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We present analytical and numerical studies of fluctuations about and transitions from the nonequi-

librium dissipative steady state to the stable equilibrium state of a damped physical pendulum driven by
constant torque and small white noise. We find the probability density function of the local flucutations
about the nonequilibrium steady state and the transition rate from the nonequilibrium state to the equi-

librium state by constructing an asymptotic solution to the Fokker-Planck equation by the WKB
method. The solution to the eikonal (Hamilton-Jacobi) equation is constructed both analytically by an

asymptotic series expansion, and numerically by integrating the set of characteristic equations. We com-

pare the numerical results to the analytical calculations and determine the limits of validity of the
asymptotic approximation. We apply the results to the case of the hysteretic Josephson junction and dis-

cuss a generalization of the numerical and analytical methods to other systems.

PACS number(s): 34.10.+x, 85.25.Dq, 85.25.Cp

I. INTRODUCTION

Today, fifty years after the classical paper of Kramers
[1], the problem of thermal activation from a potential
well is well understood. According to this theory the
transition rate of a one-dimensional Brownian particle
over a potential barrier is given by

—h, U/k~ T]c=Qe

where hU is the height of the potential barrier, T is the
temperature of a heat bath coupled to the system, and k~
is Boltzmann's constant. The so-called attempt frequen-
cy Q is proportional to the dissipation parameter in the
limit of weak damping and inversely proportional to it in
the limit of strong damping. The exponential dependence
on b, Ulk&T is a direct consequence of the Boltzmann
distribution of fluctuations about the stable equilibrium
state at the bottom of the potential well. Kramers's re-
sult (1.1} has since been extended to multidimensional
systems [2,3] and to include general noises, such as
colored noise and state-dependent noise. Explicit expres-
sions for the attempt frequency Q have been derived for
many different systems, including systems with and
without detailed balance (see, e.g., [4]—[14]). The activa-
tion problem was also considered for quantum systems,
where the potential barrier can be breached both by tun-
neling across the barrier and by thermal activation over
the barrier [15]. In parallel with theoretical develop-
ments, the activation problem from a potential well was
the subject of extensive experimental studies in various

8+GO+sinO=I+L (t}, (1.2)

where the superconducting phase difference 8, the super-
conducting coupling sinO, the nondimensional driving
current I, and the nondimensional Ohmic resistance G of
the shunt resistor correspond to the angle, gravitational
force, external torque, and dissipation of the pendulum,
respectively. The function L(t) represents the noise in
the system.

systems and excellent agreement with theory was found
[16,17].

An equally important problem is that of fluctuations
about and transition rates from a nonequilibrium steady
state to a stable equilibrium state in hysteretic multistable
systems. The recent interest stems from the study of the
voltage state of the shunted hysteretic Josephson [18,19].
The theoretical treatment of this problem started less
than a decade ago with the pioneering work of Risken
and Vollmer [20], followed by Ben-Jacob et al. [21] and
more recently by Graham and Tel [22], and yet there is
no generally accepted analytical theory of this problem.

The canonical example used for the study of hysteretic
multistable systems is the damped physical pendulum,
forced by constant torque and small white noise. It
serves as a model for various physical systems, including
the shunted hysteretic Josephson junction [23,24],
charge-density waves [25], power systems [26], and
phase-locked loops [27], to name but a few. Indeed, the
order parameters in the Josephson junction obeys the
same nondimensional equations as that of the noise phys-
ical pendulum
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The common property of these different systems is the
coexistence of two qualitatively different stable steady
states: a stable equilibrium state and a stable dissipative
nonequilibrium steady-state, a periodic limit curve S in
phase space (Fig. 2} [21,28,29]. The nonequilibrium
steady state in the context of the pendulum corresponds
to a rotational motion of the pendulum. It can also be
viewed as a model of a particle sliding down a washboard
potential (Fig. 1) and is therefore also referred to as the
running state. For the shunted Josephson junction the
stable equilibrium state corresponds to the zero voltage
state of the junction, whereas the nonequilibrium steady
state corresponds to its voltage state [21]. Due to the
presence of the thermal noise L (t) the system fluctuates
about the stable equilibrium state or the nonequilibrium
steady state with occasional noise-induced transitions be-
tween the two.

