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Density-functional theory within the effective-liquid approximation is applied to the problem of the
isotropic-nematic transition of D-dimensional hard convex bodies. It is shown that the free-energy func-

tional factorizes into its radial and angular contributions. Due to this factorization two different ver-

sions of the self-consistent equations can be implemented, and it is shown that in D=3 they coincide
with previous theories. In the present work all the formulas are worked out with a particular choice for
the angular distribution: the one-order-parameter approximation. The problem of determining the ex-

cluded volume of two hard convex bodies is discussed. For hard ellipsoids the Gaussian-overlap approx-
imation is used, whereas an exact formula is given for the excluded volume of two hard spherocylinders.
For D=2 the virial coefficients of the isotropic phase as well as the transition are incorrectly predicted,
due to the approximation of the direct correlation function involved. For D=3 the results are in very

good agreement with simulations. Expression and data for the isotropic-nematic transition for D & 3 are
also provided. Extensive comparisons with the results of other theories are made throughout. The one-
order-parameter approximation is proven not to alter the order of the transition. Finally, it is shown
that the present approximation becomes exact in the large-D limit.

PACS number(s): 61.30.By, 64.70.Md, 05.70.Fh

I. INTRODUCTION

Freezing can be considered as the paradigm of a first-
order phase transition. Although in the last decades we
have gained a great deal of understanding, we still lack a
real first-principles theory that accounts for the rnecha-
nism of freezing. An important breakthrough was at-
tained when Aider and Wainwright [1] proved, by
molecular-dynamics (MD) simulations, that a system of
hard spheres (HS's) undergoes a first-order phase transi-
tion from a disordered fluid phase to an ordered solid in
which spheres occupy the sites of a three-dimensional
(3D) lattice. The important idea underlying this result is
the fact that repulsive forces alone can induce a solid
phase, contrary to the then-widespread idea that attrac-
tive forces are needed. The later discovery of a 2D solid
in a system of hard disks [2] confirmed this point. Since
then all theoretical efforts have been devoted to reproduc-
ing the thermodynamics and structure of such purely
repulsive systems. Along this line of work the most re-
markable success has been achieved via density-
functional theory [3] (DFT). The idea underlying DFT is
that the thermodynamic potentials of a system can be
written as functionals of the one-body density function
[4]. The main advantage of this theory, as already proven
by the pioneering work of Ramakrishnan and Yussouf
[5], is to be capable of obtaining insight into the thermo-
dynarnics of the solid using only the well-known structure
of the fiuid phase [6] as input. Among the different ap-
proaches that have been developed in the context of DFT
[3], the effective-liquid approximation (ELA) for the

description of the freezing of HS's [7] has obtained very
good agreement with computer simulations.

The study of liquid-crystalline rnesophases has paral-
leled that of freezing. By liquid crystals (LC's) we refer
to those phases that exhibit intermediate order between
the crystalline order of solids and the full disorder of
fiuids [8]. It is well known that some anisotropy in the
basic components is necessary in order to obtain these
mesophases; once this anisotropy is present the kind of
order we can find is either orientational order or partial
positional order or a combination of both. The early
work by Onsager [9] on the transition from an isotropic
(I) fiuid to a nematic (N) (orientationally ordered) fiuid of
infinitely long hard rods suggested, as in the case of HS
freezing, that purely repulsive forces can account for the
existence of mesophases. The later results obtained in
computer simulations [10—18] and theoretical studies
[19—30] have confirmed this idea. Nowadays it is widely
accepted that all mesophases found in nature (and even
others one can imagine by symmetry arguments) can be
obtained from a proper choice of a hard-molecule model.
As in the case of HS freezing, the best theoretical frame
for the description of hard-core models of LC's has been
DFT [19—30].

Concerning the I-N transition, the ELA provides again
a fairly accurate description [27—29]. Besides, it is a very
general and flexible scheme, so that many other theoreti-
cal approaches can be reformulated in terms of the ELA,
as was already shown in a previous work [29]. It is the
purpose of the present paper to report a detailed study of
the I-N transition of D-dimensional hard convex bodies
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(HCB's). To this end, we develop in Sec. II the formulas
for the thermodynamics of HCB's, starting from the gen-
eral expressions of the DFT and working them out within
the ELA. In Sec. III we approximate further the expres-
sions by using a one-parameter trial function for the an-
gular distribution, transforming what was previously a
functional into a simple function of the corresponding or-
der parameter. These expressions contain the volume ex-
cluded to a body due to the presence of another one,
when their orientations are kept fixed. In Sec. IV we dis-
cuss this "excluded volume" for two important molecular
shapes: hard ellipsoids (HE' s) and hard spherocylinders
(HSC's). Section V is devoted to the results for the iso-
tropic phases and the comparison with other theories and
computer simulations. Special emphasis is put on the
virial coe%cients (mainly for the 2D system), because
their features reveal much about the approximations that
are being used. The nematic phase as well as the I-N
transition for HE s is studied in Sec. VI. In Sec. VII we
discuss the validity of the results obtained for the transi-
tion when compared to those obtained from the exact
Euler-Lagrange equation for the angular distribution.
Section VIII is devoted to an analysis of the limit of
infinitely large eccentricity and its relation to the system
of HSC s. Finally, the large dimensionality limit of the
ELA is obtained in Sec. IX and proven to coincide with
the exact results.

II. THERMODYNAMICS OF D-DIMENSIONAL
HARD CONVEX BODIES

We consider a system of N uniaxial hard convex bodies
enclosed in a D-dimensional volume V. Let p=N/V and

Q
=F /p V denote, respectively, the average density and

the free energy (F) per particle of such a system. Ac-
cording to the DFT [4] the free energy P =P[p] is unique-
ly defined as a functional of the one-body density function
p(x), where x=(r, u) denotes both the translational (r)
and orientational (u) degrees of freedom. This functional
can be decomposed into a sum of three terms: the ideal-
gas contribution P;d arising from the kinetic part of the
Hamiltonian; the external-field contribution P,„„andan
excess term P,„,due to the interactions between the parti-
cles of the system. Then P=P;d+P,„,+P,„,with

X fdrc(r;u, u', [Ah)) (2.5)

where the translational invariance of both phases
(I and N) has allowed us to write c (x, x', [p] )

=c(r—r';u, u'; [h ]).
At this point we face the problem of finding the expres-

sion of the DCF of an inhomogeneous phase. This has
turned out to be a very diScult problem which has as yet
only been solved exactly for some 1D systems [33]. For
higher-dimensional systems one has to find a reasonable
approximation for the DCF. To this purpose different
strategies have been developed [21—24]. One of these cir-
cumvents the inhomogeneous DCF problem by translat-
ing the ELA formalism developed within the DFT of
freezing [3] into the I Nlanguage, a-s done by Baus et al.
[27] for 3D and by Cuesta, Tejero, and Baus [28] for 2D.
The ELA prescription [7] consists of replacing the exact
DCF of Eq. (2.5) by the DCF of the isotropic fluid (ci)
but evaluated at an effective density p:

c(r;u, u'; [h ])=ci(r;u, u';p[h ]) . (2.6)

D. The normalization is chosen in such a way that

fdr= Vand fdu= 1. The function c(x,x', [p]) appear-
ing in (2.3) is the direct correlation function (DCF) intro-
duced by Ornstein and Zernike [31],which for a nonuni-
form phase is a functional of p(x). The external field
u(x) is necessary in order to confine the system to a re-
gion of volume V and to induce an orientational symme-
try breaking in the case of the N phase. Equivalently, we
can disregard (t,„,by imposing the appropriate (bound-
ary) conditions directly on p(x). So, if we are only in-
terested in the I Ntra-nsition we can put p(x)=ph(u)
with fdu h(u) = 1 since only orientational order will be
present; h(u) is then the orientational distribution func-
tion [32], i.e., h(u)du represents the probability for the
orientation of a given molecule to be in a region du
around the vector u. If we introduce this particular form
of p(x) in Eqs. (2. 1) and (2.3) we get

Pgd[h ]= ln(Ap) —1+f d u h (u)lnh (u), (2.4)

PP,„[h]= p f—du fd u'h (u)h (u')

