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The spinodal decomposition in a critical mixture of polydimethylsiloxane—diethyl carbonate was in-
vestigated by a time-resolved light-scattering technique, focusing especially on the early and the inter-
mediate stages of phase separation. The most essential characteristics of this system are that both the re-
fractive index and the density of the solvent and of the polymer are almost the same, and the effects of
multiple scattering and sedimentation are mostly eliminated. The exponential growth of the scattered
light intensity without changing of its wave number was clearly observed, in good agreement with
Cahn-Hillard theory. The second peak, adding to the main (most dominant) peak, was found in the
higher-scattering-angle region in the spectrum, characteristic of the intermediate stage. The scaled time
dependences of the wave numbers of both peaks are well represented, respectively, by a master curve for
various quenching depths by use of the characteristic wave number and time determined from the time
dependence of the scattered light intensity at the early stage of spinodal decomposition. The quench
depth dependence of the interdiffusion coefficient and of the wave number, where the most dominant
fluctuation grows first in the unstable region, are in good agreement with three-dimensional Ising-model
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values, indicating the validity of the symmetric law of critical-point universality.

PACS number(s): 64.70. —p, 64.90.+b, 78.20.Dj

INTRODUCTION

If a mixture is brought from the one-phase region to
the two-phase region by changing the thermodynamic
state variables, then the temporal concentration fluctua-
tion becomes unstable, and phase separation occurs.
Phase separation in the unstable and unmixing mixture
may proceed either by nucleation growth or by spinodal
decomposition [1]. The dynamics in this unstable region
especially in critical mixtures has been of great interest
and has been investigated by many groups [2]. Recently,
the analysis of the demixing kinetics becomes an impor-
tant subject from the point of view of controlling and
designing the structure and the functions of polymer
blend systems [3]. On the other hand, the process of spi-
nodal decomposition is a nonequilibrium phenomenon
and is an attractive object for understanding the correla-
tion and the cooperativity of various fluctuation modes.
Cahn and Hillard presented the pioneering study to
characterize the process of spinodal decomposition using
the linearized theory [4,5]. Later, Cook extended this
theory by introducing the effect of thermal fluctuations in
the system [6].

There have been numerous theoretical [7-16] and ex-
perimental [17-33] works and significant advances have
been achieved since the work of Cahn. Experimental in-
vestigations of simple liquid mixtures [17-21,29,30], po-
lymer solutions [22,23,33], polymer-polymer mixtures
[24-28,21,32], as well as metallic alloys [34-36] and
glass forming mixtures [37] were analyzed by the concept
of spinodal decomposition. It has been observed that the
time evolution of phase separation can be divided essen-
tially into three stages, namely, early, intermediate, and
late stages, characterizing the behavior of phase separa-
tion and the scattering profiles [26]. As for the polymer-
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polymer mixtures, deGennes [38] and Pincus [39]
presented the theoretical framework by adapting the
Cahn-Hillard theory on the basis of Flory-Huggins-type
description for free energy [40] (mean-field treatment),
and from this viewpoint various polymer-polymer mix-
tures have been analyzed successfully so far [2]. For ex-
ample, Hashimoto et al. studied polymer blend systems
and found that the time evolution of the wave number of
most dominant fluctuation (highest peak intensity) is well
scaled by the characteristic wave number and time ob-
tained from the behavior in the early stage and the one
master curve is obtained. Moreover, the shape of the
structure function is agreeable qualitatively with recent
Furukawa theory [15,27]. However, the behavior in the
neighborhood of the critical point in the stable one-phase
region has not been well analyzed though it is quite
necessary for characterizing the process of spinodal
decomposition [41]. On the other hand, in the case of
simple liquids and polymer solutions, where the mean-
field theory is not valid but the three-dimensional Ising
model is valid, the behavior in the neighborhood of the
critical point is well characterized [42,43]. There have
been several difficulties in the detailed analyses because
the phase separation proceeds fairly quickly and the early
stage, which is the time region covered principally by the
Cahn-Hillard theory, has not been well observed so far
[17-21,29,30]. Therefore, the analyses of the kinetics
(time evolution) of spinodal decomposition have been
rather restricted in the coarsening processes and/or the
later stage of spinodal decomposition which follows the
early stage of the initial linear growth regime predicted
by Cahn [4,5]. Although many useful advances have
been obtained from these works, sufficient understanding
of the early and intermediate stages has not yet been at-
tained. Moreover, from the viewpoint of experiment,
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there are several essential problems such as multiple
scattering and the sedimentation effect. All theories treat
single scattering. Since multiple scattering distorts the
scattering profiles, it made difficult detailed comparison
between the experiment and the theory [44]. The sedi-
mentation effect, which causes a concentration gradient,
results in the distortion of the concentration distribution
in the sample. It should be noted that Beysens, Guenoun,
and Perrot performed an interesting experiment under
microgravity using the sounding rockets [30]. They stud-
ied the late-stage behavior by direct visualization using a
camera and a CCD camera, and reported the power-law
behavior of the scaled time evolution that the characteris-
tic length scale is expressed in proportion to time in com-
bination with the results of light-scattering measurements
of the density matched sample by deuteration [29].

