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Nonstationary electron distribution functions in a laser field
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Time-dependent functions giving distributions over instantaneous values of electron momenta and en-

ergies in a laser Seld are derived. These distribution functions are found for arbitrary values of the ratio

of the electron thermal velocity to the electron oscillation velocity. They are necessary in studies of
laser-radiation interaction with plasma, laser-plasma x-ray lasers, etc.
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I. INTRODUCTION

The correct description of an electron distribution
function in a laser-produced plasma remains a difficult
problem, especially in the case when the plasma is creat-
ed by a very short laser pulse. It is also clear now that in
studies of processes having duration much shorter than
the period of the laser field E(t)=Ecoscot, nonstationary
electron distribution functions are needed [1—3]. As an
example of such very short processes, electron-ion excita-
tion and ionization can be considered.

The duration of electron-ion collision can be approxi-
mated by r, =p/v;, where p is the impact parameter and

v; is the velocity of the impact electron. Using the con-
nection between the classical and quantum expressions
for the angular momentum of the incident electron
mv;p=fil (where l is lower than about ten for cases of in-
terest), the condition r, ((2n./co can be written as
8; » Itic/4m. , or simply as 0; »%co, where 8; is the en-

ergy of the impact electron. For inelastic collisions, al-
lowed when 8; & 8,„, where 8,„ is the threshold excita-
tion or ionization energy of ions, the condition 8;» fm

is fulfilled practically for all available laser frequencies.
Therefore inelastic collisions in a laser-produced plasma
can be assumed to be instantaneous. This means that for
calculations of the rate coefficients of electron-ion-
collision processes in the presence of a laser field the dis-
tribution functions over instantaneous values of electron
momenta and energies are necessary. These functions
should describe the plasma heating, the oscillations of
electrons in a laser field, change of the rates of various
elementary electron-ion processes in a laser-produced
plasma [1—3], etc.

The aim of the present paper is to derive these distribu-
tion functions and to study their applicability.

II. OSCILLATING ELECTRON
DISTRIBUTION FUNCTIONS

The equation of evolution of the electron distribution
function f=f(v, t ) due to electron-ion and electron-
electron scattering in a homogeneous laser-produced
plasma is [4]

a e a 1 a—+—Ecosrut f=— v„(v) (v 5k. —vkv )
a~ m av 2av„" "' '' av,

+ fdv'v«(~v —v'~)[(v —v') 5kJ
—(vk —vk)(v~ —v~)]2N Bvk BUJ.

f(v, t)f(v', t),
BUJ

where v„(v)=4me NAm v and v„(v)=Zv„(v) are the electron-electron- and electron-ion-collision frequencies,
Z~e

~
is the ion charge, N is the electron density, and A is the Coulomb logarithm, which is assumed to be a constant.

The laser is described by a single-mode linearly polarized electric field.
It is useful to remove the rapid oscillations from Eq. (1) by the transformation to the new variables u=v —vzsincot,

r = t (where vz =eE/mco}. This gives the equation for the function F(u, r) =f(u+ vzsincor, r). Assuming weak anisot-
ropy of function F(u, r) =F(u, r) and averaging the equation for F(u, r) over spherical angles of u we get

aF l a , , aF
vgu v„(u)R(u, vE,~).
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QR (u, vz, r) =sin co~ &(u —
vz I since~I )+ 3 . &(Uz Ising~I u ),

Uz I
smcor I

where

1 (x &0)
rl(x ) = —,

' (x =0)
0 (x&0) .

In a weak laser field the assumption of a weak anisotropy of function F(u, v) is clear and is justified by the weak an-

isotropy of the electron-ion-collision frequency v„.. In a strong laser field the anisotropy of the frequency v„can also be
strong. However, with the growth of the laser field the frequency v„decreases and the electron-electron-collision fre-

quency v„remains the same. It means that the anisotropic part connected with the electron-ion-collision term de-

creases and the isotropic electron-electron part dominates. This gives another reason for weak anisotropy of the func-
tion F(u, r) in a sufficiently strong laser field. For the time r »2n /co we can replace in Eq. (2) R (u, uz, r) by its average
value R (u, uE),

Q) 2n /co
R(u, vz)= drR(u, vz, ~)

27T 0

=
—,g( u —vz ) +—ri( uz —u ) arcsin

1 . u

UE

Q 1—
UE

' 2 1/2

+2
UE

't 3

ln
Q

Uz (Uz u )
(3)

In the case of a weak laser field for the majority of elec-
trons the condition vz u is valid and Eq. (2) with

R (u, vz ) =—,
' is identical to the equations studied by other

authors [6,7]. We study Eq. (2) with R (u, vE ) from (3),
which is applicable also for a strong laser field.