X f di(1 —A. )
0

PP;d[p] = f dx p(x) I ln[Ap(x) ]
—I],1

pV
1 fdxp(x)u(x),

pV
1 f dx f dx'p(x)p(x')

pV

(2.1)

(2.2)

As indicated in Eq. (2.6), p is, in general, a functional of
ph(u), i.e., p=p[h ]. For the right-hand side of (2.6) we
then use Pynn's approximation [34]; thus, if o(r;u, u')
denotes the contact distance of two HCB's of given orien-
tations u, u' and center-to-center orientation r—=r/r, we
will use as DCF for the HCB the expression

X f di(1 —A. )c(x,x', [Ap])
0

(2.3)
where u(x) is the external potential acting on a particle
of coordinates x; P= 1/k~ T is the inverse temperature,
and A is the thermal de Broglie wavelength to the power

I

ci (r;u, u', p)=cHs
T

go.(r;u, u')
(2.7)

with v0 the volume of the HCB and g= v0p the packing
fraction. Insertion of Eqs. (2.6) and (2.7) into (2.5) yields

PP,„[h]= D2 g f dA(1 A—)f dx—x , 'c„s(x;q[Ah])fduf du'h(u)h(u')X(u u')
0

(2.8)
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where

X(u.u')= ~ fdr[o(r;u, u')]1

D2 v0

fd u f d u'h (u )h (u')X(u. u')
q'[A, h ]=A, ri f du f du'X(u-u')

(2.13)

f dr e(o (r;u, u') r}—
2 v0

(2.9)

is the ratio of the excluded volume of two HCB's of
orientations u and u' to that of two HS's of molecular
volume vo [e(x ) being the Heaviside step function]. At
this level we can see that as a result of this approximation
to the DCF [Eq. (2.7)] the excess free-energy factorizes
into a radial and an angular contribution, leading to an
Onsager-like theory [9]. Indeed, one recovers the original
Onsager result by just replacing in (2.8) the DCF by its
low-density limit [cHs(x;0) = —e(1—x )]. Equation (2.8)
can be further simplified by using some identities of the
D-dimensional HS fluid [36]. If we let ZHs(ri) be the
compressibility factor of HS [ZHs(ri) —=PPHs/p, PHs be-

ing the pressure of the HS fluid] and define IHs(ri)
through the relation

ZHs ( ri ) = 1 —f—dy yIHs (y )
'g 0

(2.10)

compressibility equation of state [pBPHs /Bp
=1 p f—dr cHs(r/o;ri)] yields [36]

IHs(ri) =D2 f dx x 'cHs(x, rt) .
0

(2.11)

Substitution into Eq. (2.8) leads then to the following ex-
pression for P,„[h], where the radial variables have now
been integrated out:

PP,„[h]= rlf —d A, (1—
A, )IHs(ri[A, h ] )

X fdu f du'h(u)h(u')X(u. u') . (2.12)

To go ahead with the ELA we need a recipe to calcu-
late the effective density p[h]. In the earlier version of
the ELA [27,28] the effective density was determined
from ad hoc geometric arguments. The problem of this
method is that it is not at all obvious how to extend it to
other phases. In the context of freezing this problem was
solved by introducing a self-consistent ELA [35]
(SCELA), which was later reformulated into a general-
ized ELA [7] (GELA). In this formalism the effective
density p[p] is determined through a self-consistency re-
lation between the excess free energy of the inhomogene-
ous (in our case anisotropic) phase P,„[p]and that of the
homogeneous phase evaluated at the effective density,
P,„(P)(see Appendix). In the present case, due to the fac-
torization approximation involved in (2.8), the self-
consistency relation can be imposed either on the total
excess free energy or, as the angular part does not depend
on the average density, on the radial part only. We will
henceforth refer to these two different approaches as the
total GELA (t-GELA) and the radial GELA (r-GELA),
respectively, and denote the corresponding expressions
with superscripts t and r. For the t-GELA the self'-

consistency relation reads P,„[h]=P,„(p[h]). Thus the
following effective packing fraction is obtained (see Ap-
pendix):

Note that p[Ap]=Ap[p] is usually an approximate rela-
tion which takes us from the GELA back to the SCELA
[7]. In our treatment of the I Nt-ransition Eq. (2.13)
proves that the above relation turns out to be exact and
so the GELA and the SCELA become equivalent. Insert-
ing now (2.13) in (2.12) and using the self-consistency
condition the resulting equation for the excess free energy
per particle is

pp,'„[h]=QHs(ri'[h ]) fdu fdu'X(u u') (2.14)

with QHs(q) defined by

ZHs(y ) 1
QHs(x}—= f dy

0
(2.15)

Equation (2.14) is identical to the expression given by
Holyst and Poniewierski [26] within the weighted-density
formalism of Tarazona [37].

For the r-GELA we obtain rl"[A,h]=A, ri, and p,„[h]
reduces to

l3$,"„[h]=QHs(ri) f du f du'h(u)h(u')X(u u')

(2.16)
This equation is identical to the free-energy function pro-
posed by Lee [30] on the basis of a scaling argument.
However, the present formalism yields the same formula
back in a natural way and makes clear how it can be ob-
tained within the DFT. In the low-density limit
[QHs(ri) =ri/2] Eqs. (2.14) and (2.16) become identical to
the original Onsager expression [9].

Once we have expressions for the free energy of a sys-
tem of D-dimensional hard convex bodies we can obtain
the other thermodynamic quantities such as the pressure
P or the chemical potential p, by starting from the exact
DFT formulas [3]:

Pu[p] =0 +W I p] .
P

(2.18)

Working out the expression (2.17} within the above ap-
proximation we end up with the following equations for
the pressure:

P =1+[ZHs(Fi'[h ])—I] f du f du'X(u u'}P'[h ]

P" h
p = 1+[ZHs(q) —1]

p

X f du f du'h(u)h(u')X(u u')

(2.19)

(2.20)
The corresponding chemical potential can then be ob-
tained from (2.18).

P =1— f dx f dx'p(x)p(x')pI'
X f dA, Ac(x, x', [Ap]), (2.17)

0
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III. THE ONE-ORDER-PARAMETER
APPROXIMATION Ao(y)= f dx (1—x )' ' exp[yM[2 )(x)]1

0 XD
(3.3)

To find the equilibrium density profile one takes the
functional derivative of P[h ] while maintaining the nor-
malization condition. In this way the Euler-l. agrange
equation for the angular distribution function h(u) is ob-
tained. Since it is a highly nonlinear integral equation,
approximate methods have to be used in order to get in-
formation out of it. One possible approach is to expand
h(u) —or better lnh(u) to guarantee the positiveness of
h(u) [38]—into an appropriate basis of orthogonal poly-
nomials, truncate the expansion at some order, and then
minimize the free energy with respect to the expansion
coefficients taken as variational parameters. Although
several of these parameters have to be retained in order
to determine h(u) as accurately as with a numerical
method (for instance, that used in Ref. [40]), a single vari-
ational parameter is enough to get a good accuracy for
the determination of the thermodynamic quantities [27].
This makes this method, henceforth referred to as the
one-order-parameter (OOP) approximation, much
simpler than the numerical one.

To implement the OOP approximation, we first have to
determine which is the optimal basis of orthogonal poly-
nomials to expand lnh(u) into. In 3D these polynomials
are Legendre polynomials [27] and in 2D, Chebishev po-
lynomials [28]. For a D-dimensional system such a basis
is formed by

with

dx(1 —x )' ' = . (3.4)
0 2 I (D/2)

As [39]M2' '(x ) =(Dx 1)/—(D —1) we find that

er
AL)(y) =

D

[(D—2)/2J
d
dz

X W D(z)
z=yD/(D —&)

(3.5)

W+(z)—:—e ' Io(z/2),
2

F(&z )

V~z

(3.6)

(3.7)

F(x)=e "
fody e and Io(x)= f "(d8/n)e ""' . be--

ing the Dawson and the zeroth-order modified Bessel
functions [39],respectively.

