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Phase-field model for isothermal phase transitions in binary alloys
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In this paper we present a phase-field model to describe isothermal phase transitions between
ideal binary-alloy liquid and solid phases. Governing equations are developed for the temporal and
spatial variation of the phase field, which identifies the local state or phase, and for the composition.
An asymptotic analysis as the gradient energy coefficient of the phase field becomes small shows
that our model recovers classical sharp interface models of alloy solidification when the interfacial
layers are thin, and we relate the parameters appearing in the phase-field model to material and
growth parameters in real systems. We identify three stages of temporal evolution for the governing
equations: the first corresponds to interfacial genesis, which occurs very rapidly; the second to
interfacial motion controlled by diffusion and the local energy difference across the interface; the
last takes place on a long time scale in which curvature effects are important, and corresponds to
Ostwald ripening. We also present results of numerical calculations.

PACS number(s): 81.30.Bx, 82.65.Dp, 68.10.Gw, 64.7Q.Dv

I. INTRODUCTION and their gradients, in the following way:

Classical macroscopic models of phase transitions de-
scribe the interface between regions of different phase
as a surface of zero thickness. The governing equations
for thermodynamic variables, such as temperature and
composition, are formulated in each phase independently,
based on conservation principles and quantitatively ver-
ified phenomenological laws that relate fIuxes to gradi-
ents. The boundary conditions at the interface are of
two types: those which represent conservation laws when
there are discontinuities in the thermodynamic variables
or their gradients, and those which deal with the values
of the thermodynamic variables at the interface and are
based on modeling of the interface on an atomic scale.
This approach gives rise to the formulation of a free-
boundary problem which provides a diKcult mathemat-
ical setting in which only phase changes with simple ge-
ometries have been rigorously analyzed mathematically.
Because these models have been used for many years, it
is clear from the outset what physical mechanisms are in-
corporated into them, and comparison with carefully con-
trolled experiments have been performed, e.g. , the den-
dritic growth experiments of Huang and Glicksman [1]
and the grain boundary groove measurements of Hardy

An alternative technique for investigating systems in-
volving a phase transition involves the construction of
a Cahn-Hilliard or Landau-Ginzberg free-energy func-
tional, which unlike the classical model, treats the sys-
tem as a whole. This approach has its roots in statisti-
cal physics (see, e.g. , Laridau and Khalatnikov [3]). For
this purpose, a phase field P(x, t) is postulated to exist,
which characterizes the phase of the system at each point
in space and time. It is assumed that the Helmholtz free
energy X[/, . . .] is a functional of the phase field, as well

as any other thermodynamic variables (such as tempera-
ture and composition which are denoted here by ellipses),

where 0 is the region occupied by the system, and

f(P, . . .) is the Helmholtz free-energy density for a phase
with no gradients. Its dependence on P usually has a
"double-well" form. Here we assume that, the only con-
tribution to the energy functional from local gradients is
that of the phase field; a more general model might also
include contributions due to the gradients of the other
thermodynamic variables. The phase field is then as-
sumed to evolve as

where 8 is some partial differential operator, such that
L(0) = 0. This equation is then supplemented by par-
tial differential equations for the other thermodynamic
variables.

In some situations the composition naturally plays the
role of the phase field, in which case the double well in

the free energy occurs with respect to composition. Cahn
and Hilliard [4—6] have used this approach to model inter-
facial energies, nucleation, and spinodal decomposition in

a binary alloy. Also Langer and Sekerka [7] have modeled
the motion of a planar interface using this approach.

More generally, various models that employ these ideas
are reviewed by Halperin, Hohenburg, and Ma [8], par-
ticularly in regard to the study of critical phenomena.
The model C given by Halperin e$ a/. has been adapted
by Langer [9], and most prolifically by Caginalp [10, 11],
to derive the so-called "phase-field model" of solidifica-
tion which describes the phase change of a pure material.
Caginalp has studied this model, and its variations [12,
13], extensively. In this model the phase field is required
to evolve according to
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where a, o, and ( are nondimensional constants. A
nondimensional temperature T satisfies the heat equa-
tion, modified to allow for latent heat production as a
source term proportional to Pq..

l
T, + —P, = I&'7 T,

2
(4)

where L is the latent heat. The Helmholtz free-energy
density used by Caginalp is

where T = 0 is the phase transition temperature.
It has emerged from study of this model that qualita-

tively it exhibits features common to solidification of a
pure material. Numerical calculations by Smith [14] and

by Caginalp and Socolowski [15],and for a similar model

by Kobayashi [16], show such features as breakdown of
planar and circular interfaces to cellular structures, as
well as the formation of dendritelike structures, inclusion
of liquid pockets, and Ostwald ripening or coarsening be-
havior.

Caginalp [12] has shown in various distinguished lim-
its, in which ( ~ 0, that various forms of the classical
Stefan problem may be recovered, in which the interface
is taken to be "sharp, " i.e. , modeled by a surface. In this
limit, there are thin layers within 0 of thickness 0(()
in which the phase field rapidly changes. These are in-
terpreted as representing diffuse interfaces. From this
analysis it transpires that in some limits, the interfacial
dynamics involve curvature effects corresponding to the
Gibbs-Thomson interfacial surface energy effect as well
as kinetic effects. In other limits, it is also possible to
recover the classical Hele-Shaw problem. It is clear that
this approach can embody a considerable variety of real-
istic physical effects in a coherent way.

When applying the model above to a definite physi-
cal situation one must address the question of how to
choose the values of parameters in the phase-field model
so that it describes the solidification of a pure material
with known materials and growth parameters. Such a
choice of parameters is essential to permit comparison
with experiment. Caginalp has shown [12] how sharp in-
terface models of a pure material can be obtained in var-
ious limits in which the interface thickness is asymptoti-
cally small; by this procedure he is able to identify lim-
iting values of his parameters with those associated with
classical sharp-interface models. We present, an analo-
gous asymptotic analysis for our model below.

The free-energy functional is employed by Caginalp
in the formulation of the kinetic equation for the phase
field; an appropriate diffusion equation for the temper-
ature field is then adjoined separately to complete the
model. An alternative derivation, suggested by Penrose
and Fife [17], is to construct an entropy functional of
the system, and postulate kinetic equations for P and T
which ensure that the entropy increases monotonically in
time, as required by the second law of thermodynamics.

In particular Penrose and Fife exhibit a specific choice of
entropy density which essentially recovers the phase field
model employed by Caginalp.

The appeal of phase-field models in describing phase
transitions is twofold.

~ It provides a simple, elegant description that ap-
pears to embody a rich variety of realistic physical
growth phenomena.

~ From a computational point of view, it is in prin-
ciple simple to obtain solutions. This is because it
is not necessary to distinguish between the differ-
ent phases. Computations that employ the classical
sharp interface formulation require the free bound-

ary to be tracked numerically, and the regions oc-
cupied by each phase are therefore determined and
dealt with individually. Added difBculties with the
classical method are encountered when the connect-
edness of the solid or liquid regions changes in time.
These considerations often result in very di%cult
and untidy numerical algorithms.