Small fluctuations about the stable equilibrium state
are described well by the Boltzmann distribution so that
their structure is well understood. Noise-induced transi-
tions from the stable equilibrium state to the nonequi-
librium steady state are identical to the escape of a
Brownian particle over a potential barrier and are accu-
rately described by Kramers's theory of activation.

To calculate the probability density function of the
fluctuations about the nonequilibrium steady state, vari-
ous numerical methods have been developed [7,14].
Ben-Jacob et al. [21] have developed an asymptotic ap-
proach to the analytical calculation of the probability
density function of the fluctuations and the transition
rates in the limit of weak damping (a review is presented
in Sec. III). It was shown in [21] that the steady-state
probability density function p(8, 8) in phase space is
given by

—w(e, e)ra~ z

p poe (1.3)

where W(8, 8) is the efFective energy. It can be expressed
by means of an action variable A (8,8) as

W(8, 8)= —,
'

[ A (8,8)—A o ] (1.4)

where Ao is the action of the limit curve S. It was shown
that through each point (8,8) in the basin of attraction of
the nonequilibrium steady state passes a unique steady-
state phase-space trajectory Sz of a junction with a cer-
tain value I (8,8) of the damping parameter G. For (8,8)
above S we have I'(8, 8}(G and the reverse inequality
holds below S (Fig. 4). The action A (8,8) is calculated
on one period of Sj-. The transition rate from the none-
quilibrium steady state to the stable equilibrium state was
shown to be

tion [30],a dc-SQUID (where SQUID denotes "supercon-
ducting quantum interference device") (two coupled junc-
tions) [31], shot noise instead of thermal noise [32], and
to a system described by a master equation rather than by
the Fokker-Planck equation [33]. Recently the transition
rate from the voltage state of a hysteric Josephson junc-
tion was measured [18,19] and excellent agreement with
the theoretical results of [21]was found.

Yet, the range of the validity of the analytical results of
[21] has been called into question [22]. The purpose of
the present paper is to study the nonequilibrium steady
state both analytically and numerically and to establish
the range of validity of the asymptotic expansion present-
ed in [21]. The main results of this paper follow. (i) The
F contours coincide very well with the steady-state tra-
jectories. A typical maximal deviation for 8'= —,68' is
less than 1%. (ii) As I approaches the critical value 1,
the analytical approximation breaks down for a reason
explained in Sec. V. (iii) The approximation for b, R'is
very accurate in a wide range of values of I. For
G =0.15, even for I =0.8 the error is less than 2% (the
error is much smaller for lower values of I}. For G =0.5
the error is about 10% for I =0.8. We emphasize that
for large values of I the nonequilibrium steady state is
much more stable than the stable equilibrium state (see
Sec. VI), thus this range is of little practical interest as no
transitions from the nonequilibrium steady state can be
observed.

In Sec. II we review the dynamics of an underdamped
physical pendulum in the absence of noise and in Sec. III
we review the WKB method of [21] for the solution of
the Fokker-Planck equation for the probability density
function. Our main analytical result is the calculation of
the probability density function of the local fluctuations
near the nonequilibriurn steady state, in Sec. IV. In Sec.
V we present a numerical solution of the eikonal
(Hamilton-Jacobi) equation by the method of characteris-
tics. This equation results from the WKB solution
presented in Sec. III. We compare the asymptotic results
of Sec. III with the numerical solution and determine the
range of their validity. Finally, Sec. VI concludes with a
discussion of the results and with comments about future
directions.

II. THE UNDKRDAMPKD PHYSICAL PENDULUM

The underdamped forced physical pendulum is a classi-
cal example of a nonlinear multistable dynamical system.
It has both stable equilibria and a nonequilibrium stable
steady state. Specifically, the equation of motion is given
by

MO+yO+mgl sinO=~, (2.1)

where the effective barrier height 58' is given by
hW= —,'(Ao —A, ) with A, the action of the critical first

trajectory Sz. that touches the separatrix between the
basins of attraction of the nonequilibrium steady state
and of the stable equilibrium state (Figs. 8 and 9). This
analytical method has been extended to the case of a
Josephson junction in the presence of microwave radia-

where m is the mass of the pendulum M is its moment of
inertia, l is the distance between the center of mass and
the axis of rotations, y is a friction coefficient, ~ is the
external torque, and 0 is the angle relative to the equilib-
riurn state of the pendulum. Another physical realization
which was widely studied during the past years is the
shunted Josephson junction. This system is described by
the phenomenological equations [23,24,34]
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C +—+I sinO=IdV V

dt
(2.2) G G'

y (x)=—+—cos x+s G I
Here, C is the capacitance, R is the resistance, IJ is the
Josephson critical current, Id, is the external dc current
source, V is the voltage across the junction, and 0 is the
superconducting phase di8'erence across the junction.
The Josephson relation between V and 8 is 0=2e V/A.

