 500

TI HIE

1000 1500

In order to check the predictions of the theory,
developed in Secs. II-IV, and directly follow the soliton
formation, we solved Eq. (1) numerically. For this pur-
pose we developed a spectral code, described in the Ap-
pendix. Equation (1) has been solved on the interval—6.25 (x (6.25 (L =12.5 and k =2m/12. 5=0.50265).
In all runs we used @=3.209 X 10 which corresponds to

2.8

1.8-
~ ~ ~ 0 ~ ~ ~ ~ ~

0.8-

-2
-0.2

-3
0 500

Tl IN E

1000 1500 -1.2
0.0 2.5 5.0 7.5 10.0 12.

FIG. 6. Loose chirping scheme as described by the fully non-
linear equations (33) and (36) with e=0.1, k =2~/12. 5,
co(t)= —k +ak t, and a=0.01. Shown in (a) are the parame-
ter m (thin line) and the wave maximum A +@,calculated from
m (thick line). (b) shows the phase p. The initial conditions
correspond to the zero amplitude and phase po= —m. /2.

FIG. 7. Numerical solution of Eq. (1) for function u(x, t)
with the zero initial condition for two successive time moments:
t =70 and 1450. The parameters are the same as in Fig. 6. Also
shown is the soliton solution (37). The amplitude of the "fitting
soliton" has been calculated as the difFerence between the max-
imum and minimum of the numerical solution.
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x 20

1.0

0.0 '

0 400 800

TIME

1200 1600

shows function u (x ), found numerically, at two different
time moments: t =70, when the induced wave is almost
sinusoidal, and t =1450, where it is already almost indis-
tinguishable from the soliton solution (37) shown in the
same figure. The same simple chirping form
co(t)= —k +a't was used. Figure 8 refers to the same
case and shows the wave maximum versus time as found
from (a) numerical simulations, (b) fully nonlinear pertur-
bation theory, and (c) weakly nonlinear perturbation
theory. The latter was calculated taking into account the
second harmonic from Eq. (5). A good agreement be-
tween the fully nonlinear theory and simulation for all
times is clearly seen. Also, the weakly nonlinear theory
agrees very well with both the simulations, and fully non-
linear theory at the initial stage of the process.

Figure 9 refers to the rigid frequency chirping and
shows the wave rnaximurn versus time for the same chirp-
ing form and initial conditions as those used in Fig. 5.
Also shown is the wave maximum versus time, as predict-
ed by the fully nonlinear theory. The agreement is very
good. At the final stage of the excitation the wave form
is very close to the soliton (37) (we do not show the corre-
sponding figure, because it is very similar to Fig. 7).

FIG. 8. The wave maximum vs time in the loose chirping
scheme as found from (a) numerical simulations (solid line), (b)

fully nonlinear perturbation theory (solid line with dots), and (c)
weakly nonlinear perturbation theory (dash-dotted line). The

parameters and initial conditions are the same as in Figs. 6 and
7.

0
0 250 500 750 1000

TIME

@=0.1 in the dimensionless (k = 1) version of Eq. (1).
We performed simulations for both the rigid and loose

frequency chirping regimes, starting with the zero initial
condition. Figure 7 refers to the loose chirping and

VI. SUMMARY

We have shown analytically and numerically that a
proper variation (chirping) of the external wave frequen-
cy makes it possible to achieve a continuous growth of in-
duced nonlinear dispersive waves. Under the constraint
of a spatial periodicity, the growing wave transforms into
a soliton, which continues amplifying and accelerating.

We have proposed two excitation schemes, which we
call the rigid and loose frequency chirpings. The former
requires a definite chirping form, suitable to a given
"seed" wave. The latter admits an arbitrary (monoto-
nous) chirping form. The rigid chirping scheme can act
much faster than the loose chirping scheme. However, it
is generally more sensitive to the initial conditions: they
must belong to a relatively small vicinity of the given
"seed" wave. In contrast, the loose chirping regime re-
quires only that the initial conditions lie within the
phase-locking region of the relevant phase space and that
the frequency variation proceed in the right direction and
be sufficiently slow.

Both schemes have analogs in particle accelerators. It
is interesting that not only the soliton, but also a general
cnoidal wave behaves in this excitation process like a par-
ticle with a variable mass, accelerated via the (slowly
time-dependent) Cherenkov resonance with an external
wave.

In the present work, we limited ourselves to the partic-
ular case of a driven KdV equation. However, we expect
similar mechanisms of soliton excitation to act in other
soliton equations as well, which promises various applica-
tions.

FIG. 9. The wave maximum vs time in the rigid chirping
scheme as found from (a) numerical simulations (solid line with

dots) and (b) fully nonlinear perturbation theory (solid line).
The chirping form and initial conditions are the same as in Fig.
5.
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APPENDIX

For numerical solution of Eq. (1), we have developed a
code which is similar to the second-order split-step code
used earlier [14]. Equation (1) can be represented in the

spectral form:

aw,
at

—ik Wk =Fk ( Wk ) .