In this paper we derive and analyze a phase-field model
for isothermal phase transitions of a solution of two com-
ponents. In an isothermal system the driving force for
phase transformation is developed through the growth of
a product phase into a supersaturated parent phase. To
our knowledge, there are to date no phase-field models
that deal with multicomponent materials and alloys. The
model presented here is a step to developing a phase-field
model for the solidification of an alloy. In future work we

hope to incorporate this model in a formulation based
on increasing entropy, which will then allow both vari-
ations in temperature and composition, and provide a
phase-field model for commercially important alloy solid-
ification processes used in such things as the fabrication
of modern electronic devices and directionally solidified
turbine alloys.

In section II we discuss the phase-field model of a pure
material due to Kobayashi [16],and use it as a basis to de-
rive our isothermal phase-field model for growth of binary
alloys. We employ a kinetic formulation which ensures
that the Helmholtz free energy decreases monotonically
in time. In the following sections we consider the sharp-
interface limit. This shows the correspondence of our
phase-Geld model with classical sharp-interface models,
and allows us to relate the materials parameters in the
phase-field model to those of the classical Stefan problem.

We show that the time evolution of the system occurs
on three scales. There is an initial very short period in
which interfaces form. It is a response of the system
to the initial data and does not necessarily represent the
process of nucleation. This is followed by a second period
in which the interfaces move in response to the energy
density difference across them. In the third and final pe-
riod coarsening occurs, in which the interfaces move very
slowly, primarily in response to changes in curvature. In
section IV we discuss the motion of a planar interface
and show how segregation is dependent on the interfa-
cial growth rate in this model. In section V, we present
results from a numerical integration of the model, which
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bear out the results of sections III and IV and show the
power of this formulation.

II. PROBLEM FORMULATION

A. The governing equations

We consider an isothermal solution of two difI'erent
components A and B which may exist as two distinct
phases, solid and liquid, contained in a fixed region 0
with boundary OQ. We denote the concentration of 8
by c(x, t) and we introduce a phase field P(x, t), which
represents the phase in time. and space in A. Specifically,
we describe the solid-liquid interface by P(x, t) = 1/2 and
denote regions where P(x, t) ) 1/2 as solid and regions
where P(x, t) & 1/2 as liquid.

A recent phase-field model due to Kobayashi [16] mod-
els the phase transition of a pure material by employing
the following gradient weighted free-energy functional:

where c is a constant, T(x, t) is the tempera, ture, and the
free-energy density is

f(P, T) = W p(p —1)[p —
—,
' —P(T)]dp

0

where W is a constant with units of energy per unit vol-
ume. Here P(T) is a monotonic increasing function of T,
such that P(TM) = 0, where TM is the freezing temper
ature of the material, and IP(T)l & 1/2. The free-energy
density f(P, T) is a double-well potential in P; see Fig.

1. The restriction IP(T)l & 1/2 ensures that it has local
minima at P = 0 and P = 1, and a local maximum at
P = 1/'2+ P(T). Because of the two minima, the system
may exist stably in a state which is a single phase liquid
[gI(x, t)—:0] or a single phase solid [P(x, t) = 1]. There
is an energy penalty for a change of phase within the
region 0, which corresponds to P varying between zero
and unity. This is because such a variation increases the
total energy T of the system, due to an increased en-
ergy density associated with the double-well nature of
the energy density, and also due to the contribution to
the total energy due to the gradient energy, which is no
longer zero.

If —1/2 & P & 0, i.e. , T & TM, then the global min-
imum of the energy density is at P = 1, and so the
single-phase solid has the lowest energy. However, if
0 & P & 1/2, i.e. , T & TM then the situation is reversed,
and the single-phase liquid has the lowest energy.

We now employ this form for the free-energy den-
sity to develop the appropriate free-energy density for
an isothermal solution in which the two difI'erent phases
are assumed to be ideal solutions. We assume that
TM ) TM, where TM and T~ are the freezing tempera-
tures of pure A and pure B when c = 0 and c = 1, re-
spectively. We assume that the actual temperature of the
solution, T, which is given, lies between these two freez-
ing temperatures, i.e. , TMA & T & TM. We also assume
that the Helmholtz free-energy densities of each compo-
nent A and B alone are of the form given by Kobayashi,
and are denoted by f~(P;T) and f~(P;T), respectively
Specifically we put

fg(P; T) = Wg p(p —1)[p —
—,
' —P~(T)]dp, (8)

0

0.05— fIr(P;T) = Wir p(p —1)[p —
—,
' —PIr(T)]dp, (9)

where WA and Wg are constants, and the temperature
T is a parameter in this isothermal situation. We note
that because Tg & T & TM, then —1/2 & PA(T) & 0 &

PB(T) & 1/2. We take the energy density f(P, c;T) of
the solution as

0.00—

f(P, c; T) = cfB (g~; T) + (1 —c)f~ (P; T)
RT+ [c ln c + (1 —c) ln(1 —c)],
Vm

—0.05 I I I I I I

—0.25 0.00 0.25 0.50 0.75 1.00 1.25

FIG. 1. The free-energy density f(P, T), employed by
Kobayashi [16], displayed as a function of P for three val-

ues of the temperature near the melting temperature T~.. for
T&TM (p= —0.2), T=TM (p =0), and T) TM (p=0.2).

where R is the universal gas constant constant and v

is the molar volume, which is assumed to be constant.
The first two terms correspond to the contribution to
the energy density due to the individual molar Helmholtz
free-energy densities of the two components and the last
term is due to the decrease in energy associated with
the mixing of the two components, under our assump-
tion that both liquid and solid phases are ideal solutions.
In Fig. 2 we represent the free-energy density (10) as
a surface. This model could easily be extended to the
case of a regular solution by adding a term of the form
c(1 —c)[QI. + gi(As —QL, )] to the free-energy density

f(c, P), where Bl. and Qs are thermodynamic constants.
We define the free energy functional by
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Bc Oft—= MgV. c(l —c)V
cjt Oc)

which may be also written by using (10) as

2 2 &f~ ~f~ i= Mi e 7' P — c +(1—c) ~, (17)

—= MqV . [c(1 —c)V(fg —fg)]+ DV' c,
t

(18)

1 ~ 0

FIG. 2. The free-energy density for the isothermal solu-
tion given by (10) as a function of P and c.

x= l'x,
l+ 2

where D = M2RT/v~ is identified as the diffusivity of
the solute. We note that in this formulation the solute
diffusivity is the same in each phase. Typically solute
diffusivity in the solid is about four orders of magnitude
smaller than in the liquid. This restriction could be over-
come in the future by allowing the quantity M~ to depend
on g.