As in the 2D [28] and 3D [27] cases, the nernatic order
parameter, qo can be defined in terms of M2 '(cos 8)

where [x J is the Poor function, i.e., the largest integer
less than or equal to x, and the W+(z) are defined as

M' '( )=
' —1

n+D —3
C[(D —2)/2](x )n (3.1) q2)

= (M[2 '(cos 8})= lnAn(y } .
a

ar
(3.8}

where C„' '(x ) are the Gegenbauer ultraspherical polyno-
mials [39], and the normalization is chosen such that
lM„' '(+1)

l

= l. According to this choice the OOP distri-
bution function h(u)—:ho(cos 8) acquires the form

ho(cos 8) =Go(y) 'exp[yM[2 '(cos 8)], (3.2)

This equation makes clear the equivalence between the
variational parameter y and the nematic order parameter
qD, justifying the name of the OOP approximation.

With the aid of all these definitions we are now ready
to rewrite the free energy of the system in the OOP ap-
proximation. Thus, defining

Xh2)(s)ho(s')X[ss'+( I —s )' (1—s' )' cos (~x)] (3.9)

with

(D —2) l
sin ( vox ) l

if D ) 2

5(x) if D=2, (3.10)

pt
P =1+[ZHs(q'(y" (21)))—1]Ho,

P
pl'

p = 1+[Z (g) —1]H (y*(7I)) .

(3.14)

(3.15)

Eqs. (2.4), ( 2.14), and (2.16) become, respectively,

PP;d( y ) = ln( Ap )
—1+yqo ( y ) —]nQ& ( y ),

W.'.(r ) =QHs [@r) ]Ho

P$,"„(y)=Q (2))H (y),

(3.11)

(3.12)

(3.13)

with Ho =Ho(0) and r)'(y ) =2]H&(y )/Ho. Minimiza-
tion of P(y ) =P,d(y)+P, „(y)as a function of y yields the
curve y"(q), which allows us to compute the pressure
through one of the two equations

IV. THE EXCLUDED VOLUME
OF TWO D-DIMENSIONAL HARD CONVEX BODIES

The last input we need to complete our formalism is an
expression for the excluded volume of two HCB's [Eq.
(2.9)]. The most common HCB shapes appearing
throughout the literature are prolate (rodlike) or oblate
(disklike) HE's and prolate or oblate HSC's. The former
are the immediate extensions to anisotropic shapes of the
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(4.1)

where y is related to the aspect ratio v=o~~~/o) by
y=(v —I)/(a. +1). The formula (4.1) is valid provided
D )2 [43].

Notice that Eq. (4.1) has oblate-prolate symmetry,
since it depends on y (y(0 for oblate ellipsoids and
y) 0 for prolate ellipsoids), so that Eqs. (2.14) and (2.16)
will lead to the same thermodynamics for oblate and pro-
late HE' s. As this is in general only approximately true
[15] (except for 2D, where the symmetry is obviously ex-
act) this feature appears as a defect of the theory. How-
ever, the GOA itself is not responsible for this effect be-
cause the exact second virial coefficient also has this
oblate-prolate symmetry. The origin of this failure can
be found again in the approximation [Eq. (2.7)] of the
DCF, which leads to an Onsager-like theory that only
takes into account the second-order virial contribution
with respect to the angular variables.

The GOA has been widely used throughout the litera-
ture [22,23,27 —30]. Its main difficulty is that it overesti-
mates the real excluded volume of two HE's [21],yielding
a second virial coefficient different from the exact one
[18,41]. The second virial coefficient in the GOA is [43]

HS model, and hence they were one of the first systems
for which the nematic phase was studied [14—18,20—24,
26—30]; the latter were introduced to study smectic
phases [12—14,24—26,30] because of their higher packing
ability. Other HCB's have also been considered [41],but
only very little and rather specific studies have been de-
voted to them. Also interesting are the limiting cases of
extremely high prolateness (needles [11,28]) or oblateness
(platelets [10,27]), because for these the nematic phase is
not disturbed by the presence of a solid phase (needles
and platelets have no molecular volume). Finally, HE' s
with three distinct axes have also been proposed to simu-
late biaxial phases [16].

Since the analytical expression for the excluded volume
of two D-dimensional HE s with given orientations u and
u' has not yet been given for any D, an approximate
analytical expression for this excluded volume can be ob-
tained from the so-called Gaussian-overlap approxima-
tion [42] (GOA). This expression is

' 1/2

yGOA(U U
1 — (u u')

1 —X'

by the area of the figure shown in Fig. 1. It is composed
by the sum of the area of four rectangles of side lengths L
and W, four circle sectors which form a whole circle of
radius W, and a parallelogram of length L and angle 0,
where u.u' =cos O, u and u' being the orientations of the
two HSC's. Thus

V~ (g)=4LW+77W +L ~sin g~ (4.3)

From Fig. 1 it can be inferred that in 3D the rectangles
are replaced by half cylinders of height L and radius W,
the circle sectors become spherical caps with the same ra-
dius, and the parallelogram gains a thickness 2Wbecom-
ing a parallelepiped, so in this case

V' '(8)=2LnW+ . ', n W —+2WL ~sing~ . (4.4)

The step from 2D to 3D illustrates how to go to a higher
dimension, so that for a D-dimensional system we can in-
duce [45]:

V(D-Hsc)(g) —2LV WD —) + V WD

+V& zW L ~sing~ (4.5)

X [1—(u u') ]' (4.6)

with Nn given by (3.4), thus leading to the following
second virial coefficient:

where V„denotes the volume of an n-dimensional sphere
of unit radius, i.e., V„=~" /I (1+n/2). Now, if we

take into account that the volume of one of these HSC's
is vo=Vn(W/2) +LE )(W/2) ', the reduced ex-
cluded volume (2.9) takes the form

2
yHsc(u i

) 2' [1+(v—I )/Nn+q]

BGQA
2

Up

F( —1 I D/2'I )'
2D —1

( 1 ~2)1/2
(4.2)

where F(a,13;y;z) is the hypergeometric function [39]. A
slight improvement can be obtained [18] if we rescale
(4.1) by the factor B2"'"/Bz, whenever the exact
second virial coefficient Bz""is available. In the follow-
ing, all calculations involving the excluded volume of two
HE's will be performed with the help of the GOA (re-
scaled when possible).

For HSC's the problem is much simpler [44]. The pa-
rameters defining a HSC are the length of the cylinder, L,
and the diameter of the spherical caps, W. The aspect ra-
tio (the length-to-width ratio) can then be defined as
~=1+L/W. In 2D, the excluded volume (area) is given

FIG. 1. Excluded area of two 2D hard spherocylinders
(circle-rectangles) with relative orientation 0, or, equivalently,
projection on the plane containing the symmetry axes of the ex-
cluded volume of two 3D hard spherocylinders with the same
relative orientation. The figure is described by the center of
mass of particle B as it moves around particle A while keeping
contact at one point at least. L is the length of the cylindrical
bodies and W is their width, as well as the diameter of the
spherical caps.
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equations lead to the same result, that is,

bHcB (HO )
—(n —1)bHs

D (5.2)

where b„=B„+,—l(Bz )" are the reduced virial coefficients.
From this expression it follows:

p = I +HD(ZHs(g) 1—) . (5.1)
P

This expression is the obvious generalization to a system
of D-dimensional HCB's of those previously obtained in
2D [28] and 3D [27], and it is again a direct consequence
of the approximation used for the DCF [Eq. (2.7)]. No-
tice that we have not made use of the explicit expression
of the DCF, so we are totally free to use more accurate
EOS's for the HS reference system than the simple
Percus-Yevick (PY) [6].

It is interesting to compare the results of Eq. (5.1) with
other EOS's which have been proposed for the isotropic
HCB Quid, namely, the Song and Mason proposal [46],
based upon the knowledge of the three first virial
coefficients; the scaled-particle theory (SPT) [47,48], and,
of course, the available simulation results. This compar-
ison is done in Figs. 2 and 3 for D =2 and 3, respectively.
Also interesting is to compare the virial coeScients B„
predicted by these theories with the numerical estima-
tions for the exact ones. From Eq. (5.1) it is straightfor-
ward to show that

[11,49]. In Figs. 4 and 5 the results for b2, b3, and b4
predicted for all these theoretical approaches are corn-
pared to the numerical estimations for 2D [49,50] and 3D
[51] HE' s, respectively. This fact makes clear a profound
failure of the theory for D =2 suggesting that the simple
approximation for the DCF [Eq. (2.7)], which is responsi-
ble for the form (5.2) of the approximate virial
coefficients, is not valid for 2D HCB systems [29].