In this paper, we will present experimental studies of
spinodal decomposition of a polymer solution where mul-
tiple scattering and sedimentation effects are sufficiently
eliminated, focusing especially on the early and inter-
mediate stages. The early stage is clearly observed be-
cause of the long characteristic time due to high viscosity
resulting from the polymer effect with the aid of a high
speed and a high-resolution detecting system developed
recently in our laboratory [45,46].

EXPERIMENT

Apparatus

The experimental setup used in the present study is
shown in Fig. 1. The sample cell of fused quartz with 2-
mm thickness and 10X20 mm? of width and height is
placed in a temperature-regulated silicon oil bath. The
cell is connected to the pressure line to apply the pressure
into the sample cell by use of mercury. The applied pres-
sure is read with the accuracy of 0.2-mm Hg by the mer-
cury manometer. The sample solution contacts not only
with the quartz glass of the cell but with the mercury;
this makes thermal conductance and temperature distri-
bution better. The temperature of the silicon oil bath is
regulated within =0.2 mK over 2 h, and the temperature
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FIG. 1. Experimental arrangement for the measurements of
spinodal decomposition. 4, P, BE, D, B, and SC denote the
neutral density filter attenuating the incident beam of the He-Ne
laser, pinhole, beam expander, diaphragm, silicon oil bath, and
sample cell, respectively. PCD is the photodiode array. FL
denotes the focal length of the lens. The optical rays are shown
to help the reader understand the role of the (Fourier-
transform) lens. The sample cell is connected to the pressure
line for quenching into the unstable region by the pressure jump
method.

He-Ne LASER
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is monitored by a quartz thermometer which is placed
very close to the sample cell. The incident He-Ne laser
beam, with a wavelength of 632.8 nm in vacuum, was at-
tenuated up to less than 0.1 mW by a neutral density
filter to avoid unnecessary heating effect by a laser beam.
The beam is expanded by the laser beam expander, passes
through the diaphragms, and then illuminates the wide
area of the sample. The scattered light is collected by the
lens (diameter =12 cm and focal length=15 cm), which is
placed at the focal length position from both the sample
and the detector. The lens works as a Fourier-transform
lens, and a (two-dimensional) Fourier-transformed image
of the sample is obtained at the detecting plane. The de-
tail is described elsewhere [46]. By the setup mentioned
above the scattered light is integrated and averaged over
the wide scattering area of the sample by use of a
Fourier-transform lens. Our optical system greatly
reduces the granular pattern (speckles) due to the high
coherency of the incident laser beam, and a highly
smooth scattering profile with high signal-to-noise ratio is
obtained. This system is especially useful for the case of
relatively low-scattering-angle measurements, such as the
present experiment. The amount of the angular resolu-
tion is estimated to be less than 0.1°. The detector is a
one-dimensional photodiode array (PCD, S2301-512Q),
Hamamatsu Photonics, 512 channels with 50-um width
of each channel) and the scattered light intensity is ob-
tained as a photocurrent signal of photodiode with very
high speed. Ten scans are averaged for each elapsed
time. The photocurrent signal is 7 /V converted, digi-
tized by 16-bit high-speed analog-to-digital convertor,
and then transported to a computer. The intensity of the
unscattered transmitted light detected by the same PCD
is used for the turbidity measurement and correction of
attenuation for the scattered light intensity. The position
of the transmitted light on PCD is used for the calcula-
tion of the scattering angle for each channel of PCD.