Both systems can be written in the dimensionless form

x+Gx+sinx =I . (2.3)

For the physical pendulum, G and I are given by

G =y+mgl/M, I=
mgl

' (2.4)

and time is the measured in units of &M/mgl. For the
Josephson junction

I, 2I
coJRC I~ AC

(2.5)

z =y, y = —Gy —U'(x) . (2 6)

The dynamics of the system depends on the value of the
dimensionless coefficients G and I. If I & 1, the potential
U(x) has no local minima, hence there is no equilibrium
solution to (2.6). The only asymptotically stable solution
then is a steady periodic state S, where the particle moves
down the potential with a periodically varying velocity
whose time average in the limit G/I «1 is given by
(x ) =I/G. This steady-state trajectory, yz(x}, can be
expanded as a series in powers of G/I,

and time is measured in units of 1/co&.
Equation (2.3) also describes the motion of a particle of

unit mass in a "washboard" potential field

U(x)= —coax Ix (Fig.—1). In phase space, Eq. (2.3) is
written as the dynamical system

1 G
'1

cos2x +0 (2.7)
4 I I

If I &1, the points x =xz =—sin '(I)+2am, y=y, =O
are equilibrium states and are denoted by E. For values
of G below a critical value G, (I), both equilibrium and
hysteretic nonequilibrium steady states can coexist, so
that the system is multistable (Fig. 2}. In this parameter
regime, the phase space is divided into a basin of attrac-
tion Ds of the stable nonequilibrium steady state S, and
basins of attraction DE and each of the stable equilibrium
states E (see Fig. 2). The basins are separated from each
other by separatrices, which correspond to solutions of
(2.6) that pass through the saddle points C, defined by
XC = —sin '(I)+2m. (n +—'), yc =0 (n =0,+1,. . . ) [the
local maxima of U(x}].

The function G, (I) represents the maximal value of G
for which the system is multistable for a given value of I.
If 6 =6„each separatrix passes through two saddle
points, corresponding to the motion where the particle is
initially at rest at a maximum of U(x), and approaches
asymptotically the next maximum. As was shown in [21],
for small I, G, (I}is given approximately by

G (I)= I . —1T
c 4

(2.8)

For a gi. en G, we define the corresponding value of I,
denoted by I;„(G),for which G,(I;„)=G. In Fig. 3, we
show the calculated function I;„(G). To calculate G, (I)
numerically, we integrated Eq. (2.6) backwards in time,
starting from the saddle point C for a given I, looking for
the value of G for which the solution will intersect the
previous saddle point.

I I I
)

I I I
I

I I I I

I I I I
]

I I I 1
i

I I I 1
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n
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I I I I I I I I I I I I I

—15
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FIG. 1. The potential U(x) = —Ix —cosx for I ( 1.
FIG. 2. Trajectories in phase space. Top: A trajectory inside

D&. (2) Bottom: trajectory inside DE.
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The condition for multistability in the system is that
G/I ( 1, hence (3.7) can be satisfied whenever the system
is classical and multistable. Thus multistability corre-
sponds to an underdamped pendulum (see discussion of
this point in Sec. VI).