(a)

10

10

10

10

10 -s I I IIIIIII I I IIIIIII I I IIIIIII I I II«IIl I I IIIIIII I I IIIIII

10 '
1 10 10 ' 10 ' 10 ' 10 '

lim gHcB 0 pg 2 .
Q~ co

(5.3)

This property was proven to hold for D =3 (and it can
also be proved for D ~ 3) by Onsager [9], and indeed all
theories verify it except the SPT of Boublik [47], for
which b2 ~—,

' as a~ ~. However, although for D =2
all the theories satisfy (5.3), it has been proven to be false

(b)
I I I I I I I II I I I I I I I II I I I I I I III I I I I I I I II I I I I I I I II I I I I I I II

1.0 I I I I I I III I I I I I I III I I I I I I II 0,2

0.8 (

0.6
0. 1

0.4 0.0

0.2

0.0 0
—0. 1

I I I I I I I II I I I I I I II I I I I I I I III I I I I I I I II I I I I I I I II I I I I I I I I

10 '
1 10 10 ' 10 10 ' 10 '

K—0.2 0 0 0 0 0

0 4 I I I IIIIII I I I I I I III I I I I I I II

10 10' 10'

FIG. 4. Reduced virial coefficients, b„—=B„+&/(B2)"(n =2, 3
and 4, from top to bottom), vs the aspect ratio ~, for a system of
2D HE' s. Circles represent the numerical results of Refs. [49]
aud [50]; solid lines are the predicted virial coefficients after Eq.
(5.2); long-dashed lines are the SPT results of Ref. [47], and
short-dashed lines are Song and Mason's results [46] (recall that
b2 and b3 are inputs in their theory).

FIG. 5. Reduced virial coefficients, b„—=B„+,/(B2)", vs the
aspect ratio ~, for a system of 3D HE' s. Circles and squares
represent the numerical results of Ref. [51]; solid lines are the
predicted virial coefficients after Eq. (5.2); long-dashed lines are
the SPT results of Ref. [47]; medium-dashed lines are the SFP
results of Ref. [48], and short-dashed lines are Song and
Mason's results [46] (recall that b2 and b, are inputs in their
theory). (a) is a log-log plot of b2. For large a the slopes of the
solid and medium-dashed lines are 1 while that of the short-
dashed line is nearly 0.9. (b) is a plot of b3 and b4. The very
short-dashed line joining the squares has been drawn as a guide
to the eye.
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VI. THE NEMATIC PHASE
OF D-DIMENSIONAL HARD ELLIPSOIDS

2[ZHs(g~) —1]Idu MP'(u)X(u)+ I =0,

2QHs(gq) fduMP'(u)X(u)+1=0 .

(6.1)

(6.2)

As we have just seen, the isotropic and the nematic
phases coexist within an interval of densities around the
transition point. The phase equilibrium conditions, i.e.,
P, =P„andp, =p„,with P; (P„)the pressure and p, (p„)

Minimizing P(y)=Pd(y)+P, „(y)with respect to y,
with P;d(y) given by (3.11) and P,„(y)given by either
(3.12) or (3.13), we find a unique solution, y =0, for pack-
ing fractions up to a certain value, go. This means that
the isotropic phase is the only stable phase in this region.
However, above go, a second minimum, y'(g)&0, coex-
ists with the former. It corresponds to the appearance of
a nematic phase. qo and y*(g) depend on which version
of the GELA (total or radial) we choose. For D=2,
y*(rl) goes to zero as we approach qo from above, so that
at go both solutions meet. Further, the isotropic phase
becomes unstable above go and so there is no coexistence
of the two phases for gogo. The transition is, thus,
second order, in agreement with the previous findings
[28] and for the same reason, i.e., the Landau expansion
is an even function of the order parameter, so no third-
order term appears, and the fourth-order term is always
positive, prohibiting the existence of a tricritical point.
As pointed out in Ref. [18],this conclusion seems to be in
strong disagreement with the simulations performed on
2D HE' s, where the I-N transition is of the Kosterlitz-
Thouless type for high eccentricities, and first order for
low eccentricities. For D) 2, y "(g) is discontinuous at
go, and above this value up to gz)go, where the y=O
solution becomes unstable, both solutions are local mini-
ma of the free energy. The magnitude of P(y) for each
minimum is what determines which of them is the abso-
lute minimum, and hence distinguishes the truly stable
phase from the metastable one. Eventually both phases
reach the same value of the free energy at a certain pack-
ing fraction, g, (go&rj, &gz). All this phenomenology
corresponds to a first-order transition. For D=3 this
conclusion agrees with the simulations on HE's [15];
however, the simulations on HSC's [13] are not con-
clusive enough to distinguish between a continuous tran-
sition or a very weak first-order transition.

The above conclusions arise by working out the OOP
approximation (see Sec. III) numerically. However, some
results can also be proven analytically. The order of the
transition can be obtained from a Landau expansion of
the free energy in terms of the order parameter qD
[27,28], and the stability limit of the isotropic phase, gz,
is found from the change of sign of the second derivative
of the free energy at y =0 [P"(0) & 0 implies stable isotro-
pic and P"(0))0 unstable isotropic phases]. After some
algebra and making use of the summation theorem of the
Gegenbauer polynomials [39] the stability conditions for
the t-GELA and the r-GELA read, respectively,

the chemical potential of the isotropic (nematic) phase
can then be solved in this region. The solution to this
system of equations yields thus g; and g„,the packing
fractions of the isotropic and the nematic phases at coex-
istence.

In Fig. 6 we plot the EOS of 2D HE's obtained from
the t-GELA and the r-GELA, together with the Monte
Carlo (MC) results of Ref. [18], for aspect ratio a =2, 4,
and 6. We can see that, although the prediction of the
order (always second order) and the location of the tran-
sition (always too low) are wrong (see also Fig. 7), the nu-
merical values of the EOS obtained from the r-GELA
(with Z6 of Baus and Colot [36] as HS EOS) are not very
far from the simulations. Besides, for ~=2, where ac-
cording to the simulations the nematic phase is preempt-
ed by a more ordered phase (presumably a solid), the
transition point obtained from this approach is placed
above the density at which this new phase appears. This
suggests that the r-GELA is reliable to describe the ther-
modynamics of the system for not too elongated 2D
HE' s. However, the t-GELA predicts a nematic branch
which deviates excessively from the MC data. Even the

I I I I I I I I I I I I I I I I I I I I I I I I I I I I11 I I I I

/

f

20

15

10

0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 'I 4

FIG. 6. Reduced pressure P"=PPvo of 2D HE's (hard el-
lipses) as a function of the packing fraction g=uop, for aspect
ratios re=2, 4, and 6 (from left to right, each shifted 0.2 units to
the right). Solid lines show the pressure at the stable phase (ei-
ther the isotropic or the nematic) as obtained from the r-GELA.
Short-dashed lines show the pressure of the unstable isotropic
phase. Long-dashed lines represent the pressure of the nematic
phase as obtained from the t-GELA. Empty circles are the MC
results given by Ref. [18], as computed starting from a low-

density configuration. For ~=2 and 4 they correspond to the
isotropic phase. For ~=6 they belong to the nematic phase
above g=0.59, where a Kosterlitz-Thouless transition takes
place. Filled circles are the same MC results but this time com-
puted starting from a high-density configuration. Above
g=0.78, 0.79, and 0.76, for ~=2, 4, and 6, respectively, another
phase (presumably a solid) exists. Below those densities the
filled and empty circles coincide for v=2 and 6, but for ~=4
they belong to a nematic phase which goes over into an isotro-
pic phase at g=0.74. Notice the strong disagreement between
the nematic pressure obtained from the t-GELA and the simula-
tions.
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0.4 0.5 0.6 0.7 0.8

FIG. 7. Transition lines for the I-N transition of D-
dimensional HE, for D =2, 3, 4, and 5 (from top to bottom) as
obtained from the r-GELA. For D=2 the I-N transition is
second order, whereas for D &2 it is first order. The shaded
areas of the first-order transitions indicate the coexistence re-

gion. Empty circles correspond to the 2D transition as obtained
from simulations [18]. In this case, for @=2 and below, the
nematic phase is preempted by another phase (presumably a
solid). Filled circles correspond to the 3D transition as obtained
from simulations [15]. Notice the good agreement with the
present calculations. The nematic phase is always placed above
the lines while the isotropic is below the lines.