We now nondimensionalize these governing equations
by introducing the following dimensionless quantities (de-
noted by a tilde):

0$ bX
Bt bg' (12)

2

X[/, c; T] = f(g, c; T) + —iVPi dQ, .
A

In order to derive a kinetic model we make the assump-
tion that the system evolves in time so that its total
free-energy decreases monotonically. The following pre-
scription is consistent with this assumption and ensures
that the total amount of solute is conserved:

(19)

where l* is a representative length of the system 0,
T' = (TMA + Tg )/2 is the average of the melting tem-
peratures of the two constituents, and time has been
scaled on the diff'usive time scale. Here f = f(P, c; T) =
cf~(P; T)+(1 c)f~ (P; T)—+[cln c+(1—c) ln(1 —c)], where

f~(P; T) = Wg f~ p(p 1)[p—
2

—P~(T)]d—p, f~(P; T) =
Wtr f p(p —1)[p—

2
—Prr(T)]dp, W~ ——Wgv~/RT, and

Wtr ——W~ v~ /RT.
The governing equations, (15) and (16), can then be

written as

t9c ( bPi—= MqV
i c(1 —c)V

Bt bc&
' (13)

(2o)

where Mi and M~ are positive constants. The choice of
boundary conditions

0$ Oc

Bn |97l
(14) where

where n is the outward normal to the boundary BB,
ensures that there is no change in the total composi-
tion of the system due to transport across its boundary
and that the Helmholtz free energy decreases monoton-
ically with time. We may interpret the right-hand side
of (13) as the negative of the divergence of a solute fiux,
j = —Mqc(1 —c)V(bX/bc). The coefficient c(1 —c) has
been included to ensure that the diffusion equation for
the solute that emerges has a diffusion coe%cient that is
not dependent upon composition.

Evaluating the variational derivatives of the free-
energy functional gives

Mgl* RT*
Dv

vm

l' RT' ' (22)

B. Relationship between materials parameters of the
phase-field model and sharp interface theories

Below we show that the surface tension is related to the
parameter i and the interface kinetics to the parameter
Mi. Crystalline anisotropy may possibly be included in
this model by allowing the parameter e or the mobility
Mi to be dependent on the direction of VP, in (12) and
(13) as implemented by Kobayashi [16] in his phase-field
model of a pure material.

=Mi~eV'P-
Bt g Bpr

' (15) In order to determine the relative magnitudes of the
dimensionless parameters and to permit application to
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V~ = p~(TM —T). (23)

These data (or estimates of them) are available for most
pure materials. The corresponding identification of pa-
rameters for the case of pure B is completely analogous.
We consider each parameter separately in turn.

real materials systems, it is necessary to obtain values
for the seven materials-related parameters of the alloy
phase-field model. They are c, W~, WB, P~(T), P~(T),
M~, and M2. The parameter M2 has already been related
to the diffusion coefficient as D = M2RT/v, through
the similarity of (18) (when P is identically zero or unity)
to the linear diffusion equation.

We proceed to develop expressions that relate the pa-
rameters e, W~, P~(T), and Mi to parameters common
to sharp interface theories for pure A. These parameters
are crA, solid-liquid surface energy of a stationary planar
interface; LA, the latent heat of fusion per unit volume;
and pA, the linear kinetic coefIicient, which relates the
normal interface velocity V„to interface temperature by

z d2$ V„dg clf
dz2 Mi dz

(29)

The only solution with the property that P ~ 1 as z ~
—oo and P ~ 0 as z ~ +oo is

P(z) = 1+exp z
2t j

and this solution only exists when

V„= Mi eP—g (T)+2W~.

(30)

(31)

We see from the form of the solution (30), or from Allen
and Cahn [18], that the thickness of the interface bA is
characterized as

[19]),which represents the uniform motion of a planar,
diffuse int, rface. . Transforming to a frame moving with
constant velocity V„,{15)has a steady solution which
satisfies

1. Energy difference between phases
2

bA
—~ (32)

The difference in free energy between solid and liquid
phases is known as a function of temperature, This quan-
tity f~(1;T) —f~(0; T) is often approximated by a linear
function of temperature near the melting point as

Equations (26) and (31) give

T TA
(33)

L T —T"
fg(1; T) —f~(0; T) =

M
(24)

from which by comparison with (23) we find

Evaluation of this free-energy difference from the inte-
gration of (8) gives

f~{I;T)—f~{0;T)= (25)

hence

W~ p~ (T) L~ (T —TM )
6 TM

(26)

2. Surface free energy

1

0~ ——a~2 /f~(Q; T)dp
0

(27)

An expression for crA, the excess free energy of the
interfacial region over the bulk phases has been derived
for an interface with a nonconserved order parameter (the
case employed in our phase-field model) by Allen and
Cahn [18]. With change of notation this is

E = 60A~A ) (35)

6M' LAbA
PA =

A
M

Equations (26), (28), and (34), derived from compar-
ison with classical sharp-interface theory, provide three
relations for the four unknowns e, Wg, P~(T), and Mi. In
addition, information is required about either the height
of the maximum of the double-well potential {W~/64 at
T = TM) or the interface thickness b~ to uniquely es-

tablish values for all parameters. In some cases, such as
spinodal decomposition, the height of the maximum of
the double-well potential can be estimated from a regu-
lar solution model of the phase and the proximity of the
critical point. In the present application to liquid-solid
reactions, such an approach is not currently possible. We
therefore choose to treat the interface thickness as an in-

put parameter, in which case the values of the phase field
parameters are related to the classical data as

Evaluation of this integral (at T = TM) using the form
of the free-energy density given by (8) yields WA ——12 (36)

e/Ws
6~2

8. Interface linetics

(28)

M @ATM
6LAbA

' (37)

We consider the one-dimensional solution of (15) for a
pure material, c = 0 or c = 1 (see Harowell and Oxtoby

( L~b~ l'T —TM 'i
P~T =I

20 A 4 TM
(38)
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(39)

PA

pa
bA LA TM

ba I.g TM
(40)

These restrictions could be removed by choosing both e

and M~ to depend linearly on composition.
Numerical values of these constants can be estimated

for the alloy system Ni-Cu. The liquid-solid part of this
phase diagram closely resembles that for the ideal solu-
tion model assumed in this work. Values for the param-

TABLE I. Classical and phase-field parameters for the
¹iCu alloy.

TM (K)
L (J/cm )
v (cm /mole)'
o (J/cm2)
p (cm/Ks)
D (cm'/s)'
b (cm)

Nickel

Classical parameters
1728
2350
7.0
3.7 x10 '
200'
10-'
5 x 10

Copper

1358
1725
7.8
2.8 x 10
247
10
6.6 x 10

by employing equations (26), (28), (32), and (34).
We emphasize that whatever choice we make for the

interface thickness, the resulting values of e, W~, P~(T),
and M~ provide a model that has the required free-energy
change, surface energy, and interface kinetics to match
the classical theory.

To treat the alloy case at hand in the present paper,
the last four equations would be evaluated for each pure
component. However, because we have assumed that e

and. M~ are constant and do not depend on composition,
we are restricted in the choices for some parameters. To
ensure that single values of c and M~ are obtained, the
following restrictions must be satisfied:

eters are taken primarily from Coriell and Turnbull [20]
and are given in Table I. The dimensionless parameters
i and My can be calculated from the data in Table I. For
a length scale l', we chose a dimension typical of cellular
and dendritic structures of 100 pm. Using the data in
Table I and T' = (T~+ + Tg )/2, we have i = 7.9 x 10
and M~ ——8.5 x 10' . These values, along with equations
(20) and (21), provide a complete formulation for the cal-
culation of isothermal phase transition (solidification) in
the Ni-Cu alloy.