The distribution of fluctuations of the stochastic sys-
tem (3.1) is determined by a probability density function
p(x,y, t), which is a solution of the Fokker-Planck equa-
tion [21]

0.2— ap ap , ap a ap= —y + U'(x) +G yp+ T
Bt Bx 9y 3y 9y

(3.8)

0 0.2 0.4 0.6 0.8 i

/
0 r» i I» i I i i i I i i i ] i i i I

When the system (2.6) is (multi)stable, Eq. (3.8) has a sta-
tionary solution p (x,y), which is a 2m-periodic function
of x. p (x,y) is well approximated inside DE by the un-

normalized Boltzmann density function
FIG. 3. The function I;„(6)(solid line). (2.8) (dashed line).

ps(x, y)=e ~", (3.9)

III. PROBABILITY DENSITY
OF FLUCTUATIONS IN THE PRESENCE

OF THERMAL NOISE

x +Gx + U'(x ) =L ( t), (3.1)

where L (t) is a standard Gaussian white noise satisfying

We now consider the effect of thermal (Johnson) noise
on the dynamics of the pendulum described in the
preceding section. Following [21,35], we assume a
Langevin model

ps(x, y) =p, (x,y)e (3.10)

where W(x, y) is a solution of the Hamilton-Jacobi-
(eikonal-) type equation

V(x,y, W„, W, W)=GW +yW„—[Gy+ U'(x)]W =0

where F. =y /2+ U(x) is the energy. However, ps(x, y)
cannot describe the stationary solution of Eq. (3.8) in Ds,
since it is not a 2m-periodic function of x.

For low temperature we assume the WKB approxima-
tion for ps(x, y) in Ds [21]

(L(t +s)L(t) ) =2GT5(s), (3.2)
(3.11)

and T is the dimensionless temperature in units of a
characteristic temperature e/kz. For the physical pen-

dulum,

(here subscripts denote partial differentiation). The
preexpotential factor po(x, y) is assumed to have a regular
asymptotic expansion in powers of T,

E =P7lgl (3.3)
po(x, y)-p (x,y)+ Tp'(x, y)+ (3.12}

and for the Josephson junction

AIJ
e=EJ =—

2e
(3.4)

The leading term p (x,y) is a solution of the transport
equation

y +[2GW —G —U'(x)] +G(W —1)p =0.CIp ap'
Bx v v gy vv

I 2EJ T,
G 'Log

(3.5)

where the ratio EJ /ficoJ is much larger than one, if quan-

tum effects are negligible [15,32]. As shown in Sec. IV,
the WKB approximation which is used below is valid if

'2
1 IT&8 mRx 2 G

(3.6)

The conditions (3.5) and (3.6) are satisfied if

Next, we discuss the justification of considering the
Johnson noise as the main contribution to thermal noise
in the Josephson junction. Shot noise [32,37] can be

neglected if eV&k~T. In terms of dimensionless units,
this means that

(3.13}

The parametric equations for the constant 8' contours
are

x=y,
y = —Gy —U'(x)+GW

(3.14)

Wy(x, ys, (x)}=ys,(x)E( W)+O(G ), (3.15)

where E(W) is constant on the contour. Hence Eq.
(3.14) is asymptotically identical to Eq. (2.6), except that
G has been replaced by I, where

It was shown in [21] that for a rotating underdamped
forced pendulum, we have on each 8' contour, given by

y =y~(x),
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r =—G[1 —rc(w)] . (3.16}

W(x,y„(x))—f y f.(x) ———dI (3.17}

We denote by W(1 ) the value of W corresponding to a
given value of I, and by I ( W) the value of I correspond-
ing to a given value of W in (3.16) (Fig. 4). This means
that the W contours correspond approximately to the
nonequilibrium steady-state trajectories of the noiseless
system (2.6), with G replaced by I, for 0&I &G,(I).
The function W(x,y) is constant on the 2m.-periodic tra-
jectory y„(x}defined by (3.14}with G replaced by I' only
in the limit I /I~O. For finite, though small values of
I /I «1, the asymptotic expansion of W(x,y„(x)) is

given by

A (I )—: f yr(x)dx ——for —«1, (3.21}1 2m 1 I
2' 0 r I

and set A ( G) —= Ao, so that Eq. (3.20}can be written as

[A (r)—A, ]'
ps(x, y) =exp (3.22)

Thus constant W contours are asymptotically contours of
constant A. We use (3.22} below to calculate the mean
lifetime of the nonequilibrium steady state. Since the sys-
tem is underdamped and ps(x, y) is almost constant on
each W contour, the Fokker-Planck equation (3.8) can be
average on W contours [21] to yield a one-dimensional
Smoluchowski-type equation, which describes di8'usion in
the action space

where yr(x) is given by (2.7) with G replaced by I . For
I /I «1) we obtain

=G [A(I )
—Ao]p+T

Bt ()3
(3.23}

1 I I
W(x, y (x))-W(r)-—r 2 G I

'2

(3.18)

(see the Appendix for an explicit derivation). The asymp-
totic expansion of the leading terin p (x,y) in (3.12} is
given by

p(x,y)=1+0(G ) . (3.19)

It follows that the stationary probability density of fluc-
tuations about S is given by

2I I
p (x,y)-exp — ——— /2T

G I
(3.20)

Note that I depends on the point (x,y), since it is defined
by (3.16) with W= W(x,y).