location of the transition is lower than that obtained from
the r-GELA. In particular, for ~=2 the transition is pre-
dicted where the simulations clearly show an isotropic
fluid. In the case of 3D HE's the r-GELA yields very ac-
curate results for the nematic branch, when compared
with the simulations of Ref. [15] (see Fig. 8), and provides
values for the location of the transition which are in ex-
cellent agreement with the simulations (see Fig. 7 and
Table I). On the contrary, the t-GELA exhibits the same
failure as in 2D. For this reason we will henceforth only
consider the r-GELA, although eventually we will come
back to the t-GELA but mentioning it explicitly. In Fig.
8 we also show the dependence of the results for the pres-
sure on the HS EOS used in (3.15). Three different
choices [Carnahan Starling (CS), Baus-Colot's Z& [36],
and SPT—identical to the compressibility PY (PY-c)]
have been made. Results do not strongly depend on
which of them is used; however, SPT values seem to fit
the MC data slightly better. Table I shows a comparison
between the coexistence results obtained from the r-
GELA with the three mentioned HS EOS's, from the t-
GELA, from the MC simulations [15], and from other
theoretical approaches found in the literature. Again
there is not much influence of the choice of the HS EOS.
Lee's theory [30] is based upon the functional (2.16) (r
GELA) but solving numerically the Euler equation for
h(u). The difference between his results and those of our
r-GELA are due to this fact and to our rescaling of the
excluded volume (see Sec. IV). Furthermore, Holyst and
Poniewierski's theory [26] is based upon functional (2.14)

FIG. 8. Reduced pressure P =PPvo of—3D HE as a function
of the packing fraction g —=Uop, for aspect ratios v=2. 75 and 3
(from left to right, each shifted 0.2 units to the right). Solid
lines show the pressure at the isotropic and the nematic phases
as obtained from the r-GELA using the CS EOS for the HS
reference system. Medium- and short-dashed lines are the same,
but using the SPT and the Z& of Ref. [36] as EOS for the HS
reference system. Long-dashed lines represent the pressure of
the nematic phase as obtained from the t-GELA with the CS HS
EOS. Empty circles, filled circles, and squares are the MC re-
sults of Ref. [15] for the isotropic, nematic, and solid phases, re-
spectively. Tie-lines show the coexistence obtained from the
corresponding approaches. As in 2D (Fig. 6) the nematic
branches obtained from the t-GELA are in strong disagreement
with the simulations.

(t-GELA), and their results and those obtained from our
t-GELA are much poorer than the former. Also worth
noticing is the superiority of the r-GELA for reproducing
the thermodynamics of the transition, namely, the pres-
sure and chemical potential, at coexistence.

Results for the stability limits of the nematic and the
isotropic phases (r1o and r)z, respectively) for a system of
D-dimensional HE's are given in Table II. Also listed in
it are the values of the order parameter q~, as well as the
difference between the free energy of the two phases, at
those values of g. It can be seen that the order parameter
is a slowly varying function of the aspect ratio ~. This
feature has been interpreted as a Lindemann rule for the
I Ntransition [27].-The difference of free energy is also a
slowly varying function of ~. It is very small for D =3,
but increases very rapidly with D. The results obtained
from the coexistence equations are listed in Table III, and
a plot of the transition lines (with its corresponding
widths for the first-order transitions) is shown in Fig. 7.
These results show that the I-N transition starts being
rather narrow at low eccentricities (hg/g„, with
b q =g„q,, is less than —10% up to ~-4, for all D) but it
widens as ~ increases, as could be expected. The jump in
the order parameter q~ is always quite strong, against the
idea of the I-N being a weakly first-order transition and
invalidating the possibility of a converging Landau ex-
pansion.
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TABLE I. Data for the coexistence of the isotropic and the nematic phases of a system of 3D HE s with aspect ratio ~, as obtained
by Monte Carlo (MC) simulations [15], by the r-GELA [with Carnahan Starling (CS) [6], Baus-Colot's Z4 [36] and SPT, or
equivalently PY-c [6], HS EOS's] and the t-GELA (with CS HS EOS), by numerical solution of (2.16) as reported by Lee [30] and by
other previous theories, namely, those of Marko [23], Baus et al. [27], Holyst and Poniewierski [26] [whose calculations are based
upon the functional (2.14)], Mulder and Frenkel [20], Perera, Patey, and Weis [24], and Singh and Singh [22]. rI; and g„denote the
packing fraction of the isotropic and nematic phases, respectively; b,rj=r)„—t);; P*=PPuo and p,*„=P)M,„arethe reduced pressure
and the excess chemical potential at the coexistence point, and q is the order parameter of the nematic phase at g„.

MC 3

1/3

2.75

1/2.75

2

1/2

0.507

0.498

0.561

0.545

(0.620)

(0.615)

0.010
0.010
0.009

0.014

p g

9.79

9.15

15.70

13.45

(24.59)

(23.96)

Rex

25.15

24.03

35.68

41.69

(49.03)

(48.23)

r-GELA

with CS 2.75

0.523

0.557

0.693

0.009

0.008

0.003

10.72

14.00
50.10

28. 1

33.7
88.3

0.536

0.522

0.477

r-GELA

with Z4 2.75

0.524

0.558

0.009

0.008

10.64

13.88

28.0
33.5

0.538

0.523

r-GELA

with SPT (PY-c) 2.75

0.515

0.547

0.009

0.007

10.77

14.05

28.5

34.3

0.538

0.523

t-GELA

with CS 2.75

0.394

0.417

0.523

0.020

0.019
0.011

3.43

4.06

8.97

12.8

14.1

25.3

0.488

0.480

0.453

Ref. [30]
2.75

0.508

0.544

0.009

0.008

10.00

13.19

25.63

31.22

0.533

0.517

Ref. [23]
2.75

0.493

0.517

0.001 0.017
0.010

Ref. [27]
2.75

0.472

0.501

0.612

0.012

0.011
0.006

7.76

9.62

24.3

22.3

25.7

50.2

0.561

0.548

0.50

Ref. [26]
2.75

0.454

0.475

0.02

0.018
4.68

5.48

0.485

0.477

Ref. [20] 3

1/3

2.75

1/2. 75

2

1/2

0:420
0.413
0.449

0.443

0.576

0.573

0.018
0.017
0.015
0.015
0.007

0.007

5 ~ 31

5.27

6.55

6.52

17.84

17.86

0.568

0.546

0.553

0.550

0.498

0.497

Ref. [24] 3

1/3

0.418
0.405

0.018
0.015

0.657

0.638

Ref. [22]

2.75

0.309
0.329

0.415

0.021

0.018
0.008

0.547

0.532

0.480
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TABLE II. Metastability limits of the isotropic and the nematic phases of a system of D-dimensional

HE's as obtained from (3.13). For g (go (g & g2) the nematic (isotropic) phase is unstable. qa
'

(qD ')

and bf' ' (bf' ') are the order parameter of the nematic phase and the difference between the free ener-

gy of the nematic phase and that of the isotropic phase, computed at go (g2). Notice that these two

latter quantities are not very sensitive to changes in the aspect ratio sc, but they increase very quickly

with D. We have used CS as the reference HS EOS.