III. ASYMPTOTIC ANALYSIS: THE LIMIT R -+ 0

M
Mg ———, (41)

where

Mt l'e RT'
D v

(42)

In this section we analyze the system in the limit 2 ~ 0.
We restrict our attention to the situation when the do-
main 0 is two dimensional. We assume that P and c
satisfy Neumann conditions on the boundary, so that
the total amount of solute is conserved and the free en-

ergy of the system decreases monotonically in time. In
particular, we consider the spatio-temporal evolution of
the concentration and phase field from given initial data.
We require that the initial data c;„;t(x)and 4;„;t(x)for
c(x, t) and P(x, t), respectively, are bounded in the in-
terval [0, 1], i.e. , 0 & c;„;t(x)& 1, 0 & P;»t(x) & 1, and
satisfy the Neumann boundary conditions. We empha-
size that because of the generality of these initial data it
does not necessarily represent a physically realistic initial
state.

We assume that the contribution of the gradient energy
is much smaller than that of the free-energy density and
so r~/I' && RT'/v~, and hence i && 1. Furthermore, we

assume Mt )) 1 and in particular we put

r (J/cm)'~'
W (J/cm )

~ (T)
Mg (cm'/Js)
Mg (cm'/J s)"

8.9 x 10
16& —M&

M
4.9 x 10

5.7 x 10

Phase-field materials parameters
3.3 x 10

5.1 x 10

2
(~-~~~).0

In light of the values of Mt and e calculated above for
the Ni-Cu alloy such assumptions are clearly justified.

The governing equation for the phase field becomes

0$ - -2 1 c)fl
Bt I 0$) '

An average value of 7.4 will be taken, since this model does
not deal with volume changes.

Estimated from o = 0 7L(v /Ns)&, se.e Coriell and Turn-
bull [20]; No is Avagadro's number.
'Estimated from p = V,Lv /RT; V, is the speed of sound
in liquid metal (taken as 3 x 10 cm/s); Coriell and Turnbull
[20].
Calculated from pN; using Eq. (40).

'Typical liquid difFusion coe%cient.
'tA'e have taken the interface thickness to be on the order of

atomic dimensions.
sCalculated using Eq. (39).

At T' = 1543 K.

and that for the composition is unchanged from (21).
Below we shall consider the limit i ~ 0, which corre-
sponds to considering the situation when the mobility of
the phase field. is very large and the thickness of the inter-
faces is very thin. We note that this represents one dis-
tinguished limit of the governing equations (21) and (43),
which we show below provides a realistic model of phase
transitions in isothermal alloys. Other distinguished lim-
its are of course possible, as, for instance, considered by
Caginalp [12], in his analysis of the phase-field model of
a pure material.

In the limit 2 ~ 0 the diffusivity associated with the
phase field, which is MF, becomes small, and results in
the formation of interior layers within the region 0 in
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which the phase field and the concentration vary rapidly,
the former from zero to one. Such layers represent solid-
liquid interfaces. In this section we seek to derive the
jump conditions which relate the concentration field and
its derivatives in the vicinity of such layers to their nor-
mal velocity and curvature. We first consider the outer
solution in regions away from the interfacial layers.

Henceforth we only deal with dimensionless quantities
in the governing equations, and for simplicity of notation,
we omit the tildes.

vicinity of I'(t), r measures the normal distance to the
curve. Thus I'(t) is therefore described by r(x, t) = 0,
and IV'r

I
= 1 in its neighborhood. Furthermore, we note

that the curvature )C of I'(t) is given by K = 7'2r. Along
I'(t) the coordinate s(x, t) measures distance from some
fixed point.

In the interfacial layer the rapid changes in the phase-
field variable ensure that the effect of the diffusion is
import, ant. Thus we scale the coordinate r with c as

A. Outer solution

P(x, t) = P( )(x, t) + cP(')(x, t) + O(e ),

c(x, t) = c( )(x, t) + ~c(')(x, t) + O(c ).
The leading order problem is

(44)

(45)

To proceed we seek an outer solution as a regular per-
turbation in e. Thus we put

We also introduce an additional slow time scale r,

r=d. (50)

We shall employ the method of multiple scales and hence
we associate the partial derivative with respect to time
in the governing equations with 0/Bt + ec)/Br

We expand the dependent variables as

c = c (p, s, t, r) + ~c(' (p, s, t~ 7) + O(E' )

(~(o) ,(o))

= V'[c( )(1 —c( )) V'(f~ —fg)] + V'c ' .

(46)

(47)

P = P( )(p, s, t, 7.)+ eg(')(p, s, t, r) +O(e ),

where we denote variables in this region by an overbar,
The matching conditions upon the inner solution in the
transition region are found by expanding the outer solu-
tion in terms of the inner variables,

clc(o)
&2 (0) (48)

From (46) we find that P(o) = 0 or P(o) = 1, depending
on whether the region is all liquid or all solid, respec-
tively (The. other extremum of f represents an unstable
maximum of the energy, and need not be considered. ) It
follows then from (47) that the leading-order solute field
simply satisfies the diffusion equation

I(~=o+)+& I
c

I =o++ p(o) & (i) ac '
r,=o+)

+O(~z) as p ~ oo,

I =o- + &
I

c
I

=o- + p() &()
,=o-)

+O(f ) Bs p ~ —oo)

(52)

The governing equations for the first-order corrections
may also found in a similar way; however, it is easily
shown that there are no contributions to P beyond the
leading-order terms, i.e. , P is exactly zero or one as ap-
propriate.

Because of the generality of the initial data that we
have allowed, the initial conditions will not necessarily
correspond to P zero or unity. In such a situation it is
simple to show that there is an initial fast transient, , on
a time scale O(e), in which P attains the value zero or
unity for almost each x p 0, depending on the value of
the initial data for P at x. After this short period there
will, in general, be large gradients in P, which represent
the interfacial layers. During this short initial period
interfaces are created. It is their subsequent development
which we now consider.

B. Inner solution: The interfacial layer

4=1asp~ —oo, (54)

P = 0 as p ~ +oo. (55)

Leading order

The leading-order problem is

r, y(o) —~[y(o) f (c(o) y(o))] (56)

In choosing the matching conditions in this way we have
assumed that in this local coordinate system the outer
liquid region is ahead and the outer solid region is be-
hind the interfacial region. To proceed we insert the
forms (49), (50), and (51) into the governing equations
expressed in the local coordinates (r, s) to yield a se-
quence of partial differential equations at each order of
e, which we now consider in turn.

