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Theory of electromagnetic instability of an intense beam in a quadrupole focusing system
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Discrete quadrupole focusing systems are subject to an electromagnetic instability wherein the grow-
ing transverse motion of the beam interacts with the quadrupole field and the TE» waveguide mode.
The dispersion relation is derived, which is a matrix equation of infinite dimensions. We show that an

appropriately truncated matrix equation is able to give exact growth rates. Furthermore, analytical
growth rates are obtained and instability boundaries are established. Numerical solutions of the disper-
sion relation show that the overall stability properties are not favorable for long-pulse, high-current elec-
tron beams. The stability properties of ion beams are also discussed.

PACS number(s): 41.75.Ht

I. INTRODUCTION

Discrete quadrupole focusing systems, also called
FODO (focusing, zero field, defocusing, zero field) lat-
tices, have been used to transport charged-particle beams
for a variety of applications. A FODO lattice is an alter-
native to helical quadrupole windings for strong focusing.
Helical quadrupole (stellarator) focusing systems have
been found to be subject to an electromagnetic instability,
which we referred to as the three-wave instability [1—3].
This has been observed experimentally for a 325-A, 950-
keV beam with an 80-nsec pulse length [4]. In that case,
the stellarator gradient was 400 G/cm, the stellarator
pitch length was 18 cm, and the axial magnetic field was
1.2 kG. The growth of the instability and subsequent
beam loss was accompanied by 3-GHz radiation, as pre-
dicted by theory.

Here, we consider the corresponding instability for
transverse perturbations of a beam centroid interacting
with a FODO lattice field and a TE» waveguide mode.
The advantages of using FODO lattices are (i) variations
in periodicity are easily introduced, (ii) variations in
periodicity can change the character of electromagnetic
instability and reduce the overall growth rate, (iii) lower
growth rates in some regimes, and (iv) preliminary parti-
cle simulations show saturation at low values. Even
though the FODO lattice lacks a stable regime, the small

growth rates may allow a cure by any one of several
methods, such as loss in the waveguide.

The dispersion relation can be solved in the usual way,
with the growth rates being the imaginary parts of the
roots of the determinant of a dispersion matrix. Due to
the periodicity of the FODO lattice, however, the disper-
sion matrix is of infinite dimension. This instability [5,6]
was recently analyzed via Floquet theory [5] and via ap-
proximate dispersion relations based on two different ap-
proaches [5,6]. In this paper, we derive the dispersion re-
lation and show that the exact growth rate, in agreement
with the results from Floquet theory, can be obtained
from a truncated dispersion matrix. Furthermore, we are
able to approximately factor a zeroth-order form of the
dispersion relation to find all the beam modes. Identify-

ing the beam mode that causes the instability, we are able
to derive analytic expressions for the growth rates and es-
tablish various regions of instability.

II. DISPERSION RELATION

We consider an alternating-gradient quadrupole field
(B „,B ), where

B „= Bk f(z—)y,
B = Bkqf(z)x—,

(la)

(lb)

Bq k~ is the peak quadrupole field, f (z) is periodic,
k~ =2m/I, , and A. is the period of the quadrupole field.
The representation for the quadrupole field in Eqs. (la)
and (1b) is valid near the z axis, i.e.,
(x +y )'~ ((A, /2m. .

In equilibrium, the electron beam travels along the axis
of a perfectly conducting circular waveguide of radius r
at velocity Uo and is monoenergetic with
yp=(1 —Pp) ', where Pp=vp/c. Both the beam radius
and beam centroid displacement are assumed to be small
in comparison to the waveguide radius. We include im-

age charges and currents due to the displaced beam. The
induced electric and magnetic fields near the z axis are

2moc
E;„d=—2 —(x,e„+y,e ),2

(2a)

2moc
B;„d=2 —Pp(y, e„—x, e~ ),2

(2b)

where x, (zp, z)=x, (zp, t =(z —zp)/vp) and y, (zp, z)
=y, (zp, t =(z —zp)/vp) are the beam centroid coordi-
nates, v=tpbrb/4c is Budker's parameter (v=~I, ~/17P
for an electron beam where I, is the electron-beam
current in kA), cob =4vre n, /mp, n, is the electron densi-

ty, mo is the electron mass, e is the elementary charge
(assumed positive), r& is the beam radius, and zp is the ax-
ial position of the electron-beam centroid at t =0.