A. Maxwellian distribution function

dur(r)
vr4(~) = ,'v 2/~v„(—vz)vz I . R(x)exp( —x)dx,

(6)

wh«e R(x)=R(v2xuT(r), vz). In the case of strong
laser fields, when vz »ZUT from (6) one obtains the
linear time dependence of the temperature

For the electrons with u -UT the electron-electron-
collision term in Eq. (2) is greater than the electron-ion-
collision term, when the condition

T(r) =T(0)+ rmvzv„(vz )In

ZuER (u T, uz ) « ur (4)

is fulfilled. Here UT=(T/m )'~ is the electron thermal
velocity. For weak fields, (4) is equivalent to the condi-
tion v&»ZUE and for strong fields to the condition
UE»ZUT. When the electron-electron-collision term
dominates we can try to find the solution of Eq. (2) in the
form

where T(0) is the initial temperature. This coincides
with the results of the previous papers [4,5]. In weak
laser fields, when vT »ZUE the time dependence becomes
slower,

T ~~(r) =T ~ (0)+ —rv„(vz)(mvz)
5

F=Fsr (x,r )[1+ZV(x )],
x =(v —vzsinco~) /2UT(r)=u /2UT(~),

(5)

The direct substitution of the distribution (5) in (2) gives
the equation for the function %'

where FM(x, r) =N(2m. ) UT (r)exp( —x) is the
Maxwellian distribution function, which takes into ac-
count time dependence of the temperature T(v)=mvT(r)
and electron oscillations in the laser field. To emphasize
this fact we call F~(x, r) the oscillating (or laser-assisted)
Maxwellian distribution function. Z

I %(x ) I
« 1 is a small

correction.
Calculating with the distribution (5) and Eq. (2) the

average electron energy, we get the equation for the
thermal electron velocity vT=uz(r),

d%(x)
dx

d4(x')
dx

U2

e "p(x),
UT

p(x) =
—,'(x —

—,')I dx'e "R(x')

+ 'v'n/xe" [e —"R(.x)],x d
4 dx

having the solution

—x' 3/2e " dx e "[x3i~g(x'—x)+x' g(x —x')]
vx dx 0
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sinh(a sincor) z4z(r = exp — sin cow

a since~ T

where a =(vvz)/vr, 8z=muz/2, and Fsr(8)
=2Nm '~ 8'~ T ~zexp( —8/T) is the usual Maxwelli-
an distribution function over electron energy. The time-
dependent rate coefficient for any inelastic process with
the threshold energy 8,„is given by

y= f vF(8, r)o(8)dC,
th

(12)

where y( —,',y)= f~zdzv'ze ' and Ci, Cz are found from
the conditions f o dx&xe "%(x)=0 and

fo"dx x e "%(x)=0, which mean that there are no

contributions from function 4 to the electron density and
temperature. In weak laser fields C 1

=0. 15, C2 = —0. 11.
In strong laser fields Ci = —(vr/vz) 0.20 and

C2 = —(vT/uz ) 0.22. In the weak-field limit the formula
(10) coincides with the expression derived in Ref. [8].

In Fig. 1 the dependence of the function 4 on
x =u /2vr and on 0.5 ln(vz/2vr) is shown. Note that in
the derivation of Eq. (9) it was assumed Z

~
%(x)

~
&&1. As

can be seen, %(x) is very close to zero for Zvz «uz and
vE &)ZVT and the oscillating Maxwellian distribution is a
good solution of Eq. (2).

