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Momentum source of the plasma maser
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The plasma maser, an interesting nonlinear process in plasma, is an effective means of energy up-
conversion in frequency from Langmuir turbulence to the electrostatic Bernstein mode. It is shown here
that the primary momentum and energy source of the plasma maser is the external magnetic field, which
is not the case for the standard mode-mode coupling processes. For strongly magnetized plasma
(0, ~ co~„where 0, and co~, are the electron cyclotron frequency and the plasma frequency, respective-

ly), the growth rate of the Bernstein mode arises from the polarization term. The growth rate is large in

contrast to the previous ion-sound-turbulence case. These results have potential importance in the inter-
pretation of anomalous radiation phenomena in astrophysical, laboratory, and fusion plasmas.

PACS number(s): 52.35.Mw, 52.35.Ra, 52.25.Sw

I. INTRODUCTION (co= kv, QAEV), and where yo is the linear growth rate,

According to recent weak-turbulence theory [1], the
lowest-order mode-mode coupling processes in plasmas
are composed of three parts. The first one is the three-
wave resonance [Fig. 1(a): with matching conditions
k] +kp k3, co, +co2 = co3 ] and the second one is the non-
linear Landau resonance [Fig. 1(b): with the condition
Q —co=(K—k) v]. Both processes (a) and (b) are well
known in plasma physics [2]. The third process, which
we consider here, is the plasma maser [Fig. 1(c): with
conditions co=k v, QPK v]. It corresponds to the ver-
tex correction [3]. Most authors in the past have con-
sidered energy up-conversion from ion-sound turbulence
to Langmuir waves in an unmagnetized plasma. The
growth rate in this case is too small to be observed in ex-
periment. Accordingly, the process has not attracted
much attention so far. Here, we consider plasma-maser
interactions in a magnetized plasma and show that the
growth rate is enhanced. Along these lines, quantum-
electrodynamical methods are used to investigate some of
the nature of the plasma maser [4]. The aim of the
present paper is to clarify the reason that this process is
effective only in a magnetized, and not in an unmagnet-
ized, plasma.

According to the previous studies on the plasma maser,
the slow time change of the plasmon number (N» ) in the
presence of resonant mode (k, co) is given by Eq. (47) in
Chap. 14 of Ref. [5]

at N» = 2&p+21»+(E» ) e»at

X Ng +RTw+RNp+ TpM

where R rw is the three-wave resonance term (Q+Q' =co,
KkE'=k), RN„ is the nonlinear Landau resonance term
(Q+co)=(K+k)v, and TpM is the plasma-maser term

X f dv P(Q —Ev) ' —(Q —Ev) 'E f„,at c)v

E» = (cop, /K )'f dv P(Q —Ev) E fo, =deoldQa

and co, is the electron plasma frequency. eo is the linear
dielectric constant of the nonresonant mode (K, Q), while
P denotes the principal value. yo=O because QAKV by
assumption. Both terms, y» and (e» ) '(c)/t)t )e»,
represent the slow time change of the medium due to
quasilinear interactions between resonant electrons and
the low-frequency mode (k, co), and are combined into an
absorption term c) eo/2BQ clt. As has been shown recent-
ly [6], only for an unmagnetized plasma, the plasma-
maser contributions exactly cancel out with the reverse
absorption effect if the above slow time change of medi-
um due to quasilinear interaction is considered. For a
magnetized plasma [7], the plasma-maser interaction is
effective for the energy up-conversion in frequency from
resonant low-frequency modes to nonresonant high-
frequency modes.