We expect the TE» mode to have the largest growth
rate because its electric field peaks on axis. Its vector po-
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tential can be written as

A=[A„(r,8,z)e + A (r, 8,z)e ]e '"'+c.c.

= [ A+(r, 8,z)+ A (r, 8,z)]e ' '+c.c. ,

where

A~(r, 8,z)= f dkg b+]]( k+)[Jp( p]]r)e+

(3)

J,= —en, ,~rbv, is the macroscopic transverse current as-2

sociated with the beam centroid. Assuming that the par-
ticle motion is driven by field on axis, the current can be
written as

mpc dx dy
5(x)5(y) e„+ e

e dt dt

+J2(p]]r )e*' e~ ]e

A+ are complex amplitudes associated with the (+)
right-handed circularly polarized (RHCP) wave and the
( —) left-handed circularly polarized (LHCP) wave, J„ is
the nth order Bessel function, b+» are complex con-
stants, co is the radian frequency, k+ are the wave num-
bers associated with the RHCP and LHCP waves,
e~ =(e„ ie~ )/2, and c.c. denotes the complex conjugate.
The boundary condition, requiring the tangential com-
ponent of the electric field to vanish on the perfectly con-
ducting waveguide surface, gives the condition
J', (r =p»rg )=0, where p]]re is the largest positive zero
of Bessel function J] and the prime denotes d /dr.

The wave equation for A is given by

where [x,(z, t},y, (z, t}] are the coordinates of beam cen-
troid.

The wave equation can be rewritten as

L[(a„gaia )e '"'+c.c.]= 4m— 5—(x)5(y) (—x,+iy, ),V d
C dt

where a„=(e/mpc )A„and L=V']+Bz/Bz +a] /c .
The vector potential in (6) has the form

(a„+ia )e ' '= fdk + b+ „(k+ )Jp(p»r )
moc

i(k ~ z —cot)
Xe

e+
z dkgbg]] (k+ )Jz(p]]r )

moc
28

az2
1 8 4a

c2 c)t2 c
(4)

gi2g i(kgz —cgt )Xe e

where Vi=V' —8 /Bz is the transverse Laplacian, and
I

After L operates on the normalized vector potential, Eq.
(6) can be written as

2 2lk+ z Q) lkgz Qj
e ' dk+e —kz —p» J(pp»r)b+»( k+)+ dk+e

2
—k+ —p» J2(p»r)

moc c c

Xe ' b+„(k~ ) +c.c.

There are two equations associated with (8). We multiply
the equation with the upper sign by

f p d8(2]r) ' fp'Jp(p»r)r dr 'and the equation with the

lower sign by f p
e' d8(2n. )

' fp'J2(p»r)r dr, then

combine the results to pick out b». Similarly, we mul-

tiply the equation with the upper sign by

f p e ' d8(2n. )
' fpgJz(p»r)r dr and the equation with

the lower sign by f p d8(2]r) '
j&~Jp(p, ],r)r dr, then

combine the results to pick out b+, &. The results are

ik+ z
e ' ' fdk+e —k+ —p]] b+]](k+ )

c

=4m.—5(x)5(y)—(x,+iy, ) .
V d
c dt

I

We substitute Eq. (10) into the wave equation, Eq. (9), to
obtain a pair of equations that relate b+» to g+. Keep-
ing in mind that the variable of integration is a dummy
variable in each case, we solve for b+» and b»

2

(co /c k p,„)——

Next, we need to solve for the dependence of particle
motion on the radiation field. We assume that
x +y ((r such that the centroid motion depends only
on the field on axis. The beam centroid equation of
motion can be written as

2
v moc d+c.c.= (x,+iy, )—,

cI&i e dt

where I]]=p]] (p]]r —1)J](p]]r ). Let

i(k+z —cot)
(x,+iy, }=fdk+g+(k+)e — +c.c.