2
3
4
5

6
10

0.6926
0.5248
0.4269
0.3629
0.3173
0.2157

(0)
qD

0.344
0.365
0.372
0.382
0.378
0.408

Pgf (0)ip

0.004 58
0.005 07
0.005 59
0.005 94
0.006 31
0.006 85

0.7096
0.5482
0.4521
0.3881
0.3420
0.2366

(2)
qD

0.632
0.654
0.672
0.685
0.696
0.720

Pgf (2)/p

—0.0744
—0.0835
—0.0917
—0.0980
—0.1036
—0.1155

2
3
4
5

6
10

0.4826
0.3302
0.2541
0.2081
0.1771
0.1130

0.445
0.472
0.486
0.493
0.506
0.534

0.029 8

0.033 1

0.036 1

0.038 5

0.0400
0.043 2

0.5252
0.3766
0.2990
0.2505
0.2168
0.1438

0.778
0.802
0.820
0.833
0.844
0.865

—0.503
—0.566
—0.620
—0.666
—0.702
—0.784

2
3
4
5

6
10

0.3654
0.2404
0.1834
0.1501
0.1279
0.0823

0.496
0.525
0.527
0.544
0.551
0.579

0.075 7
0.083 9
0.091 9
0.097 1

0.101 2
0.1092

0.4266
0.2985
0.2373
0.2000
0.1743
0.1185

0.836
0.862
0.881
0.892
0.899
0.913

—1.36
—1.54
—1.70
—1.82
—1.92
—2.15

VII. THE ORDER OF THE I-N TRANSITION

It could be argued that the order of the transition
might change if we consider two or more order parame-
ters instead of the OOP approximation. To prove that
this is not the case we are going now to derive the same
results as above from the exact Euler-Lagrange equation.

This equation is obtained by imposing h (u) to be a
minimum of (2.16) and keeping the normalization,

fdu h (u) = 1. Thus

exp —2QHs(ri) fdu'X(u. u')h(u')
h(u)=

fduexp —2QHs(ri) f du'X(u u')h(u')

TABLE III. Data for the coexistence of the isotropic and the nematic phases of a system of D-
dimensional HE's with aspect ratio a, as obtained from the r-GELA. Notation is the same as in Table I
except that in this case the order parameter is denoted by qD. Again the CS is used as HS EOS.

pg

2
3
4
5

6
10

0.693
0.523
0.424
0.358
0.312
0.208

0.003
0.009
0.015
0.020
0.024
0.027

50.1

10.7
5.21
3.37
2.49
1.24

88.3
28.1

17.9
14.2
12.3
9.64

0.477
0.536
0.588
0.627
0.657
0.709

2
3
4
5

6
10

2
3
4
5
6

10

0.503
0.346
0.266
0.217
0.183
0.115

0.369
0.241
0.182
0.148
0.125
0.079

0.007
0.018
0.025
0.029
0.031
0.032

0.006
0.012
0.016
0.018
0.019
0.020

35.4
7.94
3.85
2.46
1.79
0.86

28.8
6.94
3.47
2.26
1.66
0.82

95.7
35.1
23.5
19.1
16.8
13.6

107.1
43.1

29.8
24.6
21.8
17.8

0.729
0.767
0.797
0.820
0.837
0.875

0.661
0.715
0.754
0.782
0.802
0.846
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exp[ —2QHs(g)(Kf )(u)]
f(u) = —1+

f du'exp[ —2QHs(q)(Kf )(u')]
(7.2)

where to simplify the notation we have introduced the in-
tegral operator E, defined by

This equation has always the trivial solution h(u)=1,
corresponding to the isotropic phase. To find a noncon-
stant solution, that would correspond to the nematic
phase, we assume that (7.1) exhibits a continuous bifurca-
tion at a point g, and apply the analysis of Kayser and
Raveche [52]. This method will tell us whether indeed
(7.1) has a bifurcation point and will allow us to compute
it. Further, we can extend the analysis to check which
kind of bifurcation we are dealing with and interpret the
result in terms of the I Ntra-nsition. If (7.1) has a bifur-
cation at a certain density, g„then at that precise point
two solutions [h(u)=1 and h(u)%1] will converge to
each other. So let us express the nonconstant solution as
a perturbation of the constant one, h(u)=1+f(u),
where f(u) vanishes when we approach g, from above.
Let us rewrite (7.1) in terms off(u):

f(u) =f, (u)a-!-f~(u)a /2!+.", (7.7)

r =r, +r&a+r2u /2!+. --2 (7.8)

where a is a parameter that measures the "distance" to
the bifurcation point and which has to be eliminated to
find f(u) as a function of rl. By inserting (7.7) and (7.8)
in (7.2) the following hierarchy is found:

r, (Kf—()(u)=f((u) —Idu'f)(u'),

—r, (Kf& )(u) —2r((Kf, )(u)

(7.9)

=f, (u) —[f,(u)]' —f du'I f, (u') —[f,(u')]']

(7.10)

which can be solved by noticing that Jdu'f„(u')=0 and

f, (u) =M& '(u), and multiplying the equations by f, (u)
and integrating over u, using the self-adjointness of E and
imposing orthogonality of the f„(u).In this way we find

the following solutions up to second order:

(Kf )(u)—:Jdu'X(u u')f(u') . (7.3) f, (u) =M(z '(u), (7.1 1)

f(u) = —2QHs(rl )(Kf )(u)+O (f ) . (7.4)

So the existence of the bifurcation is related to the ex-
istence of eigenvalues of the operator E, with the restric-
tions that f(u)=f( —u), Jduf(u)=0, and u n=
cos 8=+1 have to be the only maxima of f(u). In that
case the bifurcation is given by

2QHs(n, )= ——1 (7.5)

Since near the bifurcation f(u) is as small as desired, we
can expand the right-hand side of (7.2) as a functional of
f(u) up to first order to obtain

D (D+1) g(D)

(D+4)(D+2)(D —1)

2(D —2) 1

(D+4)(D —1) g'

r~ = (5D —13D+ 12)A, '

2(D +7D 13D —16D+—48) (D)

(D+4)(D+2)

(7.12)

(7.13)

k being the corresponding eigenvalue. Using the summa-
tion theorem of Gegenbauer polynomials we can prove,
after some algebra, that M„' ' are eigenfunctions of K
with eigenvalue A,'„'.

'= f du X(u n)M' '(u) . (7.6)

The parity condition [f(u)=f( —u)] discards the odd
elements of the polynomial set, the condition

fdu f(u) =0 discards Mo '(u), so finally, the M~(„)(u)
with n )0 form a basis for f(u). Further, the restriction
that f(+1)be the unique maxima of f(cos 0) leaves only
M(z '(u) in the vicinity of g, . Then, Eq. (7.5) becomes,
after inserting A,z ', identical to the condition of marginal
stability of the isotropic phase we found within the OOP
approximation [cf. Eq. (6.2)], so that rl, =gz. This is not
surprising if we take into account the shape we chose for
h(u) in the OOP approximation [Eq. (3.2)]. Further-
more, this derivation of a basis of polynomials for f(u) is
the very justification of the choice we made in Sec. III.

We can go ahead with Kayser and Raveche's formal-
ism and expand f(u) and r(g) —=2QHs(q) around rl, :

X
4

(D+6)(D+4)(D —1) A,
' '(A, ' ' —

A,
' ')

(7.14)

2X,"'—X,"'
4g(2)(g(2) g(2) )2 2 4

(7.15)

As it can be checked numerically that r2 &0, so no solu-

tion other than the trivial one exists for densities below

g„and therefore the transition is second order for D =2.
We see thus that the conclusions we obtained from the
OOP approximation have not been affected by the ap-
proximation itself; only the location of the coexisting

Having in mind that A, (z )(0 (otherwise the isotropic
phase would always be unstable) and that QHs(g) is a
monotonically increasing function of g, from (7.13) we

see that r, &0 for D )2, and so there exists a noncon-
stant solution of (7.2) for densities below q, . The transi-

tion is, then, first order, in agreement with what we have
deduced from the OOP approximation. On the other
hand r, vanishes for D =2 so we must resort to r2 to de-

cide the order of the transition. Setting D =2 in (7.14) we

obtain
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densities of the first-order transition and the results for
the thermodynamic quantities may be expected to be al-

tered by the OOP approximation.