In spite of many studies on plasma maser, the problems
of momentum and energy sources in the plasma maser
have not been cleared up yet. To elucidate the mornen-
turn sources of the instability, we consider the case Klk
and Ell5EI„where EI and 5E& are the electric fields of
the low-frequency (Langmuir wave) and high-frequency
(Bernstein) modes, respectively, and k and K are their
respective wave vectors. In contrast to the previous
cases, it is found that only the polarization term contrib-
utes to plasma-maser instability. The contribution from
the direct-coupling term vanishes identically. The
present study clearly shows that the plasma-maser in-
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teraction strongly depends on the wave modes, in addi-

tion to the condition of the system being open or closed.
In Sec. II, the nonlinear dielectric function of the Bern-

stein mode in the presence of stationary Langmuir tur-

bulence is obtained under a random-phase approxima-
tion. The plasma-maser interaction is considered and the

growth rate of the Bernstein mode is estimated in Sec.
III. The momentum sources of plasma-maser instability
are clarified and conclusions are summarized in Sec. IV.

II. NONLINEAR DIELECTRIC FUNCTION
OF THE BERNSTEIN MODE

IN THE PRESENCE
OF STATIONARY LANGMUIR TURBULENCE

We consider a homogeneous magnetized plasma in the
presence of an enhanced Langmuir wave turbulence
driven by a weak electron beam drifting with velocity vp

through a background plasma of Maxwellian electrons
and ions with the following distribution functions [8]:

f (v)=(1—5)(m/2mT ) e ' 'e

p k3-k2

(~~ k]}

+5(m/2m T) e ' e

—MU /2Tfp;(v ) =(M/2n T; )
~ e

where fp, (v) is the electron distribution function, Tb and

T( & Tb ) are temperatures for the background and beam

plasma, and 5=nb lnp «1 is the ratio of the beam elec-

tron density to the background plasma density. Here,
vp »(2T/m )'~ is assumed, and J. and

~~
mean perpen-

dicular and parallel to the external magnetic field. fp, (v)
is the ion distribution function.

We start with the set of Vlasov-Poisson equations for
the electrons,

8 8—+V.
dt Br

(b) E(r, t )+ ' f, (r, v, t) =0,e vXB(r t} 8

P7l C Bv

V E(r, t)= 4n.e ff, (r,—v, t)dv,

(2)

lx p+K where the notations are standard. According to the
linear-response theory of a turbulent plasma [9], the un-
perturbed electron distribution function and fields are

Fp, =fp, +efi, +e f2, ,

Ep,
=HEI, Bp,

=Bp
(4)

(cu, k}

FIG. 1. (a)—(c) show three-wave resonance, nonlinear scatter-
ing, and plasma maser, respectively.

where e is a small parameter associated with the Lang-
muir turbulence field (Ei ) with the wave vector
k=(0, 0, k) ) propagating along to an ambient magnetic
field Bp=ZBp. In Eq. (4) the second-order electric field
(e E2) is omitted, which can be justified under the
random-phase approximation. The Fourier components
of f„are

(e/m)EI(k, co) fp,
a

—i(a) —k i i+vi 0)

We now perturb the quasi-steady-state by a high-
frequency test electrostatic (ES) Bernstein-mode wave
field p5Eb(K, Q) with a propagation vector K=(Ki,0,0)
and a frequency 0, here p«e. We note that both the
beam electrons and Langmuir turbulences carry momen-
tum along the Z direction. Thus they carry no momen-
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turn in the ES Bernstein-mode propagation direction.
Accordingly, if the ES Bernstein mode grows, a question
arises as to where the wave momentum comes from. This
is the main motivation of the present study. The total
perturbed electric fields and the electron distribution
function can be written as

5E=p6Eq +pe6Ea, ,

5f =S 5f~+~e5fih+pe'~f .

In the above, we have omitted the modulation electric
field pe hE because it gives a small nonlinear frequency
shift in the final result. To the orders p, pe, and pe we
obtain from the Vlasov equation,

P5fh ——5Eh. fo, =0,e

where

e VXB0

The Poisson equation for the ES Bernstein mode is

V.5Eh(K, Q)= 4—me f [5fh(K, Q)+b f(K, Q)]dv .