(9)

(10)

2 —k, vp (x, iy, )+0 kqvpf(z)(x, +iy, )
dt2

c —+vp [(a„~ia )i„pe ' '+c.c.],
yo at az

(12)
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where k, =2v/(Poyorg), and Qq =eBq/yomoc.
Returning to the quadrupole field, Eq. (1), let

sc,'
4 &(1 .

k,'
(21)

f(z)=gf„cos(nkqz) . (13)

For simplicity, we keep only the n = 1 term of the expan-
sion. Substituting (7) and (10) into (12},we group terms
with the same electromagnetic wave number k and evalu-
ate the fields on axis. We solve for g+ in terms of 6+ii,

TQ=0 .

To first order, we find

(22)

It will be shown below that 2(Kdlk ) & 1 is required for
phase stability. To zeroth order, the approximate disper-
sion relation is

[
—(co —vok) —k, vo]g+(k)

+Q k (fi/2)vo[g+(k+kq)+)+(k kq)]

i — z(co —vok)b+»(k) .
~ c e

j 0 P1QC

We substitute (11) into (14), to obtain

(14)

T-2

E„
det S+)

E
S

TQ

rd4

2
S+3

SCd4

S ) =0.

+2

(23)

S(co,k)g+(k) = — ' [g*(k+kq)+(+(k —kq)],
2vp

III. ANALYTICAL BEAM-LINK DECOMPOSITION

where

kb'
S(co,k) =(colvo —k) —1+

(co /c —k —p, „) (16)

and kb =2v/yPii Elim. inating g-, we find that the lon-
gitudinal waveguide modes are coupled, WQ W+~~p (24}

Much insight can be obtained from analytical decom-
position of the approximate dispersion relation, Eq. (22).
This can give us analytical expressions for the growth
rates and instability boundaries in parameter space.

The dispersion relation can be rewritten with the
current coupling terms grouped together in a term 8,

T (co k)g+(k) ~~Kd'[S i(+(k+2k—q)

+S +i(+(k —2kq)],

where

S (m, k) =S(co,k+mkq),

T (co,k)=S iS S +, ,'Kd(S i—+—S +i),

(17)

(18)

(19)

where

II (co,k)=a a +,a

a (co, k) =co/vo —(k+mkq),

and

W (co, k) =(co/c) —(k+mkq) —p„,
4

2
(a +,+a, ),

(25)

(26)

(27)

andKd=K k fi/&2, andK =0 Ivo.
From Eq. (17), the dispersion relation for the TE„

mode in the presence of the beam is a function of the
determinant of an infinite tridiagonal matrix of the form

T-2
I(,d4

S

det
rCd4

S+) TQ
E„

S 1
=0. (20)

Zd4

S+3 T+2

It can be shown from Eq. (20) that the growth rate of
the instability is periodic in k. For a given unstable fre-
quency ~Q, the unstable wave numbers are at all
k =kp+ nk, where n =0,+1, . . . is an integer, and kp is
the unstable wave number associated with a vacuum
waveguide mode. Coupling to an infinite number of
modes may be avoided in the approximation that

y22 2 2
&m kb&m&m+ i&m —i

X[W +,W, +W W i+W W

—ks(W i+W +W+, )+k~]

,'kbKdW (a —+,—W--,+a'--, W +,).
The polynomial IIQ can be rewritten as

Ho(co, k) =(ao —kq) ~o—2kqKdao,

where

(28)

(29)

k
Ao(co, k) = ao+

2

k —Ed

k,a +0

k' +SC2
4 d (30)

A good approximate beam-mode decomposition can be
obtained by dropping the last term of (29), since Kd lkq is
typically much less than 1. There are six waveguide
modes, i.e., W

& Wp W+&, and there are six beam modes.
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FIG. 1. Instability diagram in the limit of zero beam current.