The result (3.20} can be expressed in terms of a general-
ized action. We define the action of the motion on the
trajectory y =yr(x) by

Equation (3.23) is analogous to Kramers's averaged equa-
tion for the probability density function of an under-
damped system in DE. It follows that the transition rate
from Dz to Dz is given by Kramers's formula for the un-

derdamped regime. Therefore, using the inverse propor-
tionality between the current density and the mean life-
time ~„we find

1/2

7$—
v'7r T

(3.24}
hW

exp

where 6W is the increment in W between S and the W
contour that touches the separatrix. The value of Won S
is constant, which we take to be zero [21]. The W con-
tour that first touches the separatrix is given by
W=W,„, so that 6W=W,„. This contour touches
the separatrix approximately at the unstable equilibrium
point C. Using (3.17) and (2.8) we find the asymptotic ap-
proximation

4 1 I I I
t

I I 1 I
[

1 I I I
[

I 1 1 I

1 I I
max 2 G (I) G

(3.25)

The expression (3.24) is similar to the Arrhenius factor
which characterizes the mean escape time from a har-
monic potential well in action space.

In the next sections we describe a numerical procedure
to solve Eq. (3.11), and compare the numerical results
with the above analytic approximations.

IV. LOCAL FLUCTUATIONS
NEAR THE STEADY-STATE SOLUTION

j. )G

0 I I I I I I I I I I 1 I 1 I I I I I I

5 10 15 20

In this section we study the probability density func-
tion ps(x, y), given by (3.20), locally near S by construct-
ing an expansion of W near the steady-state trajectory
ys(x), and describe the local fiuctuations about it. In Sec.
V this expansion is used to provide the initial conditions
for the numerical calculation of W throughout Dz.

The local expansion is given in terms of the local coor-
dinates (x,5) (see Fig. 5), where

FIG. 4. Constant 8't.ontours for various values of I . 5—=ys(x) —y .
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I I I W(x, y) =
—,'a(x)5 +—,'P(x)5 + (4.2)

where a(x),p(x). . . , are yet undetermined functions. It
follows that Taylor's expansions of W„(x,y) and W~(x, y)
are given by

n„(x,y)
W„(x,y ) = — a(x )5

n (x,y)

n, (x,y)+—a'(x) — p(x) 5 +
2 n (x y}

(4.3)

1.5—
W~(x, y) =a(x)5+ —,'P(x)5 + (4.4)

1
152

I s

154 156

FIG. 5. Local coordinates near S.

158

The functions n„(x,y) and n (x,y) are the components of
the unit normal vector n to S at {x,ys(x)) (see Fig. 5).
The vector n is orthogonal to the vector
(ys(x), —Gys(x) —U'(x)}, which defines the flow (2.6).
Hence

W(x ys(x)) W (x ys(x})= W {xys(x)) (4.1)

It was shown in [21] that on the steady-state trajectory
ys(x), the solution of Eq. (3.11) satisfies

—[Gys(x)+ U'(x) ]
n„(x,y) =

[ys(x) + [Gys(x)+ U'(x) ) ]
'~

—ys(x)
n (x,y)=

[ys(x) +[Gys(x)+ U'(x)] ]'~

(4.5)

Hence Taylor's expansion of W(x,y) in powers of 5 is
given by

We substituted the expansions (4.3) and (4.4) of W„and
W in the Hamiltonian-Jacobi equation (3.11) to get

5 [a(x)+—,'p{x)5][n (x,y)[Gys(x)+ U'(x)] —n (»y)ys(x)]
n (x,y)

n„(x,y)—a'(x)ys(x)+ — —G a(x)+Ga (x) =O(5 ) .
2 s

n (x y)
(4.6)