Taking a transform of the form

A(r, v, t)=+A ( Kv, A)exp(i Kr —iAt),
K

e eP5f, ——E ~ 5f ——5EI fIh g h

e—5Eh fi, =o
m "av

we obtain the nonlinear dielectric constant of the ES
Bernstein mode [ez(K, Q)] in the presence of Langmuir
turbulences as

e eP~f ——E 5f ——5E f
m 'gv

e——5Et,
m ~ gv

eh(K, fl) =eo(K, 0)+ed(K, Q)+e~(K, Q),

where eo(K, Q) is the linear part given by

(10)

2

Gd(K, Q) is the direct-mode-coupling term given by
2 '2 J.'(K, u, /n, ) ~ J,'(I(.', u, /n, )

IEI(k, ~)l'ed(K, Q) =

co~, " J„(Kivi/Q, ) nQ, ,
eo(K, Q) = 1+ g f "

fo, dv,
0, —nA, u~ Bvi

J„(Kivi/1l, ) nQ,
X

and e~(K, Q) is the polarization-mode-coupling term given by

nQ, ,
Ui Bvi —co+k Iul +ip Bv

(12)

e (K, Q)=

with

2

g IEi(k, co)l
m k

Ape
[( A +B)(C+D)],

eo(K

J,(Kiv, /0, ) g J, (E,ui/0, )

0—aQ, Bvl 0—~+kI vll
—sA,

sB,
fo,dv,, a

f J(Kiu|/0 ) a Q,B= 0—aQ, , ui Oui

a 1—k foedv
v c —ku+iP gu

II II

J„(Kiu|/0, ) nA,
fo, dv,

BUII 0,—nQ, vi Bvi

J, (Kiui/0, )C=

J, (rivi/fl, ) sQ, 1 C}

n —~+kIIUII
—sn vl avl ~+kllvll+l-o BU

(15)

(17)
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Here,

4 2 J, (Kiuj /Q, )

eo( K—k, Q —co )= 1+ 2 g IK k s 0 M+kllvll SQe

sQ,
Vy BVg

B—
kii f„dv,

Bu
ii

(18)

where co p„Q„and J,( Kj u~lQ, ) are the electron plasma
frequency, the cyclotron frequency, and Bessel functions,
respectively. In deriving Eq. (10), integration is per-
formed over the unperturbed orbit, and a random-phase
approximation on Langmuir turbulences is adopted. It is
easy to show, after a little algebra, that the result ob-
tained above [Eq. (10)] agrees with the standard expres-
sions for the nonlinear dielectric constant [10].

III. PLASMA-MASER INTERACTION

eo(K, Q)=1—
2 g2a2

2n 1(Ka )e

(Q —n Q)a
(19)

We consider the plasma-maser interactions between
electrons and Langmuir turbulences driven by an elec-
tron beam, with the electron distribution function as
given by Eq. (1). Inserting Eq. (1) into the linear dielec-
tric constant of an ES Bernstein mode [Eq. (11)],we get

Imei, (K, Q)

Be()(K,Q)

BQ

(23)

A. Growth rate from the direct-coupling term

It is easy to show, by partial integration of Eq. (12),
that ed=0. Accordingly, the growth rate of the Bern-
stein mode from the direct-coupling term vanishes. This
result is markedly different from the previous studies on
plasma maser, where the direct coupling offers contribu-
tions. The reason is that wave electric fields of the Lang-
muir wave and the Bernstein mode are perpendicular to
each other with the wave vectors Klk.

B. Growth rate from the polarization term

where Im shows the imaginary part of the dielectric con-
stant, and 0, is the real frequency of the ES Bernstein
mode.