Sample preparation

In the present work a critical mixture of polydimethyl-
siloxane (PDMS) and diethyl carbonate (DEC) was used
[43]. PDMS was fractionated first into three fractions
from the original sample and then the middle fraction
was further fractionated into 18 fractions by the fraction-
al solution technique, using ethyl formate as a solvent.
That is, the middle fraction of PDMS-ethyl-formate
solution at a concentration less than 0.01 wt % was kept
at a temperature a little below its phase-separation tem-
perature in a thermostated water bath whose temperature
was controlled to within =1 mK. After the phase equi-
librium was attained the dilute solution phase was
separated from the other concentrated phases. Thus, the
lower molecular weight PDMS sample with narrower
molecular weight distribution was obtained. The concen-
trated phase was diluted successively by reagent grade
ethyl formate for further fractionations. In this work, the
fraction  characterized as M, =8.0X10* and
M, /M, <1.02 was used as a sample, M,, and M, being
the weight-averaged and the number-averaged molecular
weight, respectively. Reagent grade DEC was thorough-



45 SPINODAL DECOMPOSITION IN A POLYMER SOLUTION

ly dried over anhydrous potassium carbonate and was
fractionally distilled using a column of 140-cm length and
15-mm diameter packed with Rasching glass rings.
Preparation of the solutions was achieved in a dry box
under dried nitrogen gas in order to avoid the mixing of
moisture.

The critical mixing point [7T,=34.42°C, w,=12.1,
wt % ]| was determined from the coexistence curve whose
details were described elsewhere [43]. The reproducibili-
ty of T, over the short and long periods was also de-
scribed previously [22]. The critical point was ascer-
tained by a precise coincidence with the precipitation
threshold point. The solution of the critical concentra-
tion was put into the quartz cell by substitution of mercu-
ry not to make the gas phase.

The most essential feature of the PDMS-DEC system
is that the multiple scattering and the density difference
between PDMS and DEC are reduced very much. The
difference of the refractive index between PDMS and
DEC is ~0.021 at 25°C and the difference of the density
is ~0.0005 g/cm® at 25°C. In taking account of the
asymptotically symmetric shape of the coexistence curve
[42], the effective density difference between two phase-
separating phases is much less (say, less than one-tenth of
the above value). Therefore, the progress of macroscopic
phase separation into two coexisting phases should be
greatly slowed down. It significantly reduces the problem
of the stability of the sample (sedimentation due to densi-
ty difference) arising from such a macroscopic phase sep-
aration in the time course of the progress of spinodal
decomposition.

Procedure

The quench of the sample from the stable one-phase re-
gion to the unstable two-phase region was carried out by
the pressure jump method to attain a quick and accurate
response and to avoid unnecessary turbulence to the sam-
ple solution by the temperature jump method [18]. The
critical point in a binary mixture is a point on the critical
line according to the thermodynamic phase rule. The
value of dT, /dp is determined to be 8.8; mK/atm in the
present system. Since only a slight elevation of pressure
is necessary to get the quench of a few millidegrees Kel-
vin, the pressure jump method is quite effective. In other
words, an elevation of the pressure causes the shift of the
phase diagram. After ascertaining the critical tempera-
ture at the atmospheric pressure the pressure of the sam-
ple solution is elevated, and then the temperature of the
bath is lowered to the final temperature of a desired
quench depth. After complete equilibrium is achieved,
the pressure is lowered to the atmospheric pressure.
Thus, the quench into the unstable region is carried out.
The pressure jump is essentially an adiabatic process and
the adiabatic pressure decrease causes the temperature
decrease of the system. This adiabatic temperature
change decays sufficiently within at most 10 s after the
pressure change, according to the simple estimation of
thermodynamic quantities of the sample solution. Be-
cause heat exchange is accelerated by mercury separator
for the application of pressure and the heat of mixing is
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liberated accompanying the demixing, the time for attain-
ing the equilibrium at the final temperature should be less
than the above estimate. The critical temperature (7)
was measured every time before each experiment to
determine the precise quench depth. After each experi-
ment, the temperature of the phase-separated solution
was increased and the sample solution was thoroughly
stirred using a small teflon-coated magnet for the next
measurements.