As was pointed out in the Introduction the duration of
inelastic electron-ion collisions in a laser-produced plas-
ma is usually much shorter than the laser-field period.
For calculations of rate coefficients of such processes the
distribution function over instantaneous values of elec-
tron energy 8=m v /2 is necessary. We get this distribu-
tion function by integrating (5) over the solid angle of v (z
axis is parallel to E),

—0.5

2 3

0.51n(eE/2vT)

FIG. 1. Dependence of function 4 on electron energy and
laser intensity.

over the laser-field period, F(8 ) =F~(8 )4z, where

4z = 4z(r). When uz « vT /'i/Z

1 1 if a((1
Io(x)dx ~ '

3 iyz . (13)E a 0
' (2ma )

~ exp(a) if a &)1 .

For vz »ZvT using that (mb, ) '~2exp( —x2/g)~g(x),
w that F(

known distribution over kinetic energy for oscillators

F(g}=N [@[8(8z—0)] (14)

B. Self-similar distribution function

In the weak laser field, when ~Zuz &&ur ))uz (region
II in Fig. 2) and Z »1, the anisotropy of the electron-
ion-collision term is small and a self-similar solution of
Eq. (2) with R (u, vz ) from (3) can be found [6,7]. In this
case the electron distribution function is

Now we turn to the case uz/Z & vr & v Z vz and the
distribution is non-Maxwellian (see Fig. 2, regions II and
III). In these regions, where inequality (4) has the oppo-
site sign, for the majority of electrons the electron-ion-
collision term is greater than the electron-electron-
collision term.

where o ( 8 ) is the cross section for this process. Note
that the above expression is valid only when the collision
is short enough and the velocity v =&26/m of the im-
pact electron is not changed by the laser field during the
collision.

For applications it is useful to have values of the rate
coefficients averaged over the laser-field period. We get
these by replacing F(e, r) in (12) by its averaged value

5NF= exp
4ml ( —,')uT(r)

u'
ur(r)

ur(r)
X 1+ g(u/ur(r))

ZVE

where u Tg /ZVE is a small correction defined by

(15)

4 50 2 5 dxg"—(1+5x }g'—10x g=, x exp(x ) dx x[x rl(x —x)+x g(x —x)](x —x )exp( —x —x )I ( —', ) dx o
(16)
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C. Anisotropic distribution function

In the strong laser field, when vz /Z « vT « vz (region
III in Fig. 2) and Z »1, we must take into account an-
isotropy of the electron-ion-collision term in directions
parallel (z) and perpendicular (I) to the laser field. This
is the most interesting region, where the analytical solu-
tion was unknown.

Turning back to Eq. (1) and removing the rapid oscilla-
tions, we get

BF
dr

1 a BF BF+D~
~ul oui jul a

8 D
BF D BF

(18)

VT

FIG. 2. Regions of validity of various electron distributions:
I, Maxwellian distribution regions; II, region of self-similar dis-
tribution; III, region of anisotropic distribution.

Dq,
D„

vzvel(vz )

2~u+ vzsin~r~'

(u, +vzsincor)
—ui(u, +vzsincvr)

Q

and is shown in Fig. 3. In (15) the behavior of the uT(7)
in time is given by the equation [6,9]

dur(r)
ur(r) = 6vzve, (vz),

d7
(17)

describing the electron heating in the case of the non-
Maxwellian distribution function. The velocity uT is con-
nected with the effective thermal velocity of electrons by
the equation vr(r) =ur(r) /31 ( —',). The new point to note
is that the distribution (15) is also oscillating, since u is
connected with the real electron velocity by
u =

~
v —vz si nidor ~.

The self-similar electron distribution function (15) is
formed due to very rapid inverse bremsstrahlung heating
of electrons. The energy is mainly absorbed by the slow
electrons, therefore only the distribution of slow electrons
has the form (15) and g is close to zero. The part of the
energy absorbed from the laser field by the fast electrons
is much smaller and their distribution remains close to
Maxwellian due to collisions between electrons. This
leads to anomalous growth of ~g ~

function in Fig. 3.