Q =n Q, (1+P„),
where

(20)

where a, is the Larmor radius for the background plasma
electrons defined by a, =(Tb/mQ, )'/, and I„are the
modified Bessel functions. We now put eo(K, Q)=0 to
obtain the linear dispersion relation of the ES Bernstein
mode. Then we get

Imep(K, Q)

BQ

(24)

The growth rate of the Bernstein mode from the polar-
ization term is

—K a2', I„(K~a, )e

Kja, Q,

From Eqs. (19) and (21), we obtain

Beo(K, Q)

ao
2n Q, QP„

(Q2 2Q2 )2

The growth rate of the Bernstein mode is given by

(21)

(22)

By inspection, it is clear from Eqs. (14) and (16) that
3 =Oand Imc=O. Thus,

Im[(A +B)(C+D))=Im(B)Re(C+D)+ReB XImD,

(25}

where Re shows the real part. For the electron distribu-
tion function as given by Eq. (1), we obtain from Eq. (15),
after a lengthy but straightforward calculation,

—K a2akI(Ka }ea l e

co (Q —a Q, }a,
2a n' 5 m (~ kivo) 2 2

—&,'p, —[m(~/k~~ eo) ]/2T

e Pe li ~

(26)

where I, is the modified Bessel function, and

u, =(2T/m)'/ and p, =(T/mQ, )'/ are the electron
thermal velocity and the Larmor radius for the beam
electrons, respectively. The real part of 8, which is an
odd term in (k, co}, comes from the background plasma.
The imaginary part contribution of B even in (k, co)
comes from the plasma-maser interactions between Lang-
muir wave and beam electrons, for which the condition is

co k~~v~~ From Eq. (16), we obtain

2nkb
, „=i Q (Q —n Q, )a2

2Q(Q+s Q )
X 1+

(Q2 S Q2)2

where

C
(27)
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b= f J20(K2u~/Q, )J„(K~v2/Q, )fo, (v~)2nu. ~du~,
(28)c=f J2(K~v2/Q, )J„(K)v2/Q, )fo, (vt )2mutdvt .

0

In deriving Eq. (27), we expand the denominator in

powers of (
II vi) co) /(Q —s Q, ), (kllull co)/Q for

Q=Q, ~co=co, and keep the dominant odd terms in
(k, co) with fo, (v)—:fo, (vll)fo, (u2). We obtain from Eq.
(17)

D= g
s=l

2 2

2skI(Ka )e 2s l e l+ CO

2(Q2 $2Q2 )
2 Q —s Q

4Q co

( Q2 2Q2 )2

2s m' b m (co
kll

"0) 2 2
—&zp, —~(culkII —Uo) l2T

sQ, p,
(29)

s2 Io(K2a, )

3k g
(30)

In deriving Eq. (29), we have retained only dominant terms to make ReD an odd function of co and k. On the other
hand, the dominant imaginary-part contribution (ImD) from the plasma maser (co =

kll ull ) is even in (k, co).
For strongly magnetized plasma ( Q, ~ co, ), expanding the denominator of Eq. (18) in powers of

(k
II ull

—co) /(Q —s Q, ) etc. , we obtain the dominant contribution as follows:

6I, (K)a, ) —K~a
e (K—k, Q —co)iK —ki =k +2co Qcok g 1—0 Pe II (Q2 2Q2 )2

e
s=l S e

In obtaining Eq. (30), we use eo(K, Q) =0 [Eq. (19)]. We note that the first and the second terms in the right-hand side
of Eq. (30) are even and odd in (k, co), respectively. Inserting Eqs. (25), (26), (27), and (29) into Eqs. (13), we obtain

00 ~E (k co)~ co 4a 7p

Ime (K,Q)= I, (K).p )
4~NT Q (Q —a Q ) eo(K —k, Q —co) ~K —k~ K)p, a, lkll I kllu,

Xe ' 'e+2~2 —m (CO/k U )2/'2T
II

2Q2( Q2+s 2Q2 )e C

Q' — 'Q' (Q' —s'Q')'

—K
s2Q2I (K2a2)e l e

(Q2 s2Q2)