VIII. THE ONSAGER LIMIT
AND THE NEMATIC PHASE

OF D-DIMENSIONAL HARD SPHEROCYLINDERS

In his first attempt to describe the I-N transition, On-
sager proved [9] that in 3D the virial expansion up to
second order becomes exact in the combined, so-called

I

Onsager limit, g~O, ~—+ao while keeping ~g=const.
We can check whether our formalism is consistent with
Onsager's theory by performing this limit on our func-
tional. First, we have to take into account that the
compressibility factor, in the limit g~O, behaves as

Z~s(g) =1+2 'ri+O(vP), which implies Q~s(g)
=2 'vg+O(r) ). Second, in the limit le~ac we have
(1—g )

' -K/2+O(1/a). Combining the two expres-
sions and defining the Onsager variable
c =B2p-2 nar1/(D —1)Nn, Eq. (3.13) reduces to

Py,„"'(y;c)= f ds f ds' f dx[(1 —s')(I —s')]' ""gn(x)
~N~+ &

o o

Xh~(s)hn(s')[I —[ss'+(1 —s )' (1—s' )' cos(mx)] ]' (8.1)

with gn(x) given by (3.10). Equivalently, once we have
found y*(c) as the minimum of P "'(y;c ) with respect to
y for any given c, the compressibility factor gets the sim-

ple expression:

where the effective density c(q) is given by

DNn+ & (a 1)
2m N~ [1+(a —1)/N~+q]

(8.5)

Zo„,(c ) = 1+PP,„"'(y'(c);c ) . (8.2)

This pair of expressions, (8.1) and (8.2), coincides with
those found for D =2 and 3 in Refs. [28] and [27), respec-
tively. For D=3 they also coincide with the exact On-
sager expressions. However, in spite of its oblate-prolate
symmetry, the latter equations describe only approxi-
mately the system of 3D hard platelets [10],and similarly
for the 2D hard needles system [11,28], since in both
cases the virial expansions cannot be truncated at second
order.

An interesting consequence of the Onsager limit arises
by noticing the similarity between the excluded volume
part of the right-hand side of (8.1) and the excluded
volume of a D-dimensional HSC [Eq. (4.6)]. If we work
out the expressions for the excess free energy and the
pressure of this system we will find the remarkable rela-
tionships

Pf,„(rl)=Q~s(r1)+Zo„,(c(g)) 1, —

z„,(
Zmsc(rI ) =Zms(rl)+ [Zo„,(c(rl) ) —1]

HS

(8.3)

(8.4)

MD
Ref. [30]
Ref. [26]
r-GELA
t-CAELA

0.4
0.400
0.38
0.401
0.315

0.018
0.03
0.017
0.039

4.9
5.36
2.9
5.42
2.5

0.67
0.59
0.67
0.71

TABLE IV. Data for the coexistence of the isotropic and the
nematic phases of a system of 3D HSC's with aspect ratio a =6,
as obtained by molecular-dynamics (MD) simulations [13], by
numerical solutions of (2.16) as reported by Lee [30], from the
functional (2.14) as given by HoXyst and Poniewierski [26], and
from the present calculations. Notation is the same as in Table
I and the HS EOS is also the CS.

p g

From these equations, almost all features of the isotropic
and nematic phases of finite ~ HSC can be obtained
through the knowledge of those of the hard needles sys-
tem (Onsager limit). Thus the order parameter is simply
given by qn (g)=qg"'(c(ri)); the thermodynamics is
computed with the aid of (8.3)—(8.5), and the stability
limit of both phases (rIO and g2) together with the point of
marginal stability (rl&) can be obtained from the relation
c(r1J ) =c~ (j=0, 1,2 and cj being the equivalent quantities
in the Onsager theory. However, since Eqs. (8.3) and
(8.4) are written in terms of both variables, ri and c, the
coexistence has to be solved for each ~ independently. In
Table IV results for the coexistence in the 3D HSC sys-
tem with a=6 are gathered together with the available
simulation results [13],the results from the r-GELA with
numerical determination of h(u) by Lee [30], the results
from the t-GELA by Hofyst and Poniewierski [26], and
the present calculations with both approaches. The su-
periority of the r-GELA compared to the other theories
can again be appreciated. Besides, it can be seen that the
numerical solution of the Euler-Lagrange equation [30]
does not lead to any serious improvement and this makes
the OOP approximation a convenient and simple approx-
imation.

IX. THE LIMIT D~ ao

The study of first-order phase transitions in the large-D
limit is interesting due to the fact that in this limit the
mean-field theory becomes exact, unlike the case of the
second-order transitions for which the mean-field ap-
proach is exact above a certain finite (critical) dimension.
The former statement can be understood by noticing that
the average number of neighbors goes to infinity with the
dimension, satisfying in this way the assumptions of the
mean-field theory [53]. The latter statement is a well-
known consequence of the renormalization group. This
large-D study has been recently applied to some classical
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h(8)=R exp[ Dg(1 ——g cos Oocos 8)'~ ] (9.1)

with R the normalization factor. By imposing 0o to be
the maximum of the angular probability function we ob-
tain

u=0,
2 2

4 ~(

(9.2)

problems in condensed matter, namely, the freezing of
HS [54], the I N-transition of hard rods [55], and the
phase diagram of binary HS mixtures [56]. In the
remainder of this section we will extend the study of the
I Nt-ransition of hard rods [55] to the case of HE's in the
GOA, showing that our formalism in the OOP approxi-
mation is exact in this limit.

First of all we have to define a new density variable
which remains finite when the dimension goes to infinity.
Let us introduce g= 2H—~r//D. In the D~ oo limit the
free-energy virial expansion truncates at second order, so
that Onsager's functional becomes exact [see Eqs. (2.14}
and (2.16) and comments below]. Let us further assume
that the angular probability function h(8) sin 8, i.e.,
the probability of finding a molecule with orientation be-
tween 0 and 0+d 0, is very peaked around a certain value
0o. Then, an asymptotic expansion of the integrals in-
volved leads to

Pp„-D —
—,'ln(1 —u ) +c~ .

1 —yu
y u(1 —u)

Finally, if g (g, i.e., in the isotropic phase:

PP; -D~+c~,

(9.7)

(9.8)

P' -D&,
p 2

Pp;-Dg+cr& .

(9.9)

(9.10)

where we have used the fact that ln Nz =O(ln D) and can
thus be dropped. If the angular probability distribution
has to be peaked around a certain angle 0o, then y has to
increase linearly with D for large D, i.e., y-Dg. With
this assumption Eq. (9.12) can be rewritten as

ln Q~ -ln f d 8 exp t D [g cos 8+ ln(sin 8) ] ] . (9.13)

Now let us go back to our formalism and take the ex-
pressions deduced in Sec. III within the OOP approxima-
tion. In the D~ oo limit the polynomial basis (3.1) be-
comes [39] M„'"'(x)=x",and Eqs. (3.2) and (3.3) reduce
to

hz(8)-Q~(y) 'exp(y cos 8),
m/2

ln Q~(y)-in f dOsin Oexp(y cos 8), (9.12)

where u = cos Oo and g —= (1—g u )/g u (1—u ),
with u the solution of y u —2u +1=0 satisfying
0&u &1. On the other hand, for large D we obtain
asymptotically:

The dominant contribution to this integral comes from
the maximum of the argument in the exponential,
y(8)—=gcos 8+in(sinO), i.e., the angle Oo such that
y '(Oo) =0. This condition leads to the equation
cot Oo g sin( 28O), whose solutions are

lnR = —ln f dO
~/2

o N~ cos 0o—0) 2g & 1

2g sin 0O= 1, 2g ) 1 .
(9.14)

Xexp[ Dg(1 —y co—s Oocos 8)' ]

X sin 0

-D[((1—y~ cos48o)'~~ —ln(sin Oo)]
0, 2g&1

lnQ —[2g —1 —ln(2g ) ], 2g & 1 .
2

(9.15)
so that for g & g, i.e., in the nematic phase

The above result allows us to compute (9.13), obtaining

(9.3)

lnR — —
—,'ln(l —u) .1 —yu

y u(1 —u)
(9.4)

On the other hand, the order parameter qz can be com-
puted from (3.8) as

The excess free energy behaves in this limit as

pp, „-D(1—y u )' g/2, the final expression for the free

energy of the nematic fluid being

1
q =q„= lim —InQ~(Dg }

gg g)

—ln(1 —u ) +c~1 —yu2
g u(1 —u)

(9.5)

p 2 yu(1 —u)

and then from (2.18) the chemical potential reads

(9.6)

with c~ -D ln(A' /2) the ideal-gas contribution. The
pressure can be obtained through the thermodynamic re-
lation PP /p =gd(PP)/r)g yielding

0, 2g&1
1

1—,2g&1.
2g

(9.16)

PP;d= ——ln(1 —q)+c~ .D (9.17)