We assume that the interfacial layer [P(x, t) = I/O]
is given by the curve I'(t). We introduce a local or-
thogonal coordinate system (r(x, t), s(x, t)) where, in the The latter may be integrated to give that

(57)
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ctf, (c(o) y(o))
c( )(1 —c~o)) ' ' = function of s, t, and r

Op

(58)

However, the matching conditions (52) (53), (54), (55)
require that Bf, /Op ~ 0 as lpl ~ oo. Hence we deduce
that the function of integration is zero and so

y(') ~0~ p~~,
P( ) ~ 1 as p ~ —oo,

and so

(69)

(70)

(71)

f,(c( ), g( )) —A(s, t, r) = 0, (59)
where

where A is a function of integration, which at this stage is
undetermined. It is now convenient to define a modified

energy density F(c( ), P( )) by

F(c(0) (t)(n)) —f(c(o) y(o)) A(s t r)c(s)

in which case the equations (56) and (57) may be ex-

pressed as

r, y(o) M[/(o) Fy(c( ) y( ))]

F (c(o) y(o)) —0

Hy employing the matching conditions we find

F,(c(')(0-, t), 1) = F,(c(')(0+, t), 0) = 0.

Equation (62) relates c( ) to P( ) as

co) = g (y(') A)

where

go(P( ); A) = (1+exp {fgy(P
'

) —f~(4 '
)

A(s, t, r)—))

(61)

(62)

(63)

(65)

(66)

This problem determines P( ) [and hence c( ) from (64)]
and A(s, t, r). The function A(s, t, r) is found from the
asymptotic behavior required by the matching condi-
tions, which is only possible if the boundary conditions
represent singular points of (66), in which case the re-
quired solution is the heteroclinic orbit between them.
Any other solution would attain the boundary conditions
at a Pnite value of p.

We now derive an expression for the normal velocity
V„= rt, . We multiply —(66) by P~ and integrate to-(o)

obtain

However, from matching

(67)

Thus the modified energy density F(c(,p( )
F(gs(4t(0); A), p( )), is a function of p( ) only which we

denote by E(p(s)) (= F(go(p( ); A), (t)( ))), in which case

(61) and (62) may be combined as the single equation

(0) 2 (72)

2. First order

Thus we see that the interface motion is driven by the
energy disequilibrium between the two phases; the in-
terface locally advances into the phase with the higher
modified energy density F(c( ), P(s)). The interface acts
to reduce the energy F of the system by moving to con-
vert regions of high F into low F. Time only enters the
problem for (t)(0) through the matching conditions and
hence acts as a parameter. Thus P(s), c( ), and V„are
time dependent and are controlled by the time depen-
dence of the solute field outside the interfacial layer. In
section IV we show that equations (63) and (71) may be
interpreted geometrically as a parallel tangent construc-
tion to the Helmholtz free-energy surface for a moving
planar interface or a common tangent construction for a
planar stationary interface.

We note that in the analysis given above the role of
curvature during this order one period of temporal evo-
lution has been relegated to 0(e) and hence does not
appear in the boundary condition (71). Although this
is correct in the formal context of our asymptotic anal-
ysis we know from work on the solidification of a pure
material that interfacial curvature can act as a singular
perturbation to the governing equations. In particular
sharp-interface models which omit the Gibbs-Thomson
and kinetic eA'ects can be ill posed and may exhibit finite
time blowup with the formation of interfacial cusps (see,
e.g. , Howison et al. [21]),or infinite interface speeds (see,
e.g. , Sherman [22]). Furthermore, the absence of curva-
ture may lead to indeterminacy in the solution in the
context of dendritic growth, which may be overcome by
introducing the Gibbs-Thomson efFect; this is an active
area of research. Current theory which employs a "micro-
solvability condition" is reviewed by Kessler, Koplik, and
Levine [23], and also by Langer [24]. An alternative the-
ory is given by Xu [25]. The implication for the present
discussion is that our analysis is not global in time and
space, and so the formation of such singularities must
be treated separately using the appropriate singular per-
turbation theory, which we do not consider here. We
emphasize that our asymptotic analysis is used primar-
ily to obtain insight into the behavior of the governing
equations. This issue does not arise in the numerical in-
tegration of the phase-field equations.

and

&p' la= = (t'p' lp=-(o) -(o)
(68)

We now go on to consider the next-order approxima-
tion to the governing equations:
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y("+r,y(') = M {y(',)+ M '-V„y(,')

[f&&(c(0) y(0))y(1)

+f (c(o) $(o))c(0)] + g2 P(0)}

(73)

tions in response to interface curvature and motion. This
equation is a generalization of the Gibbs-Thomson equa-
tion for an isothermal binary alloy. The classical Gibbs-
Thomson equation, obtained by setting U„=0, is often
used in sharp-interface models of Ostwald ripening of an
isothermal alloy.

r c( ) —[c(0)(1 c(0)) (f,( ( ) P(0)) (1)

+f (C(0) P(0))p(1)) (74)

On employing the matching conditions this gives that:

c)c(0)

Or 0+

ac(0)

Or 0 j

= —V (c'"l(.=0+) —c"'l(,=0-)) (76)

This simply represents a conservation of solute normal
to the moving interface and is the usual condition em-
ployed in the classical model model of phase transitions
involving sharp interfaces.

As an isolated system evolves, it approaches its final
minimum energy, in which case the energy differences
across the interface, which drive the interfacial motion,
become small. Thus V„~0 as t ~ oo and so the system
evolves on a slower time scale. To determine the inter-
facial dynamics on this long time scale, which is given

by the scaled time r, we put V„=0, in which case the
interfacial velocity is given by r, = V„.In this regime
the concentration gradients near the interfaces are small,
O(e). The slow velocity V„is given from a solvability
condition that arises from the first order problem. In
Wheeler, Boettinger, and McFadden [26] we analyze the
adjoint problem and use it to determine the solvability
condition, which is

We may integrate (74) once from p = —oo to p = +oo,
which gives

[„,c(o) c(o)(1 c(o))(f,c(1) + f ~p(1)) ]!~ —p

(75)

8. Temporal evolution

From the above analysis we can identify three different
stages in the evolution of the solution of the phase-field
equations based on initial data in which 0 & c;„;i,P;„;i&
1.

~ Stage I. Initially there is a very fast initial transient
O(e) in which the phase field adjusts locally to the
values zero or unity. We interpret this as a period
in which interfacial layers are born and regions of
solid and liquid are differentiated.

~ Stage II. Subsequently, on an O(1) time scale, away
from these interfacial layers in the outer regions, P
is either zero or unity and the solute concentration
is governed by the diffusion equation. Between the
outer regions the interfacial layers exist. The local
normal velocity of these interfaces is determined by
the local jump in the modified energy density across
the layer E (and thus by the deviation of the com-
position from the equilibrium values) described by
(71). More specifically, the interfaces move so as to
decrease the energy of the system. The interfacial
motion will slow down as the system approaches
its minimum energy, i.e. , V„~0 as t ~ oo. The
effects of curvature are assumed to be small in this
stage, and so the instances in which curvature acts
as a singular perturbation are not described by this
analysis.

~ Stage III. Finally, on a longer time scale O(e '),
the normal interfacial velocity is given from (77).
The slow motion of the interface is controlled by a
balance between curvature and thermodynamic dis-
equilibrium, the latter is represented by the term
involving the perturbed concentration. This repre-
sents the process of Ostwald ripening.