4Q1—
Q2 2Q2

e

(31)

Inserting Eqs. (22) and (31) into Eq. (24), we get

yp(K, Q)

Q

~E)(k, co)~ co 2a n'' 5

4~NT Q4p Q' eo(K —k, Q —co)JK —k/ K) p, a, /kl, [

(Q —a Q, )

g 2 2

Q2I (K2a 2)e ) e
a I e

(Q —a Q )

4Q

Q —a Q

(32)

where p, and eo(K —k, Q —co)~K —k~2 are given by Eqs.
(21) and (30), respectively. In deriving Eq. (32), we put
a =s =n. The final growth rate is even in co and k, be-
cause we take odd functions in co and k for
[eo(K—k, Q —co)~K —k~ ]

' [Eq. (30)]. Equation (32) is
the main result of this paper.

Next, we estimate the growth rate for Q=Q, and

~pe with Qe —~pe For K~ae & +ape
kll =0.1(Tb/T)' k„and uo= llv„where k, is the De-
bye wave number for the background electrons, we get

(kllvo m)=kllu and klla =0.1(mp, /Q, )(Tb/T)'I
First, we obtain from Eq. (21),

P, =(co, /Q, ) (33)

In obtaining Eq. (33), we put I)(K)a, ) =(K)a, )/2 f«
@~a, & 1. For the above parameters, the dominant con-
tribution of Eq. (30), which is an odd function in k and co,

comes from the last term in square brackets on the right-
hand side and reduces to
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eo(K —k, 0—co) i K—k i

k2 Q
II

(34}

7i (Kivt /0, ) =(Ki v t ) /(40, ). Then we obtain

b(& =1)=(Ki/40,')f fo, (v, )2mv,'dv, =(K,a, )z/4,

&(& =& =1)=(K,/160, )J f o, ( v, )2','dv,

We note that the second term on the right-hand side of
Eq. (34) is odd in k and co.

Next, we estimate Eq. (28). For a small argument of
the Bessel functions, we put Jo (Kivi /0, ) = 1 and

=(Ktct, ) /8 . (28')

Inserting Eqs. (33), (28'), and the second term in Eq. (34)
into the right-hand side of Eq. (32) with a = 1, we obtain

y (K,Q)

0
) Et(k, cv)) co~,

4mNT 0,
1/2 2 2

' '2

Ii(K2ip2}e
' 'Io(K&ct, )e ' ' 1—

2(Kip, ) (k()a, )
(35)

Figure 2 shows the normalized growth rate [Eq. (35)]
versus plasma parameter (c0I, /0, ). Here,
W[ =pi, „~E&(k,c0)~ /4nNT] is the normalized Lang-
muir turbulence energy density, and we take 5=0.1,
T/Tb =9, Kia, =0.5, Kip, =1.5. It should be stressed
that the growth rate obtained [Eq. (35)] is large in con-
trast to the previous ion-sound turbulence case [11],
where y&/0=(m/M)'/ (kE/k, )WT ((WT and
y~/0=0, here Wr[=g), „~E&(k,cv)~2(k, /k) /4mNT]
represents the normalized turbulence energy of ion-sound
turbulences. Here, m and M are masses for an electron
and an ion, and k and K are wave numbers for ion-sound
and Langmuir waves, respectively. The maximum
growth rate is comparable to those of the other two
mode-mode couplings (three-wave resonance [Fig. 1(a)]
and nonlinear scattering [Fig. 1(b)]).