DATA ANALYSIS

The Cahn-Hillard theory is based on the linearization
of a generalized diffusion equation and should be valid in
the early stage of spinodal decomposition [4,5]. Consid-
ering the thermal noise effect introduced by Cook as a
modification to the Cahn theory [6], the time evolution of
the structure factor in the time course of spinodal decom-
position is expressed by the following equation:

S(g,t)=S,(q)+[S(q,0)—S,(q)]exp(2R 1) , (1)

where S(q,t) is the overall structure factor and S,(q) is
the virtual structure factor arising from the thermal
noise. The quantity ¢ is the wave number [the magnitude
of the scattering wave vector (47n /A)sin(8/2), where n,
A, and 0 are the refractive index of the sample, the wave-
length of the incident beam in vacuum, and the scattering
angle, respectively], ¢ is time after the quench into the un-
stable region, and R, is the growth rate characterizing
the time evolution of spinodal decomposition. The mea-
sured scattered light intensity I(q,¢) is proportional to
S(g,t). Owing to the contribution of the S,(g) term to
S(g,t), the use of the simple semilogarithmic plot of
S(q,t) or I(q,t) against ¢t which has been frequently used
would fail to obtain the precise determination of R, [31].
Sato and Han presented a clever method to estimate R
from I(q,t) described by the 1/3-power plot as [31]

{t/[S(g,1)—S(g,0)]}"*=(2[S(g,0)—S,(q)IR,} '/
X[1—=1R 1+ L(R )+ -+ ].

q

()

As the second-order term in ¢ is absent in Eq. (2), this
equation can be well approximated by a linear equation in
tat R;t <1. The growth rate R, is given as

R,=—Mg*(x"'+2Kq?) 3)
where M is the diffusion mobility and ) is the composi-
tion susceptibility defined as xy ! =(9f /d4?), with f and
¢ being the Helmholtz free energy and composition, re-
spectively. The susceptibility y is negative and K is the
constant related to the contribution of interfacial free en-
ergy. The interdiffusion coefficient D* which character-
izes the kinetics of the spinodal decomposition is related
to R, by

*=—M/x (4)
so that

R,=D*q*—2MKq*=D*q*(1—q*/2q}) , (5
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where g, [=LD*/MK)"?=(L)(—xK)~ 2] is the
wave number where the growth rate has a maximum
value in the early stage and should be the same as the
value of g,,(t) at ¢t =0, where g,,() is the wave number
corresponding to the peak intensity of S(g,t). The value
of q,,(0) thus obtained should coincide with the wave
number at the maximum position of scattered light inten-
sity. In the linearized theory which accounts for the be-
havior in the early stage, the most dominant fluctuation
with the wave number of g,,(0) grows without the change
of magnitude of its wave number.

With the evolution of the composition fluctuation the
linear approximation of the Cahn-Hillard theory becomes
invalid. The wave number of the most dominant fluctua-
tion changes and decreases with time. The scattered light
intensity also increases with time. These are the signals
of the onset of the intermediate stage. The scaling rela-
tions have been studied in order to characterize the be-
haviors of g,,(t) and I, (¢) with time, I, (¢) being the
maximum scattered light intensity of the angular distri-
bution of the scattering profile, as [8,47]

G (1)~t7°, (6)
I,(6)~t" . (7)

The scaling idea has been further developed and intro-
duced that one characteristic wave number g, (or the
characteristic length scale L, ) appears to be relevant in
the evolution of the phase separation in spinodal decom-
position. Any physical quantities should depend on time
through the characteristic length scale in the scaling idea
[15]. The characteristic time ¢, is also related with such a
length scale through the interdiffusion coefficient as

q9.=4,,(0), (8)
L.=1/q., ©)
t.=1/(D*q?) . (10)