DLl
Dlz vzvei (vz )

D„

ln(4vz /eu i )

0
1

(19)

Equation (18) with coefficients (19) can be solved, by ap-
proximating In(4vz/eui) to In[vz/vr(0)]. The solution,
meeting the conditions

F(u, 0)= 3q exp[ —u /2vr(0)],
(2m ) vr(0)

F( ao, r) =0,
has the following form:

Nm i
F(u, r) =

(2ir) T (r)[T (r)]'

(20)

Xexp
mu~ mu,2 2

2Ti(r) 2T, (r)

where u=uiei+u, e, . For the time interval r»2ir/co,
taking into account that u «uE, we can replace in the
above equation the diffusion tensor D by its average value
over the laser-field period,

1.5 I I I
I

I I ~ I
l

I ~ I I
1

I ~ I I
(

I I ~ I
1

I I I ~
l

I I I ~
1

~ I

2Ti(r) =mvr(0)+ —mvzv„(vz)r ln[vz/vr(0)],

2
T, (r) =mvT(0)+ mvzv„(vz)r . —

(21)
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FIG. 3. Dependence of function g on electron energy.

This is the anisotropic two-temperature electron distribu-
tion function which is formed in the strong laser field (re-
gion III in Fig. 2). In (21) ui and u, are connected with
the real velocities v of electrons by u ~

=vz,

u, =v, —vzsincor. The distribution (21) exists for the
rather short period of time r- [v„(vz)ln[vz/vr(0)] j
but it has a practical application in the rapidly develop-

ing field of very-short-laser-pulse —matter interactions.
When the thermal velocity becomes comparable with the
velocity of electron oscillations in the laser field, the dis-
tribution function is isotropic.
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III. CONCLUSION

APPENDIX: CIRCULARLY POLARIZED LASER FIELD

In this appendix results for the circularly polarized
laser field E, =(1/~2)E(e„coscut —e sinrot) having the
same intensity as in the linear polarization case are
presented. The oscillations from Eq. (1) are removed by
the transformation

1u=v — uz(e„si neto+e cosrot) .
&2

(A 1)

(I) The Maxwellian distribution function
Fsr=N(2m. ) uz. exp( —u /2ur) is valid in the same
regions as in Fig. 2. The time dependence of the temper-
ature in the strong laser field vz &&ZvT is given, instead
of (7), by

We derived the oscillating (or laser-assisted) Maxwelli-
an, self-similar, and anisotropic distributions and studied
the regions of their applicability. These distributions
should be used in calculations of rates of various atomic
processes in laser-produced plasmas instead of those in
conventional use.

Drawing mentally a horizontal line in Fig. 2, the evolu-
tion of electron distribution function in a laser-produced
plasma becomes clear: from Maxwellian to anisotropic,
then to self-similar and then back to Maxwellian distribu-
tion. The analytical formulas derived in this paper give
understanding of how much time the electron distribu-
tion function spends in each region.

dence of the temperature remains the same (8).
The distribution functions over electron energy

8=mv /2 we get by integrating the Maxwellian distri-
bution over the solid angle of v,

F( 6')d 6"=Fsr(6')4zd 8,
(A3)

sinh(a) E
4E = exp

a

where a =(uuz/&2)/ur, hz, and FM(8) are the same as
in (11). DifFerently from (11), the distribution (A3) is time
independent.

(II) For the self-similar distribution function (15), (17),
and also the region of validity remain the same with u

defined by (Al).
(III) The equation for the electron distribution func-

tion, taking into account anisotropy of the electron-ion-
collision term in directions parallel (z) and perpendicular
(l) to the direction of propagation of the laser beam, has
the same form as (18), except the expressions for the
diffusion tensor D. The averaged values over the laser-
field period for u &&UE are

1
D~~

Dt, = uzv„(uz ) 0 (A4)

The solution of Eq. (18) F(u, r) is given by the same ex-
pression (21), but the time dependence of the tempera-
tures is different,

T(r)=T(0)+ —rmuzv„(uz) .4
3 2

(A2)

In the weak laser field, uz ((ur/&Z, the time depen-

1
Tj (r) =mur(0)+ —muzv„(uz )r,

2

T,(r) =mur(0)+ &2muzv„(uz )r .
(A5)
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