IV. DISCUSSIONS AND CONCLUSIONS

c} eo(K, Q)

2c}0"dt

Q2'20n I (K p )e

(02 n 202) 2

'2
8

Q IE)(k, co)l n5(cv klvl ) —fo, .2 — a

k, s) II

(37)

where fo, (vl ) is the electron distribution function paral-
lel to the external magnetic field. In deriving Eq. (36), we
use Eq. (11). The slow time change of the electron distri-
bution function comes from the quasilinear interaction
between resonant beam electrons and Langmuir tur-
bulence as

&fo, (vl }

The reverse absorption process to the plasma maser
comes from the quasilinear interactions between electrons
and the Langmuir turbulence [6], and is given by

,' [a'e,(K—,Q)/aQ at )],

e
J(

0.8w-

p.6w-

04w-

0.2w-
GUp

0 0.2 0.4 0.6 0.8 10 Qe

FIG. 2. Normalized growth rate of the Bernstein mode [Eq.
(35)] vs (co~, /0, ) for T/Tb =9, 8=0.1, Eia, =0.5, K,p,=1.5. Here, W[=Q„~E&(k,co)~ /4mNT] is the normalized
Langmuir-turbulence energy density.

Inserting Eq. (37) into Eq. (36), we find the reverse ab-
sorption process to the plasma maser vanishes in addition
to the plasma-maser contribution from the direct cou-
pling [Eq. (12)].

We now consider the momentum (energy) sources of
the plasma maser. Both the electron beam [Eq. (1)] and
the Langmuir turbulence carry momentum only in the z
direction. Thus they provide no free momentum (energy)
source for the ES Bernstein mode with perpendicular
propagation considered here. The momentum source ex-
ists in the external magnetic field itself because the mag-
netic field carries momentum (e/c A), where A is the
vector potential. For the present case (Bo=zBo), we g«
p„=(—yBo/2), 3 =(xylo/2), and A, =O. According-
ly, the external magnetic field carries momentum only in
perpendicular direction. Indeed, the growth rate
yI(K, Q) vanishes for So~0. This consideration clearly
shows that the primary momentum (energy) source of the
plasma maser lies in the external environment (magnetic
field), which is consistent with recent analysis [4]. In oth-
er words, the plasma maser vanishes for a closed system
without an external magnetic field because
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Ime&(K, Q)+( —')t) eo(K, Q)/t)Q r)t =0 with Ime (K,Q)
=0 [6]. The plasma maser is effective only in an open
system with momentum (energy) sources from outside
systems. This point is markedly different from the two
standard mode-mode coupling processes in plasmas [Figs.
1(a) and 1(b)].

Historically, the plasma-maser process from the
direct-coupling term (ee ) was pointed out by Tsytovich
and co-workers for an ion-sound turbulence in an unmag-
netized plasma. The contribution from the direct-
coupling term often cancels out with the reverse absorp-
tion process due to the conservation of adiabatic invari-
ant (plasmon number) [6] in the quasilinear process.
Both processes vanish identically for the present case.
On the other hand, the plasma-maser interaction from
the polarization term (e~) for magnetized plasma was
pointed out in Ref. [1]. For a magnetized plasma, the
dominant contribution to the plasma maser comes from
the polarization term. The primary momentum (energy)
source of the plasma maser exists in the external magnet-
ic field in addition to the low-frequency turbulence.

The plasma-maser interactions between Langmuir tur-
bulences and the ES Bernstein modes are studied for a
strongly magnetized plasma. The enhanced growth rate
of the ES Bernstein mode comes only from the polariza-
tion term [Eq. (35)]. The direct-coupling contribution
vanishes identically, as does the reverse-absorption pro-
cess due to the quasilinear process between Langmuir
waves and beam electrons. In contrast to the
parametric-resonance processes, the plasma-maser in-
teraction does not require any matching condition be-
tween the nonresonant high-frequency mode and the res-
onant low-frequency mode. Accordingly, the investiga-
tion of plasma-maser processes may open a branch in
plasma physics. It is left for experimentalists to check
the finer details of the theoretical predictions. One of the
most interesting applications of the plasma-maser insta-
bility might be to pulsars, which have superstrong dc
fields. The full QED calculation is necessary to investi-
gate whether the plasma maser has any interesting prop-
erties in a relativistic electron-positron plasma.
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