These equations mean that the length and time scale
governing over the whole time region should be deter-
mined by the behavior in the early stage. For the estima-
tion of L. and D*, the values of correlation length and
diffusion coefficient in the one-phase region in the neigh-
borhood of the critical point have been used in some
cases [17-21]. Use of the quantities in the one-phase re-
gion is still an open question to be clarified later on. The
exponents related to the reduced temperature
(e=|T—T.,|/T,) in the one-phase region have been well
established for the three-dimensional Ising model sys-
tems. Using the characteristic wave number and time,
q,,(t) should be rescaled in reduced units as

On(r)~177, (11)

where Q,,(7)=gq,,(t)/q,(0) and T=t/t,, respectively.
There are various theoretical arguments about the magni-
tude of a in the intermediate and late stages. However, it
is considered that the 7 dependence of Q,,(7) should be
expressed by the system-independent universal equation.
The time region after the early stage is divided by the be-
havior of Q,, () with the elapsed time as the intermediate
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and late stages. The schematic representation of the be-
havior of the dominant fluctuation in spinodal decompo-
sition discussed in the paper by Hashimoto is very sug-
gestive [25,26].

For the scaling approach concerning the time evolu-
tion of spinodal decomposition, Furukawa proposed a
simple form for the universal curve for the critical fluid
mixtures shown as [15]

Q. (1) '=1—((4/B)"*{tan"'[Q,,(7) B/ A)'/?]
—tan"'[(B/4)'?]})=Br, (12)

where A4 and B are the adjustable parameters.

The dominant fluctuation of the composition reaches
the final compositions of separated two-phase regions in
equilibrium with the further progress of time. There ex-
ists the self-similarity between the structure developed at
different times, and the structure factor has some charac-
teristic shape. Furukawa proposed an idea of the dynam-
ical scaling for the structure function in the late stage
taking account of the domain connectivity corresponding
to the most dominant fluctuations as [15]

S(q,t)~[L()’F(gL(1)) , (13)

where L (¢) is the single length parameter in the late stage
and F(x) is the universal scaling function for the critical
mixture defined by

F(x)=4x2/(3+x?%) . (14)

Then, the g ~° tail in the structure function suggests the
self-similar evolution of the fluctuation. Moreover, with
the appearance of a well-developed domain wall (inter-
face) the g ~* tail (Porod’s law) [48] appears and it reflects
the local structure in the overall phase-separating struc-
ture compared with the ¢ ~° tail.

RESULTS AND DISCUSSION

In Fig. 2 we present the typical sets of the results of
low angle scattering measurements for 3.5- and 6.5-mK
quenches (sample codes C and E, respectively) at various
elapsed times after the quench into the spinodal region.
The region of the central transmitted light is not shown
and only every fourth point is shown to avoid cluttering.
Similar results are obtained for other quenches. The peak
in the scattering profile corresponds to the spinodal ring.
Even at the last scan of measurements in Fig. 2, the
transmitted light decays only about 5% from the initial
value. The turbidity does not increase as much in the
time course of phase separation. The multiple-scattering
effect should be small enough, and it makes the data
analysis in the time course of spinodal decomposition
quite simple. A little density difference in PDMS and
DEC ensures the stability and homogeneity of the sam-
ple. Therefore, in the experimental time range we are
able to analyze without any correction due to macroscop-
ic phase separation because of the use of a wide range of
scattering volumes and a Fourier-transform lens. Since
one of the components (PDMS) is a macromolecular sub-
stance and the viscosity of the sample solution is fairly
high, enough to slow down the progress of phase separa-
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tion in the spinodal region, it makes the observation of
the time dependence of the scattering function easy. The
most characteristic points in Fig. 2 are as follows. (1)
The early stage of the spinodal decomposition is clearly
observed in the experimental g range. (2) The second
peak adding to the main peak, which is normally ob-

2400} . . Sample C 1,
B . . ]
1200}, X, d12
E 0 : N + 0
2 20 27N {24
w ¢ .
s N N (b) E
- .~ Y '3
. 120 % 1.2
Z 4
=
;J o= — + 0
x 20t E
D (a) 1

103q (cm™)

12001 ~

‘Sample E J;,
\ (c)
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5 10 15 20

10°q (cm")