A. Orbit instability

As in the helical quadrupole case, the electron beam
develops orbit instability, when

The four beam modes in (30) have the same characteris-
tics as those in the helical quadrupole case [2]. The
beam-line decomposition helps to define the approximate
boundaries separating the orbit instability and the elec-
tromagnetic instability.

[(co, /c) —p„]'~ +k =(co, /uo)+k /2

(kq—/4 Kd—)'c

and the corresponding wave number is

k, =[(co,/c)' —pf, ]'i'+kq .

(34a)

(34b)

The derivation of the spatial growth rate is given here.
The dispersion relation (24) can be rewritten as

(k2 —ko)[(k+kq) —ko)[(k —kq) —ko]

X[(k—k2) [(k —k4) —6k'][(k —k4) —bk2]

+2k Kd(k —k, )] = —cro, (35)

where, at co=co„

crO(k)=kb(k —k, ) (k —k2) (k —k3)

X((k —ko)[(k+k ) —ko2]

—
kq [(k —ko)+[(k+k ) —

k(~) ] j )

(k —k )[(k+k ) —k ](k —k3)
kbKd

rates of the electromagnetic instability can be obtained.
The derivation for the spatial growth rate is presented
first. Electromagnetic instability occurs at a frequency
and wave number (co„k, ), which satisfies (32a) and (32b),
i.e., frequency co, satisfies

k,'/4 & K„', (31) (36)

with or without electromagnetic modes in the waveguide.
This has been confirmed by the numerical solution of the
complete dispersion relation (23) and by particle simula-
tions.

B. Electromagnetic instability

Electromagnetic instability exists at the intersection of
the

ko = [(co/e ) —pf, ]'~z, k, =co/uo, k2 =(co/vo) —k, k3
=(co/vo)+k, k4=(co/vo)+k /2, hk~ =(k /4 Kd )'~, —
and bk2=(k /4+Kd )' . Defining k =ko+k +5k, the
imaginary part of 5k is the spatial growth rate. Requir-
ing ko+kq =k4 —hk, and using the approximate beam
modes (32b), the zeroth-order dispersion relation (35) can
be approximated by

W )(co,k)=0

waveguide mode and the

k+[ kq/2+(k /4 —K)' ) co/u =0— —

(32a)

(32b)

beam mode. This instability is repeated for all wave
numbers, k =ko+nk, where n =0,+1,+2, . . . . When
the intersection does not exist, we find that the beam is
still unstable for

p, 5k +pb5k+cr =0,
where

p, =46k, (bk2 —6k')ko(k —k~) (k —ko)

X[(k+k )
—ko]lk

p~ =4k Kd(k —k, )ko(k —k2) (k —ko)

X [(k+k }2—k2o ] lk

(37a)

(37b)

(37c)

kP—: +
2

k —Kd

1/2
IM»

yo
—1

1/2

(33}
and

~olk=k s&=r»a~ ~a (37d)

but the growth rate is much smaller. In the limit of zero
beam current, a stability diagram based on Eqs. (31) and
(33) is shown in Fig. l.

The derivation of (37a) assumed 5k «2ko and
5k «26k, . The analytical growth-rate expression eval-
uated at (co„k, ) is

IV. ANALYTICAL EXPRESSIONS FOR GROWTH
RATES AND GROUP VELOCITY

Im( 5k ) = [(pb /p, ) /4 —cr /p, ]
' ~2 . (3&)

Following the same procedure as outlined in Ref. [2],
analytical expressions for the spatial or temporal growth

We can also give the analytical expression for the tern-
poral growth rates. The dispersion relation (24) can be
rewritten as
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5

(co —co, )(co —cdo)(cd —co, ) 6(co —co4) [(co —cd )
—bcd]][(cd —co ) —bcd2] —2k Ed (co —co3) =Pooo, (39)

(40)

where, at k =k„

Oo(CO) =
6 (CO

—
Cdq) (CO

—
CO3) (CO

—
CO4) q

(CO
—

CO])(CO
—

CO]])
—

[(CO
—CO])+(CO —Cdo)]

Vo C C

2
(CO Cd] )(CO Cdo)(CO CO2)