Here

+ oo

Wk =f exp( ik—x )u(x, t)dx

is the Fourier transform of u (x, t ), and

(A 1)

Fk ( Wk ) = —f — +e sin [kx 4( t )—] exp( ikx—)dx
+- 1au'

2 Bx

,'i—k&—k(Wk )+ —. [5(k —ko)exp[ —i4(t)]—5(k+ko)exp[+i@(t )]j,
1

(A2)

where
+00 2 +00

8„(W„)= exp( —tkx)u dx = W„W„„.dk' .

Equation (Al) has the following formal solution:

Wk(t+r) =exp[ ik (t+—r)]WI, (0)+f exp[ik (t+r t')]Fk( W—k(t'))dt',

where r is the chosen time step and Wk(0) is the initial condition. This equation can be rewritten as

Wk(t+r)=exp(ik r)Wk(t)+exp[ik (t+r)]f exp( ik t')Fk—(W&(t'))dt' .

(A3)

(A4)

To construct a numerical code based on the exact expression (A4), we expand the integral entering Eq. (A4} in terms of
the small parameter ~. It is convenient to use only those expansions of the integral which include even powers of ~, in
order to preserve the Hamiltonian properties of Eq. (1) in the numerical code.

Let us consider the following expression:

Wk(t —r)=exp( ik r)Wk(t)—+exp[ik (t —r)]f exp( ik t')Fk(—Wk(t')) .

Subtracting Eq. (A5) from Eq. (A4), we obtain after simple algebra

Wk(t+r) Wk(t r)—=2i sin—(k r) Wk(t }+Zk,
where

Zk = f [exp[ ik (t' r)]—Fk( Wk(—t'+t))+exp[ —ik (r—t')]Fk( Wk(t t'))]dt' . —

Now, expanding Fk in the vicinity of v=0,

(A5)

(A6)

(A7)

Fk( Wk(t+t') ) =Fk( Wt, (t ))+Fk( Wk(t ))t'+8(r )

and evaluating the first derivative as

Fk( Wk(t+r)) Fk( Wk(t —r—))
Fk +6(r )

27-

we obtain Zk in the following form:

Zk=2 Fk(Wk(t))+ik 1 — [Fk(Wk(t+r)) Fk(Wk(t r))]+—8(r ) .—sink r . 3 sin(k r)
(A8)

For brevity, we denote

Y„=W„ik 1 —sin(k—r F„(W„).
'7-

Then we obtain the following expression:

(A9)
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Yk(t+r) —Yk(t r—) =2i sin(k r) Yk(t)+2 3 Fk( Wk(t)) .
k ~

Now we can use relations (A9), (A10), and (A2) as a predictor-corrector code: the predictor is

Y„(t +r)= Yk(t —r)+2i sin(k r)Yk(t)
2 3

i— Ik8„(W„(t))—e[e ' '"6(k+k )—e+' '"5(k —k )]]+8(r ),
k ~

and the corrector is

sink r ~k( Wk(t+r))
Wq(t+r) — 1— =Yk(t+r) .

k ~

(A 10)

(A 1 1)

(A12)

We replace the Fourier transform by its discrete ver-
sion on the interval [ L /2—,L /2]. Then, assuming
periodic boundary conditions for Eq. (1) with the period
L, we can calculate the discrete version of convolution
(A3) by means of two successive fast Fourier transforms
(FFT's). For each time step, we have to calculate only
two FFT's for the predictor and two FFT's for the
corrector. We can use the following straightforward pro-
cedure:

(a) It is exactly conservative: the Jacobian of mapping
(A 1 1) equals unity.

(b) It is linearly stable for any value of the time step r
since its employs the exact solution of linearized Eq. (1).

(c) It requires only two iterations of the right-hand
side of (A6) for obtaining an accuracy 8(r ).

(d) It exactly conserves the additional integral of Eq.
(1):

W'"'"= Y + '
1 —"""' a (W'"')

k k k2 k3 k k

t u(x, t)dx=0 .—L/2
(A14)

(A13)

In fact, a single iteration (A13) already provides an accu-
racy 8(r ), because

1 sink ~1—
k2 kz

for k ~((1.
The code has the following favorable properties.

Property (d), which is very convenient, immediately fol-
lows from relation

L/2
u(x, t)dx = Wk o(t) .—L/2

Indeed, from Eqs. (A9) and (A10) we have for k =0:

Wo(t+r) = Wo(t —r) = Wo(t ) =const .

Therefore, for the zero initial conditions we have
Wo(t ) = Wo(0) =0, which proves (A14).
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