+ I'p(M 'V„+iC) = 0, (77)

where I'p is given by equation (72). The above solv-
ability condition determines the slowly evolving normal
interface velocity V„,which is thus dependent upon the
local curvature K and the perturbed concentration in the
liquid c( )(0+). In [26] we also derive another solvability
condition

Thus initially the system evolves quickly to minimize
its energy, by changing the phase field at each point in
space to zero or unity, the minima of the energy density
for a fixed concentration. Subsequently diffusion acts
and the interfaces move to reduce the energy differences
across them. Finally they slowly evolve in response to
local-energy disequilibrium and kinetic effects, as well as
to reduce the energy associated with their curvature.

c"'(o )[1 —c'"(o )] c'"(o+)[1—c"(o+)]' (78)

which relates the perturbed interfacial concentrations
c(')(0 ) and c(1)(0+) at the interface.

In equation (77) the first term on the left-hand side
represents the necessary change in interfacial concentra-

A mech, ani eaL analogy

dt2
+ M V„—= Fv(z, y),"dt (79)

The leading-order behavior, discussed above, is de-
scribed by the system
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0=F (z, y), (80) which may be rewritten with the help of (67) as

when we identify z with c(o), y with P(ol, p with time,
and F(z, y) = f(z, y) —Az as before, where A is to
be determined and f is the free-energy density. This
system represents the motion of a particle in a po-
tential z = —F(z, y), constrained to lie on the curve
z = go(y; A), with friction acting only in the y direc-
tion. We note that the surface z = F(z, y) is obtained
from that of the free-energy density surface z = f(z, y)
by inverting it and tilting it in the z (c( l) direction, the
amount of tilt depending on the value of A. The fric-
tional constant is equal to M V„,and so the station-
ary interface corresponds to the frictionless case. The
matching condit, ions require that the particle follows a
path such that it approaches a stationary state as time
goes to plus and minus infinity. The only possible such
motion is one that begins and ends at local maxima of
the surface z = F(z, y—). The form of the free-energy
density ensures that such local maxima only occur for
one given value of z (clol) on y = 0 (P(ol = 0) and one
given value of z (c(oI) on y = 1 (p(o1 = 1), both of which
depend on A and lie on the curve z = go(y;A) . Thus
the particle must follow a trajectory between these local
maxima which traverses from y = 0 to y = 1. When the
interface is stationary, the particle moves in the absence
of friction, in which case the constant A (or equivalently
the amount of tilt of the surface) is chosen such that the
heights of the two maxima are the same. For a non-
stationary interface the constant A must be chosen such
that the potential-energy difference associated with the
difference in height of the two maxima is just sufticient to
account for the energy dissipated by friction. A mechan-
ical analogy was noted by Cahn [4] for the Cahn-Hilliard
equation, as well as by Harrowell and Oxtoby [19].

C. Discussion of asymptotic behavior

As shown in section III A the governing equation for
the solute reduces to the diffusion equation in the solid
and liquid regions with the diffusivity D given by D =
Mi RT'/v . Thus the governing equation for composi-
tion given here is the same as those of a sharp interface,
or classical model, in the solid and liquid regions.

We see from (71) that the temperature T and normal
velocity V„determine the leading-order interfacial con-
centrations in the solid and liquid. Thus cs = Hs(T, V„)
and cl. = Hl. (T, V„). When the interface is station-
ary, V„=0, then the functions cs —— Hs(T, O) and
cL, = HL, (T, 0) simply represent the solidus and liquidus
curves of the phase diagram of the alloy (see section
IV A).

The asymptotic analysis generalizes the results given in
section II A for the interface kinetics and surface energy
of a pure material to the case of an alloy. In particular
(71) is the nondimensional analog of (31) for the kinetics
of a pure material. The solvability condition (77) repre-
sents an energy balance at 0(e); the first two terms are
the change in energy due to the perturbed concentration
and interfacial motion, the last term represents the sur-
face energy. Thus the surface energy a' is e f (P~ ) dp

1

o = a~2 /E(g)dg,
0

(81)

which is the generalization of ('27) and a similar result of
Cahn and Hilliard [4]. However, for the alloy these ex-
pressions for the surface energy (81) and interface kinetics
(71) have no simple analytic form as they do for the case
of the pure material. For simplicity we therefore choose
to determine the parameters of the phase-field model in
the way discussed in section II B by making contact with
the properties of the pure components.

IV. CONSTANT-VELOCITY PLANAR
SOLUTIONS AS e —+ 0

In this section we look for solutions in the limit c ~ 0
corresponding to a planar interface advancing at constant
normal velocity V. We only consider the outer solution.
We take a coordinate coincident with the moving inter-
face, which is then given by the plane z = 0. The leading
order problem for c is then

c„+Vc,=0, (82)

M [E(0) —E(1)]
r, (83)

cl,=o- = go(1;A), cl.=o+ = go(o; A), (84)

(Bc Bc
I

= —V(cl.=o+ —cl.=o-),(Br, o~ Di, o j (85)

with c(z) ~ c~ as lzl ~ oo. The leading-order solution
is easily found to be

c(z) = cs + (cI, —cs)exp( —Vz), z ) 0

c(z)=cs, z&0

(86)

(87)

(88)

which depends on the interface speed V. For this rea-
son we first consider the situation when the interface is
stationary.

A. Stationary interface: V = 0

In this case the concentration is constant in each phase:

c(z)=cs, z&0
(89)

c(z) =cl. , z) 0

where we associate cs and cL, with c( l l, o- and
ct ll, o+, respectively, which along with the constant A
are determined by the three conditions given in (83) and
(84). We note that c~ = cs, which therefore cannot be
prescribed independently of the temperature T.

The segregation coeScient is
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where cg, ci. , and A satisfy the three conditions in (83)
and (84) with V=O. The condition (83) gives that

F(cg, 1) = F(c1„0). (90)

F,(cs, 1) = F,(cl. , 0) = 0. (91)

0.02—

0.00-

—0.02
0 0 C.s

I

0.5
I

C~ 1.0

We note that from the definition of the function go given
by (64) and the conditions in (84) that

Using the fact that F(c, P) = f(c, P) —Ac, it is easily
shown that these statements are equivalent to requiring
that cg and cL, are chosen such that there is a common
tangent between the curves f(c, 0) and f(c, 1). This con-
struction [see Fig. 3(a)] is precisely that given by classical
thermodynamics to determine the equilibrium concentra-
tions in this situation. It is usually derived by requiring
that the chemical potential of the two phases on either
side of the interface in a first-order phase transition is
continuous. The locus of pairs of compositions cg and
cL, at different temperatures provides the liquidus and
solidus curves of the phase diagram. The common tan-
gent construction also corresponds to constructing a com-
mon tangent plane to the free-energy surface, shown in
Fig. 2, which is tangent to both sections of the energy
surfaces, P = 0 and P = 1.