Using this relation together with Eq. (9.15) into (3.11) the
following expression for the ideal contribution to the free
energy is found:
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Notice that this formula is valid for all g. To compute
the excess free-energy contribution we have to asymptoti-
cally expand (3.9}for large D. Because the angular prob-
ability distribution is sharply peaked we get

2 2
i /2

1 —X'q'
2

(9.18)

Besides, QHs(rj)-Dg/2HD, so that both the t-GELA and
the r-GELA yield the same expression for the excess free
energy, that is,

100

10

py g( 1 +2q 2)1/2D
(9.19)

Thus the free energy within the present formalism
reaches the final form:

D
Py ——[—ln(1 —q)+g(1 — )' ]+ (9.20}

Once we have obtained the (Landau) expression for the
free energy as a function of the order parameter q, we just
have to find the q value that minimizes it to determine
where the nematic phase is stable. Doing this leads to the
following relation:

(9.21)
1 —X'q'

X'q'(1 —q)'

Comparison of this formula with Eq. (9.2) yields the
identification q = u and the conclusion that q(g) obtained
by the present method is exact. Further, we can use

9.21) to eliminate g in (9.20}and obtain the free energy of
the nematic phase:

I I I I I I

FIG. 9. Reduced pressure P =HAPP/Dp vs the rescaled den-

sity g=p2 vo/D(1 —y2}'/', with y=(k' —1)/(k'+1), of a sys-
tem of D-dimensional HE's in the GOA, when D ~ 00. The iso-
tropic branch is represented by a straight line which is indepen-
dent of ~. The nematic branch is shown for ~=2, 3, 4, 5, 6, and
00 (from top to bottom). The tie line (also shown) indi t
c ear y ow the isotropic-nematic transition is pushed to higher
densities and alsoo becomes narrower when x decreases from the
original Onsager limit (~=(x) ) to the spherical limit (a=1)
where the transition disappears.

by the equation

(1 2 2 3/4 2 2 X—g q, ) =1—g q, — q, (1—q, )ln(1 —
q, ) . (9.25)

D 1 2 2

PP„—— 2
—ln(1 —

q ) +c
2 Xq(1 q)

— D, (9.22)
InFi . 10th'g. e order parameter q is represented as a func-
tion of g for several aspect ratios. Also in the same figure

( 1 ~2q 2
)
1/2

X'q, (1—q, )
(9.24)

where q, 1s the order parameter at g„and is determined

which with the previous identification of the order pa-
rameter turns out to be exactly the same as the free ener-

gy (9.5). Therefore the present formalism within the
OOP approximation becomes exact in the large-D limit,
whatever the version (either t-GELA or r-GELA)
(this isis is reminiscent of the fact that both expressions coin-
ci e up to second order in the virial expansion}. The ex-
pressions for the pressure and the chemical potential and
t ose for the isotropic phase are consequently identical to

HE's is plotted versus the variable g for several values of
the aspect ratio. The isotropic branch is independent of ~
[see (9.9}]. The nematic branches are joined to the isotro-
pic ranch by a horizontal line that represents the tie
line. As
in both

s usua, this coexistence is determined by requir-
ing oth phases to have the same pressure and chemical
potential. The coexisting densities are given by

( 1 ~2q 2)3/4
C

X'q, (1—q, )
(9.23)

1.0

0.8

0.4

0.2

P 0 I I I I I I I I I I I I I I

0 5 10 15

FIG. 10.0. Order parameter q as a function of the rescaled den-
sity g (see caption of Fig. 9) for a system of D-dimensional HE' s
in the GOA when D~00,
6, and ao (solid lines from right to left). The long-dashed line
represents the order parameter at the de enslty where the
nematic phase appears for the first time as a metastable phase
(when increasing g). The short-dashed line represents the order
parameter at the density g at which thc e nematlc p ase coexistsh
with the isotropic phase.
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q, (g„)and q =u (g ) are plotted, g [appearing in
(9.2)] being the lower stability limit of the nematic phase.
Notice the huge jump in the order parameter at the I-N
transition, indicating a strong first-order transition.

X. CONCLUSIONS

We have shown how the ELA can be applied to study
the I-N transition of HCB in any dimension D. The re-
sults can at present only be tested for D=2, 3, and ~.
For D =3 our results coincide with those of the function-
al proposed by Lee [30], and turn out to provide the best
description presently available. The great advantage of
our formalism, however, is that it gives a derivation of
this functional based upon the exact DFT relations and
thus all the approximations involved in the final expres-
sion are made clear. In particular we can identify Pynn's
approximation to the DCF as being responsible for the
factorization of the radial and angular parts of the func-
tional. This factorization is a good approximation in 3D
and presumably also for higher dimensions (because the
results are proven to become exact in the large-D limit),
but leads to a failure of the theory in 2D, where a
second-order transition is predicted while simulations
show a more complex behavior (first-order becoming
continuous —of the Kosterlitz-Thouless type —for higher
eccentricities). Furthermore, the isotropic EOS predicted
in 2D is incorrect since the factorization induces a rescal-
ing of all virial coefficients by the second one [see Eq.
(5.2)], which vanishes in the large eccentricity limit as

. This implies that the rescaled virial coeScients van-
ish in this limit as b„-~'" ", instead of going to a
nonzero value, as the simulations indicate [11]. Besides,
the OOP approximation does not alter the nature of the
transition and only slightly changes the numerical results.
For these reasons we conjecture that an improvement of
the underlying DCF is needed in order to obtain reason-
able results for a 2D system.

The GELA amounts to computing the excess free energy
as [Eq. (3.15a) of Ref. [7] ]

W'..[p]=P(p[p])

with p[p] defined by [Eq. (3.14) of Ref. [7]]

C}2

, [~W(p[~p]) l ='p(pl ~pl; [p]) .

(A3)

(A4)

For a given p(x), p[AP] is a function of A, , so we can
define

x(A, ) =—p[AP],

y(A, )—: [A1((x)] .= a

(A5)

(A6)

For A, =O we get x(0)=p[0]=0 and if we expand (A6)

y(A, ) =1((x )+A/'(x )x'(A, ) (A7)

(the prime denotes a derivative with respect to the corre-
sponding argument) and further impose regularity at
A, =O, i.e., ~x'(0)~ ( ~ [a condition related to the ex-
istence of the expansion (3.31) of Ref. [7] ], then we will
have y(0)=0 as well. Equations (A4) and (A7) yield the
following system of ordinary differential equations:

dx y —1(t(x )

dA, A, f'(x )
(A8)

PP,„[p]=g(x(1)). (A10)

Note that at A, =0 we can replace the right-hand side of
(AS) by its limit when A, ~O:

dA,
=e(x;[p])

with initial conditions x(0)=y(0)=0, whose solution,
x(A, ) allows us to write (A3) as
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y —1((x ) . y' —1(t'(x )x'
i.-o A,f'(x ) i.-o P'(x )+A,iI'j"x'

The derivatives of g(p) can be obtained from the thermo-
dynamics relations:

p~(p) p [W' (p)] ~ 1 X B +ip
&(p)

~p p

with P(p) the pressure of the fluid and B„,n ~2, the viri-
al coefficients. Thus g'(0) =Bz and P"(0)=B3, and
(A 1 1) finally reads

APPENDIX

Let us introduce the following notation:
2Bzx'(0) =y'(0) ='P(0; [p] ) . (A13)

1P(p, [p])= — fdx fdx'p(x)p(x')c(r —r', u, u', p),1

p
(Al)

In the case of the I Ntransition, x(A, )-=g[AP] and
y(A, ) is redefined consequently. Working out the expres-
sions as in Sec. II, the system (AS) and (A9) becomes

g(p) = p f d&(—1 &)f d—u f—du' f dr c(r;u, u';Ap) .
0

(A2)

dx x y QHs(x )

dA, A, ZHs(x )
—1

(A14)
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Nfl cf

6f k 8x[h] [ZHs(x) I+QHs(x)] (A15) f du f du'h(u)h(u')X(u. u')
n, [h l= n-

fdu f du'X(u u')
(A16)

where q, [h] depends on whether we are imposing the
self-consistency on the whole excess free energy, in which
case we obtain

or just on the radial part, in which case we simply have

ri, [h]= ri It. can be easily checked that the solution to
(Ag) and (A9) with x(0)=y(0) =0 is x(A, ) =ill, [h ].
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