The expression in the curly brackets in the first term van-
ishes, since it is the scalar product of the flow and its nor-
mal n. Note that the function p(x) is no longer needed
for the calculation of a(x). It follows that a(x) satisfies
the Bernoulli equation

n„(x,y)
—,'a'(x)ys(x)+ — —G a(x)+Ga (x)=0 .

n (x,y)

(4.7)

and

t(x)=— 26
ys(x)

A (x)= 1

R (x)
R (0)

The 2m.-periodic solution of (4.9}is

t(z)R (z)dz
0

1 —R (0)

(4.11)

We first convert (4.7) into a linear equation by the substi-
tution where

+ tzR zdz (4.12}

1a(x) = (4.8) R (z)—:exp f r(u)du
z

(4.13)

to get

A '(x) r(x) A (x)=—t (x) .

Here, the coefficients are given by

(4.9)

Next, we discuss the local fluctuations about ys(x).
The function a(x) is the local frequency of the quasipo-
tential W(x,y) in the y direction. In the limit G/I « 1,
the variance of the local fluctuations of y, at fixed x, is

given by

r(x) = n„(x,y } —G
n (x,y)

[—,'ys(x) ]=, (4.10)
2U'(x)

ys(x)
(4.14)

a(x)
f5 exp[ —

—,
' a(x )5 /T ]d 5

o~(x) =
f exp[ ,' a(x }5 /T ]d5——
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GG
I I (4.17)

These results can be used te o calculate

I
osep son junction for a

Th olt
'

1 t d
by

eae to the e dimensionless velocity

V =IJRGy,

hence, using (4.17) and (4.18'hence
' . n . ), and substituting (2.5),

G2'

C I1 —2m +0

(4.18)

(4.19)

where T' is thee absolute temperature
'

This fluctuation is a
ure in degrees Kelvin.

to the width of e b

'
n is a measurable uantit

error ars when meas
q

'
y. It corresponds

across the junction at
measuring the voltage

'
n a a given current Idc

In Fiig. 6, we show that the minimum o
cides with the point hpoin w ere two nei hb
d f h hc ot er rnaximall .
point where U(x) h

y. This point is also the
x as a local maximu

local minimum.
um, and yz(x) has a

The av erage fluctuation ofo yisgivenby

fdx f 5 exp[ —
—,'a(x)5 /T]d5

dxx y exp[ —
—,'a(x)5 /T ]d5

xa '"x
=T (4.15)

n expansion of a(x) in powers of G/I yields
'2

a(x) =1++ — (In+cosx )+0 (4.16)

hence, for G/I «1

V. NUMERICAL SOLUTION
OF THE HAMILTON-JAC OBI EQUATION

The solution of the Hamilton-Jacobi e
whichis a 2n pe

'
d frio ic unction ofx is c

iono t echaractacteristtc equations [36,37]

ap == —Gy —U'(x ) +2G W~,

W„=— —W = U"(x)W

W=W + Wy =GW"Bw

The ie initial conditions for (5.1) are ivHo, S h
P

is a c aracteristic curve and a
tractor of the chara t

n a caustic (an at-
aracteristic curves

e use the expansions (4.2) —(4.4 of W W
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FIG. 12. W,„(I)for G =0.15: (a) the numerical results; (b)
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very accurate in a wide range of values of I. For
6 =0.15, we find that for I;„&I&0.8 the error is less
than 2%. This error increase as I approaches 1. Howev-
er, even very close to 1, it is still less than 10%. For
6 =0.5 (Fig. 13), the error is about 10% for
I;„&I & 0.8, and increase up to 15% for I approaching
1. In this range of parameters the nonequilibrium steady
state is very stable, so that the hysteresis is very weak.
The lifetime v; is in this case extremely long relative to
the lifetime of the steady equilibrium state. Thus this
range of parameters is of little practical interest for mea-
surements of r, We. note that the approximation (3.25)
of the height of the effective barrier for the nonequilibri-
um steady state is robust with respect to 6 in the range of
values where the lifetime ~, of the state is measurable.
This is in spite of the sensitivity of the approximation
(3.15), which was used in the derivation of (3.25). We
note that r, [see (3.24)] is measurable only in a relatively
narrow range of the parameters G, I, and T, otherwise be-
ing practically infinite. In particular the range of G is
limited in the underdamped range.