2c vo

]=[(k kq) —+ ]]c]]]' c, coo=(k +p»)' c, co, =[(k+kq) +i]c]]]' c, co2=(k kq)u—o, co3=kvo, co4=(k+k )uo,
coq=(k —k /2)vo, hcd]=(kq/4 Ed)—' uo, and benz=(k /4+ICd)'~ vo. Defining cd=co ]+5cd, the imaginary Part of
5' is the temporal growth rate. Requiring co, =coq+Jaalco] the analytical temporal growth-rate expression can be
simplified to

r

5'
Im (41a)

where

(CO CO3)

eb =&'Pokq&d'
ECO](ECO2 Acd] )(CO Cdq) re=id

and

c 1op6o

4lhlco](kco2 Eco] )co ](cd co4) (co cdo)(cd co] ) cd=ra

(41b)

(41c)

From our numerical solutions of the higher-order
dispersion relation (23) we conjecture that when a
higher-order dispersion relation, such as (23), is con-
sidered, spatial and temporal growth rates at other inter-
sections in (co, k) space of waveguide modes and other
beam modes will collapse to expressions similar to Eqs.
(35) and (41). (These intersections occur at co=co, and
k=k, +nk .)

Because the beams have a finite length and because the
group velocity of the instability is slower than the beam
velocity, the instability can propagate out of the tail of
the beam. From (38) and (41a), dropping the pb and qb
terms, the group velocity of the instability is

p [( / )2 2 ]])2
(42)

COg /C
v =5'/5k=

The number of e folds, N that can occur within a beam of
length Eb is

~b
N =min (43)

Le Le(vb —v )/vb

where L, =1/5k is the e-folding distance, L is the total
distance traveled by the beam, and vb is the beam veloci-
ty.

V. NUMERICAL EXAMPLES
Here, the dispersion relations (22) and (23) are solved

numerically. We verified that (i) Eq. (22) is a fair approx-
imation to (23), (ii) the approximate beam-mode decom-
position Eq. (29) of (22) is good, (iii) the boundary of in-
stability is as predicted by Eqs. (31) and (33), and (iv)
analytical growth-rate expressions are in good agreement
with the results from (23).

Parameters for numerical examples are typical of a

0.5

0
3

—0.5

—I.O
—I.O —0.5 0.5 I.O

Wave Number k ( cm )

FIG. 2. Dispersion diagram of the zeroth-order approxima-
tion of the dispersion relation, Eq. (22).

I

high-current, induction-accelerator beam, I, =1 kA and
yo=5. We chose a quadrupole gradient of 8 k =221
G/cm, f, =4/qr, a quadrupole wave number of k =0.5

cm ', and a waveguide radius of r~=3 cm. These pa-
rameters fall in the electromagnetic unstable regime in
Fig. 1, where []]c]]/(yo—1)]'~ =0.125 cm ' and
P=0.448 cm ' [see Eq. (33)]. Figure 2 plots the (co, k)
diagram corresponding to the zeroth-order approxima-
tion to the dispersion relation, Eq. (22). The solid circle
in Fig. 2 marks the instability denoted by Eqs. (32a) and
(32b). The instability encircled by the dashed curve is an
erroneous one. It is modified when higher-order expres-
sions for the dispersion relation are solved. Figure 3
plots the first-order approximation to the dispersion rela-
tion Eq. (23).

Figure 4 plots the spatial growth rate as a function of
wave number k for co)0 from (23). The instability is

I.O
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I.O 2.5 I / I t I t I / I / I

0.5

O
O

3

—0.5

0)

U

E
O

C4

0
U

0
CL

V)

2.0-

1.0—

—1.0
—I.O -0.5 0.5

Wave Number k (cm )

I.O
0 a I l a I I t i dl i il

0.64 0.66 0.68

FIG. 3. Dispersion diagram of the first-order approximation
of the dispersion relation, Eq. (23).

periodic in k. The growth rates of all the instabilities are
identical, except one. The instabilities at (k =ko —

kq and
k =ko —2kq) are from coupling to T+z, where ko -—0.22
cm . The instabilities from coupling to T z (not
shown) are at (k =ko+2k» and k =ko+3k . The insta-
bility at (k =ko —

2kq), similar to the instability marked

by the dashed circle in Fig. 2, is erroneous, and is
modified to give the same growth rate as that at ko+k
as more terms of the full determinant (20) are included.