We now employ this stationary interface solution to
examine the possible stationary configurations of the
system as c ~ 0. In particular we consider a one-
dimensional box, of length I., whose ends are imperme-
able to both components of the solution. The average
composition C is & jz cdz. There are single phase solu-
tions: single phase solid (P = 1) and single phase liquid
(P:—0). These exist for all values of the average com-
position C p [0, 1] and are linearly stable. However, the
analysis above indicates that other solutions are possi-
ble representing a single interface between two regions of
different phase when min(cs, cL, ) ( C ( max(cs, cl.). In
Fig. 4 we schematically illustrate the possible solutions.
The variation of the fraction solid is given classically (dis-
regarding the interfacial surface energy) by the "lever"
rule and is linear in the composition between cg and cL, .

0.02—
B. Nonstationary interface V g 0

In this situation the only condition that is different is

(90) which becomes

F(cL„O)—F(cs, 1) = M V I'o, (92)

1.25—

0.00-

—0.02
0.0
c

0.5
L C

I

1.0

FIG. 3. (a) The common tangent construction represent-
ing equilibrium of a stationary flat interface. (b) The parallel
tangent construction predicted by this model for a nonsta-
tionary planar interface. In both cases Wz ——W~ = 100,
PA = —0.1, and P~ = 0.1.
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FIG. 4. The solid fraction S = ~ j P d2: vs average com-
position C obtained from from one-dimensional stationary so-
lutions. The dashed line represents two-phase solutions.
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(95)

the left-hand side of which is a constant AF(V, T) for
a given interface velocity V and temperature, T. The
conditions (91) and (92) are equivalent to selecting cs
and cL such that their tangents on the curves f(c, 0) and

f(c, 1) are parallel, but the tangents are a vertical dis-
tance b, F(V, T) [= F(cL, O) —F(cs, 1)] apart; see Fig.
3(b). It follows that the equilibrium concentrations of
a moving planar interface are dependent on its normal
velocity.

From (83) and (84) we find that the segregation coef-
ficient is given by

k = exp[ —b, F(V, T) —fB(l) + fgy(0)], (93)
which for small V is given approximately by

k = k [1 —VM-' r, ~(,)+ O(V )], (94)

where ko is the value of the segregation coefficient for the
stationary planar interface. Similarly for a small energy
difI'erence across the interface the segregation coefficient
may be approximated by

k = kp(1 —AF(0, T) + O([AF(0, T)] )).
From equation (66) we numerically computed cL, cs,

and k as a function of the interface velocity. The results
are displayed in Fig. 5. We see that the solid-liquid inter-
facial concentrations and the segregation coefficient are
monotonically decreasing functions of the interface veloc-
ity [the latter dependence is in agreement with the small
growth rate expression for k, (94)].

Experimentally, the behavior of the segregation coeffi-
cient k with increasing interface velocity has been shown
to change from the equilibrium value (normally less than
unity) at low velocities to values near unity for high ve-

locities ( —1 m/s); see White ef al. [27]. This tendency
towards unity is not recovered in the current model. We
anticipate that inclusion of a term in the energy func-
tional involving the solute gradient energy in addition

to the phase-field gradient energy will produce a wide
variety of possible behavior, depending on the relative
importance of the two gradient energy terms. In fact, a
model by Baker [28] shows that k need not change mono-

tonically towards unity with increasing velocity.

V. NUMERICAL CALCULATIONS

In this section we give the results of numerical calcu-
lations upon our model. The aim of these calculations
is twofold; first, to verify as far as possible the asymp-
totic analysis given in the preceding section, and second,
to demonstrate that our model qualitatively models the
behavior of phase transitions in an isothermal alloy. In
order to apply our model to situations in which the in-
terface is sharp, we require the value of e to be small.
This provides the major difficulty in conducting calcula-
tions, which is that the interfacial layers are necessarily
thin, and thus a sufficiently fine computational mesh is
required in order to resolve the solution structure within
them. For this reason it is much e~ier to conduct cal-
culations in one spatial dimension than two. Even so we
are still constrained at the present time to use a value for
r, and hence interfacial width, which is not as small as
the realistic value based on Table I. However, even with
these comparatively large values of c we can still maintain
realistic values for the other physical parameters, such as
surface energy, as discussed in section II B.

In this section we first employ calculations in one di-
mension to verify quantitatively much of the boundary
layer analysis, and we further perform two-dimensional
calculations with a somewhat larger value of e to provide
evidence that our model is qualitatively in agreement
with this analysis and that it shows behavior similar to
that found in real systems.

A. One-dimensional calculations

10

10

10

—0.14 —0.10 —0.06 —0.02 0.02
V

I I I

0.06 0.10 0.14

FIG. 5. The solid and liquid interfacial concentrations cz
and cL, as a function of growth rate V for a planar constant
velocity interface, for the case M = 1, WA ——100, N ~ =
100, P~ ———0.1, Pn = 0.1. The dashed curve indicates the
segregation coefficient k as a function of the growth rate.

We consider the evolution of the system (20) and (21)
in one spatial dimension z on the domain 0 ( z & I.
We imposed the boundary conditions P = c = 0 at
z= Oandg =Oc +n pc+ aitz = L. Theini-
tial data are given by P(z, 0) = gp(z), c(z, 0) = cp(z).
We used the software package pDEcoL [29], which em-
ploys a finite element collocation procedure for the spa-
tial discretization and the method of lines to advance the
solution in time. In all cases we used 500 break points.
The first set of calculations was aimed to test the asymp-
totic analysis by generating the planar traveling-wave so-
lutions predicted by the theory given in section IV. The
most trivial solution corresponds to the stationary in-
terface, in which case the asymptotic analysis predicts
the (constant) values of the concentration on either side
of the interface. With initial data for c and P set to
the appropriate step functions, it is found that the pre-
dicted concentrations were indeed recovered within the
accuracy of the scheme, with e taken sufficiently small.
We also conducted calculations for a nonstationary in-
terface. The results of the asymptotic analysis displayed
in Fig. 5 predict the interface velocity V to be 0.1 when
cq ——2.0339 x 10 and cL, ——0.3679. In order to avoid
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end effects we chose o, o ——V and o.1
——c, , which is ex-

actly satisfied by the traveling-wave solution concentra-
tion profile (86) when P = 0. Physically this corresponds
to extracting solute from the liquid phase at the bound-
ary of the domain in order to maintain the supersatu-
ration which is driving the interfacial motion. We put
P~ ———0.1, P~ = 0.1, W~ —W~ —1.0, e = 10, and
L = 0.4. The initial data were $0 ——0.1+0.9H(z —0.04)
and co —cs + H(z —0.04)(cL, —cs)exp[ —V(z —0.04)],
where H(z) is the Heaviside function. In Fig. 6 we dis-
play the computed composition profile at times of 0.0,
1.0, 2.0, and 3.0. It clearly reproduces the predicted
traveling-wave solution with the predicted constant ve-

locity interface velocity of 0.1. We note that initially the
velocity of the interface is slightly less than that predicted
by the asymptotic analysis as c ~ 0. We attribute this to
the adjustment required by the profile in the interfacial
boundary layer, which was not properly given by the ini-
tial data. This is manifested by the smoothing out of the
initial discontinuity of the initial data in this region. The
above calculations quantitatively verify the result given
by (71) and confirm that the modified energy differences
drive the interfacial motion.