The reason for this breakdown becomes obvious from
Fig. 3. As I increases, G, (I) becomes a nonlinear func-
tion, tending asymptotically to infinity at I =1. Hence
G, /I exceeds one, and the assumption under which the
analytical approximations were derived no longer holds.

(ii) From Figs. 10 and 11, we see that the approxima-
tion (3.15} remains accurate only in the limit of small G.
The plots of W~/y versus x on the contour W= W,„/2
show that W /y oscillates with a relative amplitude of
about 0.5% for 6 =0.07, and about 7% for 6 =0.15.
We note that the approximation (3.15) is the one most
sensitive to the condition 6/I « l.

(iii) In Fig. 12 we see that the approximation (3.25) is
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VI. DISCUSSION

The results presented in Sec. V can be interpreted in
the context of the shunted Josephson junction. In this
system, the nonequilibrium steady state corresponds to
the voltage state of the junction, while the equilibrium
state is the zero voltage state.

In Sec. V we obtained an approximate expression for
the probability density function near the nonequilibrium
steady state,

a(x) [y —ys(x) ]
ps(x, y) =exp (6.1)

which, in view of (4.18), describes small fluctuations
about the voltage state. We found that to leading order
of 6/I, the average fluctuation in voltage satisfies the re-
lation C(b V )/2=k+ T'/2. This means that in the lim-
it of vanishing dissipation, the fluctuations consist only of
fluctuations in the charging energy of the capacitor, while
the contribution of the Josephson coupling energy is
negligible. It is interesting to note that this result coin-
cides with the average fluctuation in voltage about the
equilibrium state.

For large fluctuations about the nonequilibrium
steady-state trajectory we found that a contour of con-
stant probability coincides approximately with a steady-
state trajectory of the noiseless system, corresponding to
a certain value of the dissipation coeScient. It was

0 ll I' 8 . 0 t 7= hldCJll p~O
is within a few percent throughout Dz, as long as I is in
the linear part of the graph of the function I;„(G) (see
Fig. 3), i.e., I 0.7. Hence the probability density func-
tion of fluctuations is given by

'2

ps(x, y}=exp I I
I (x y) 6 2T (6.2)

FIG. 13. 8',„(I) for G =0.50: (a) the numerical result; (b)
the analytical approximation. where I (x,y) is the dissipation coefficient corresponding
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the forced pendulum is bistable if it is underdamped. The
degree of underdamping for which Kramers's formula
(3.24) is valid is different in Ds and in Dz. In Ds (3.24) is
valid for most of the range of the parameters G and I for
which'the system is bistable. In contrast, (3.24) is valid in

Dz [with b, W replaced by hE,„, see (6.6)] only if
G « T/KE, „[40]—[42). Thus the use of the transition
state result for the calculation of ~p is justified.

A measure of the relative stability of the nonequilibri-
um steady state and the stable equilibrium state is the ra-
tio of their lifetimes, ~, and ~o, respectively. We have

7$
max ~EmaxT~O 7p

(6.5)

P(I)= . exp —f1 i dI
r, (I)I ~ r, (I)I

(6.3)
where

to the noiseless system whose steady-state trajectory
passes through the point (x,y). We note that the ex-
ponential factor, which determines the fluctuations near
the steady state, depends on the variation in the effective
kinetic energy 68', unlike the variation in energy, which
determines the fluctuations about the equilibrium state.

A reservation about the validity of the approximation
of 8'contours by steady-state trajectories was mentioned
in [22]. A discrepancy was point out between the critical
contour and the corresponding steady-state trajectory,
for the values I =0.83 and G =0.13. As explained
above, this value of I is outside the linear part of the
graph of the function I;„(G)(see Fig. 6), so that the con-
dition G, (I)/I «1 is violated, and the approximation
breaks down. Nevertheless, we see in Fig. 12 that 8',„
is still given by this method within an accuracy of a few
percent. In the context of the Josephson junction this
range of parameters, where the approximation fails, is of
no experimental interest, since for usual physical parame-
ters of the junction, the lifetime of the voltage state is
practically infinite.