Figure 5 plots the spatial growth rates as a function of
frequency co/c for e)0 for (i) zeroth-order approxima-
tion from Eq. (22), dashed (

———) curve, (ii) first-order
approximation from Eq. (23), solid ( ) curve, (iii) ex-
act growth rates from Floquet formulation [5] (+ sym-
bols), and (iv) analytic growth-rate expression from Eq.
(38) (0 symbols). The growth rate of the zeroth-order ap-
proximation, the first-order approximation, and the Flo-
quet formulation are in excellent agreement.

The unstable beam mode given by Eq. (32b) is in excel-
lent agreement with the line in (co, k) space in the disper-
sion diagram obtained by numerically solving the disper-
sion relation. Two of the six beam modes given by Eq.
(29) are not as accurate. One of these two beam modes
appears on the left-hand side and one of these two beam
modes appears on the right-hand side of Fig. 2. Since the

Cd C cm

FIG. 5. Spatial growth rate as a function of frequency co/c
for (i) zeroth-order approximation, dashed (———) curve, (ii)
first-order approximation, solid ( ) curve, (iii) exact growth
rates from Floquet formulation (+ symbols), and (iv) analytic
growth-rate expression, ( symbols).

incorrect beam modes are not the unstable beam mode of
interest and are sufficiently far from the unstable beam
mode, the analytical growth-rate expressions are in good
agreement with the numerically obtained growth rates
shown in Fig. 5.

Figures 6-8 vary the quadrupole gradients while keep-
ing all other parameters the same as that used for Fig. 2.
Figure 6 compares the numerically ( ) and analyti-
cally (0) obtained spatial growth rates for three different
quadrupole gradients (a) Bq kq f &

=200 G/cm, (b)

Bqkqft =400 G/cm, and (c) Bqkqf& =600 G/cm. Figure
7 compares the numerically ( ) and analytically (0)
obtained temporal growth rates. The comparison of nu-
merically obtained (hatched area) and analytically ob-
tained (0) group velocities is shown in Fig. 8. The boun-

C ~

I

Eo 002-

s $ ~ (
l

g ~ g s

I
~

/
~

/
(

$ s / ~

Q)

U

E0

I
p CV

0
U

U
CL

V)

O O.OI-

O

O
CL

(A
0—I.O

I ~ I l I

-0.5
s I s l s I ~ I I I s I ~

0 0.5 I.O

0 II I I I I I I I

0.64 0.68 0.72 0.76

Cd C cm

0.80

Wave Number k (cm )

FIG. 4. Spatial growth rates for co &0 as a function of wave
number k.

FIG. 6. Spatial growth rates for co&0 and (a) b k, fq, =200
G/cm, (b) Bqk f~ =400 G/cm, and (c) B kqf~ =600 G/cm,
while keeping all other parameters the same as Fig. 2. The
analytically calculated growth rates are indicated by (0).
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2

E

l
C)

O

ID

O 1—

E
O

C3

0

L0

0 I I I I

0 2 4 6 8 10

Quadrupole Gradient Bqkqf& (100 Gjcm)

FIG. 7. Comparison of numerically ( ) and analytically
() obtained temporal growth rates for the parameters of Figs. 2
and 6.

daries of the instability regime predicted by Eqs. (31) and
(33), in the limit of zero-beam current, are in good agree-
ment with numerically obtained boundaries.

Numerical verification of the weak unstable regime (V)
was carried out by varying the energy of the electron
beam while holding the rest of the parameters constant:
Bqkqfi =200 6/cm, kq=0. 5 cm, rq=1. 5 cm, and
I, =1 kA. For y0) 2.85, the beam is in the unstable re-
giine (I), while for yo ~ 2. 85, the beam is in the unstable
regime (V). The boundary for the instability is given by
Eq. (33). Small growth rates are observed numerically for
yo & 2. 85 from the first-order dispersion relation (23) (see
Fig. 9).