We also conducted a numerical calculation which mod-
els the motion of a planar interface in a closed sys-
tem in response to the presence of an initially super-
saturated liquid. From Fig. 5 the interface is station-
ary when cp ——0.1589 and cL, —— 0.8411. We chose
the same parameters as the previous calculation, but
the initial data for the composition were different: co ——

cs+ (0.6 —cs)H(z —0.04). Also the boundary condition
for the composition at z = 0.4 was c~ = 0. This initial
state corresponds to a supersaturated liquid phase with

composition 0.6 (( cL, ). In Fig. 7 we display the com-
position profile at times 0, 2.0, 4.0, 6.0, 8.0, and 10.0.
There is in fact a rapid initial transient, not apparent
in this figure, in which the concentration in the solid de-
creases to approximately 0.1 and the concentration in the
liquid adjacent to the interface increases. Subsequently,
as shown in Fig. 7 the concentration boundary layer so
formed in the liquid is accompanied by forward interfacial
motion. Finally, the system relaxes back to the uniform
concentrations predicted by the asymptotic theory for a
stationary interface. This behavior is expected on phys-
ical grounds; the interface moves to relieve the supersat-
uration subject to the constraint that the composition
of the system is conserved. However, in a real system
it would be expected that the planar interface would be
unstable and evolve to a cellular structure as it moved
forward. We next consider two-dimensional calculations.

B. Two-dimensional calculations

As discussed above, the thin interfacial layers present
cause a difficulty in conducting accurate numerical calcu-
lations. In two dimensions this problem is important be-
cause the computer storage and processor requirements
associated with fine meshes become restrictive. Below
we present the results of preliminary calculations which

employ a uniform 80 x 80 mesh, the finest mesh that
was feasible using the computer facilities available to us
using the software package pDETwo [29]. This employs
second-order accurate central finite differences to conduct
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FIG. 6. The one-dimensional traveling-wave solution ob-
tained by direct numerical integration of the governing equa-
tions. The concentration profile is shown for t = 0, 1, 2, 3
(from left to right).

FIG. 7. The evolution of the concentration profile, in re-

sponse to initial conditions in which the liquid is at a spatial
uniform concentration away from its equilibrium value. The
concentration profile is shown at t = 0, 2, 4, 6, 8, 10.
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(c)

(e)

FIG. 8. The evolution of the phase field P in time and space on the domain [0, 1] x [0, 1]. The solid curve is the locus of
points P =

~ and represents the solid-liquid interface. The shaded areas represent 0 & P & ~; ~ & P & 2; 2 & P & 4; 4 & P & 1
(in increasing order of darkness). Thus the darkest regions represent solid areas. Plots are given at times (a) t = 0, (b) t = 0.01,
(c) t = 0.05, (d) t = 0.1, (e) t = 1. Corresponding plots of the concentration were also obtained.
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the spatial discretization, allied to an accurate ordinary
differential integrator to evolve the solution in time. We
have performed a number of calculations. Below we show
typical results for one particular case.

We performed a calculation in a square region of side
unity. The initial data for the phase field and composi-
tion was generated from a random distribution of these
variables with amplitude 0.01 about a mean value of a 2.
The following values were used for the various nondimen-
sional constants: P~ ——0.1, P~ = 0.1, Wg = 10, WB =
10, Mi ——40, and e = &&. These values for M~ and e

are chosen to lie in the asymptotic regime of our analy-
sis. In particular the size of e is a compromise between
making it sufficiently small that the interfacial layers are
thin enough for the asymptotic analysis to hold but large
enough that they are adequately resolved by the finite
difference grid. In Fig. 8 we display the phase field at
times t = 0, Q.01, Q.Q5, 0.1, and 1.

From Figs. 8(a)—8(d), it is clear there is a rapid ini-
tial transient evolution of the phase field to P = 0 or 1,
which is complete by t = 0.1 when fully differentiated
regions of solid and liquid have been established. This
is in agreement with our asymptotic analysis, although
it is evident that there is also a significant coarsening of
the solid regions during this period. Subsequently this
coarsening behavior continues until t = 1, the final time
displayed.

We monitored the total amount of solute present as a
function of time. It was found that our present numeri-
cal scheme suffers a small loss of solute from the system.
The loss is most pronounced at small times when the sys-
tem is evolving most rapidly. A total loss of 1.26% by
t = 1 is observed. The lack of solute conservation in the
numerical scheme precludes long-time integration of the
governing equations, since the loss can be large enough
to eventually shift the average solute concentration C to
values outside the range cg ( C ( cL, for the two-phase
system. This results in eventual dissolution of one of
the phases, leading to a final state consisting of a sin-

gle phase. The final period of evolution that is predicted
by the asymptotic analysis, in which curvature variations
are important, is thus di%cult to observe with the cur-
rent numerical scheme. It should be possible to over-

come this deficiency by implementing a fiinite-difference

scheme, which has the property that it conserves solute,
as has been done successfully in the context of computa-
tional fluid dynamics (see Roache [30]).

The qualitative behavior observed largely substanti-
ates our asymptotic analysis, demonstrating the rapid
period of interfacial genesis and order-one motion due to
energy differences. In addition, coarsening is observed
which is reminiscent of Ostwald ripening.

VI. CONCLUSIONS
In this paper we have presented a phase-field model

which describes the spatial and temporal evolution of
isothermal phase transitions between ideal binary alloy
solution phases. We have shown how the paramet, ers
which characterize this phase-field model are related to
material parameters and thermodynamic data employed
in classical sharp-interface models.

We conducted an asymptotic analysis of the govern-
ing equations in the distinguished limit e ~ 0 with
Mi ——O(e ), which approximates the situation when
the mobility of the phase field is large and its diffusivity
small. In this regime there exist thin interfacial layers of
width O(e), and so we recovered a sharp-interface model
in this limit. From this analysis we determined the in-
terfacial dynamics and showed that the interface evolved
on three time scales. There is short initial transient in
which interfaces are born. It results primarily from the
response of the system to the initial data we have chosen
and does not necessarily represent the process of nucle-
ation. This is followed by evolution on the diffusion time
scale in which the interfacial motion is controlled by the
energy difference across the interface and diffusion in the
solid and liquid phases. Finally there is a long period
in which the interfaces move slowly in response to their
surface energy and thermodynamic disequilibrium. This
final period we interpret as representing Ostwald ripen-
ing. We constructed planar interface solutions in this
asymptotic limit and were able to characterize the inter-
face kinetics in terms of the thermodynamic driving force
and show a dependence of the segregation coefficient on
interfacial velocity. Finally, we presented numerical cal-
culations which illustrate the predictions of our asymp-
totic analysis.

It is clear from this work that this phase-field model
provides a good description of isothermal phase transi-
tions between binary solution phases and provides a step
in devising a nonisothermal phase-field model for an alloy
system.
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