Next, we discuss the lifetime of the nonequilibrium
steady state ~„which is determined by the critical con-
tour W= W,„. Equation (3.25) provides a simple ana-

lytic formula for ~, that can be compared to experiment.
The lifetime can be measured by a method similar to that
used in the measurement of ~o, the mean lifetime of the
equilibrium state. The system is initialized in the voltage
state with I=Io&1. The external current is then de-
creased at constant rate I until transition to the zero volt-
age state occurs at some I )I,„(G). The transition rate
(transition probability per unit time) is k(I) —= r, (I), with
A,(I)=0 for I~ 1. By repeating this process, the plot of
P(I) is obtained, where P(I) is the probability density
that transition occurs at current I. The probability densi-

ty P (I) is related to the mean lifetime r, (I) by

hence 7, (I) is obtained by inverting Eq. (6.3) numerically.
A second method to measure r, (I) experimentally is

given in [19]. In the hysteretic region, the junction jumps
between the two states at random times. The mean volt-

age V, which is directly measurable, is obtained by
weighting the two states with their lifetimes ~p and ~„re-
spectively. Thus

0(ro)+ V, (~, )V=
7p+7$

(6.4)

where V, is the voltage in the conducting state. Since 7p

is given by Kramers's theory, which was confirmed ex-
perimentally [38], r, can be calculated from (6.4). In
[19], the authors took ro to be the transition state theory
result [39], and obtained a reasonable agreement between
the theoretical and the experimental values of ~, . The
use of (3.24) for the evaluation of r„which corresponds
to an underdamped system, and of the transition state
theory result for the evaluation of ~p in the same system
can be understood as follows. As mentioned in Sec. II,

b,E,„=2Isin '(I) n.I+2(1 I —)'~—(6.6)

is the difference in the potential between the equilibrium
state E, and the nearest saddle point C. Therefore we
have the asymptotic relation

7 $—o- exp
Tp

~max ~Emax (6.7)
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Figure 14 shows plots of 8',„and EE,„versus I. Tak-
ing, for example, the parameters used in [19],C =7.2 nF,
I& =4 pA, and T =4.2 K, we find that a difference of uni-

ty between 6',„and EE,„gives a relative stability with

an exponential factor of e, hence the region where the
hysteresis can be observed experimentally is very narrow.
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APPENDIX

We consider the function

Substituting (A6) into the parametric equations (3.14) of
the Wcontours, we see that

2

H(x, y}= + U(x}
2

x=y
y= —I"y —U'(x}+0(G }, (A7)

+G f [yr(g) —W (g,yr(g})]dg, (Al)

where xo is fixed and the integral is taken along the W
contour the passes through (x,y). It was shown in [21]
that H(x, y) is constant on contours of constant W, so
that H =H ( W). The rate of change of H ( W) on a
characteristic curve (x (s),y (s) ) is given by

d H(x (s),y (s) )=y (s)y(s)+ U'(x (s) )x (s)
ds

+Gd, f„[yr(k)
—W„(ky (k)}]dk

(A2)

where I' is a function of (x(s),y(s)) [the solution of
(5.1)]. The derivative of the integral is

f (y —W )dg=x(s)[y(s) —W (x(s),y(s))]

+6Wr (x(s),y (s) }

and

—+0(G )
yr(x) G

dW ~y(x,yr(x)) yr(x)Wy(x, yr(x))+0(G')
dr archy r

y~ (x)[1+0(G )]
1 1

6 I I

where I—:G(1 —K ( W) ).
The relation between W and I is determined next by

the asymptotic relation
r

W (x,yr(x))I'=G 1 — +0(G ) .
yr(x)

On a Wcontour,

W (x yr(x) W (x yr(x))+ +0(G )
yr(x) yr(x)

Using this result and (5.1},we find that

H(x (s},y (s) )=Gy (s) W (x (s),y (s) )
d
ds

+G W~(x (s),y(s))

x (s) 1 WyyX dg.

Now, using (5.1) and (A4), we obtain

(A4)

It follows that

6
for —(&1 .I

For I'/I «1, we use (2.7) to write

for —« 1 . (A8)
r
I

W(x,y, (x))=f y„(x) ———dI+0—1 1 r
G 6 I I

H'(W)=" = . = y +G f" '"dg. (As)
dW W W, 0 W,

It was shown in [21] that

W =1+0(G),
hence, on a W contour,

y (x)= +0I I
I 2

which gives the approximate solution
'2

1 1 1W(r)= ————
2 6 I (A9)

Wy(x, yr(x)}=K(W)yr(x)+0(G ) . (A6) (see [21]).
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