For the larger current and smaller quadrupole gra-
dient, the difference in growth rates between regime (I)
and (V) is much larger. Figure 10 is a plot of the tem-
poral growth rates for difFerent values of y0 for the pa-
rameters: B kqfi =100 G/cm, k =0.5 cm, r =1.5

0
C3

U
O

O
CL

E
I—

FIG. 9. Temporal growth rate vs ye for Bqkq fi =200 G/cm,

k~ =0.5 cm ', r~ =1.5 cm, and I, =1 kA. The instability is in

regime (I) for yo & 2.85 and in regime (V) for yo ~ 2.85.

cm, and I, =10 kA. In fact, instabilities at the intersec-
tion of unstable beam mode (32b) and all other waveguide
modes also exist in the electromagnetic unstable region
(I), except that their growth rate is much smaller (see the
small blip at co/c =0.672 of Fig. 5).

VI. SVMMARY AND COMMENTS

Electromagnetic instability of an intense beam in a
FODO lattice was studied by deriving and analyzing a
dispersion relation, which is a matrix equation of in6nite
dimensions. We showed that numerical solutions of an
appropriately truncated matrix equation give growth
rates in excellent agreement with the exact growth rates
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FIG. 8. The comparison of numerically obtained (hatched
area) and analytically obtained () group velocities for the pa-
rameters of Figs. 2 and 6.

FIG. 10. Temporal growth rate vs yo for Bqk f, =100
G/cm, kq =0.5 cm ', r~ =1.5 crn, and I, =10kA. The instabil-

ity is in regime (I) for yo) 2.9 and in regime (V) for yo 2.9.
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as determined from Floquet theory [5]. Furthermore,
analytical growth rates were obtained and are in good
agreement with numerical solutions of the dispersion re-
lation. Stability boundaries in parameter space were es-
tablished and verified. The analysis will be extended to
consider cases which include an additional nonzero axial
(solenoidal) field.

The nature of the instability is such that growth should
be observable for high-current () 100 A), moderate-
energy (y ( 100) electron beams. Furthermore, the group
velocity of the instability is slower than the beam velocity
so that, in general, growth will not be observed in beam
pulses of less than several nanoseconds for these parame-
ters. For instance, this instability is not known to have
been observed in rf linear accelerators, presumably be-
cause the growth rates are too small and/or the electron-
beam pulse length is short.

Ion beams are not expected to produce electromagnetic
instabilities because ion beams are typically very slow,
i.e., P~0.2. The parameters of typical ion beam falls in
the weak unstable regime of the instability diagram.
Damping of the TE» mode could easily be accomplished
with finite Q values in the waveguide or the accelerator
cavity.

Any high-current induction-driven electron accelerator
utilizing FODO lattices would be susceptible to this in-
stability under the idealized conditions stated here. Real-
istic effects, such as energy spread, nonlinear mode mix-
ing, and wave saturation, may significantly reduce the
effect of the instability.
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APPENDIX A: PROTON OR ION BEAMS

For proton or ion beams, the coefficients of the disper-
sion relation are modified. We will consider ion beams
with velocity v;, mass m;, charge per ion g, and ion
current I; =gev; n; (orb ), where n; is the ion particle den-

sity and rb is the ion-beam radius. The complete disper-
sion relation is identical to Eq. (20), with the definitions
of several constants replaced by those given here,

(Al)

+q —+q ~vJ. (A2)

and

2 2
v= n, (orb)=

m, c

kb= 2 v

I)) y

geI;

m;v;c
(A3)

(A4)

Dominant instability exists if the beam mode

k+[ k l2+(k l4 Kd)'—i ] co)v;=0— —(A5)

intersects the 8'
&
=0 waveguide mode. Weak instabili-

ties exist at intersections of (A5) with other electromag-
netic waveguide modes.
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