FIG. 2. Time evolution of the angular profiles of scattered
light. Sample C (a) is for the quench depth (AT)=3.5 mK and
sample E (b) is for AT=6.5 mK. The elapsed time after the
start of phase separation for sample C is (a) 30, 100, 170, 270,
370, and 470 s, (b) 770, 970, 1170, 1370, and 1550 s; (c) 1920,
2670, 3420, and 4170 s from the bottom to the top, respectively.
The elapsed time for sample E is (a) 50, 80, 110, 150, and 210 s;
(b) 450, 650, 850, and 1050 s; (c) 1250, 1450, and 1750 s from the
bottom to the top, respectively. For sample E the second peak
becomes a shoulder at the last time. The arrow indicates the
scale of (relative) intensity for the main (dominant) peak and the
second peak.
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served and analyzed in the time evolution of spinodal
decomposition, appears at the higher-scattering-angle re-
gion though the intensity is less than that of the main
peak and is not observed in the early stage [32]. (3) After
the early stage, both peaks grow in intensity and decrease
in scattering angle with time. (4) The second peak ap-
pears as a definite peak at first and seems to form a shoul-
der of the main peak. This feature seems to be more ac-
celerated for deeper quench, where the first appearance of
the main peak shifts to a higher wave number. (5) The
peak position of both peaks is smaller in g for the shal-
lower quench. (6) The position of the second peak is
about five times as large as that of the main peak. This
may be the reason why the second peak has not been ob-
served before.

In order to obtain the parameters characterizing the
early-stage spinodal decomposition, we may use the
linearized theory of Cahn described in the section of data
analysis. The method by Sato and Han is used to deter-
mine R,, and then D* and g,,(0) were determined from
the plot of R, /q” versus g°, respectively. A 1/3-power
plot for the 3.5-mK quench is shown in Fig. 3. The same
analysis was carried out for the 6.5-mK quench. Only
the data for eight scattering angles are shown as
representative results. The results for other scattering
angles show a similar tendency as shown in Fig. 3. The
data points are shifted to avoid cluttering as noted in the
caption. For two curves of lower scattering angles, the
first several points are omitted because the scattered in-
tensity is so low and its uncertainty is fairly large. Good
linearity is obtained in an early time since R,t <1 for
t <600 s and a 1/3-power plot is valid. The deviation

(t/Uat) -1@.0l}"?

-085 500 7060

t(s)

FIG. 3. The 1/3-power plot for sample C (AT=3.5 mK). ¢
denotes the elasped time. Each data set except for the third
curve from the top is shifted vertically. The wave vector and
the amount of shift for each data set from the top to the bottom
are, respectively, 2650 cm ™!, 0.8; 2980 cm !, 0.4; 3310 cm !, 0;
3640 cm™!, —0.4; 3970 cm™!, —0.8; 4300 cm™!, —1.2; 4630
cm™!, —1.6; and 4970 cm !, —2.0. Good linearity is observed.
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from the straight line is observed over ~600 s, and
reflects nonlinear phenomena of the phase-separating
process and indicates the onset of the intermediate stage
of spinodal decomposition. R, determined from the
slope in Fig. 3 is shown in Fig. 4(a) as a function of ¢2.
The maximum in R, suggests the existence of the early
stage of spinodal decomposition in the present system.
Until now, any clear observation of the appearance of the
early stage, especially for binary liquid mixtures, has not
been presented. As far as we know, this observation is
the first direct one of the early stage of spinodal decom-
position for such a system. The wave number at the max-
imum of R, corresponds to g,,(0) in Eq. (5). This g,,(0)
value agrees well with the peak position of the scattering
function in Fig. 2. The plot of R, /q* versus g is shown
in Fig. 4(b). For ¢>>2[g,,(0)]% the plot of R, /q* shows
the tendency to deviate from the straight line due to the
effect of thermal noise. The quantities of D* and g¢,,(0)
were obtained from the intercept and the slope of the
linear portion of the plot. The ¢,,(0) value determined
from the intercept of the g2 axis also agrees well with the
wave number of the peak of the scattering function for
the beginning of spinodal decomposition. In the analysis
of g,,(t) versus time, g,,(¢) indeed does not change its
magnitude for small 7(7<1) as discussed below. It is
worthwhile to note that Bates and Wiltzius analyzed
their results for polybutadiene isotopic mixture and ob-
tained good linearity in Rq/qz versus g° [32]. However,
they could not observe the scattering peak to remain sta-
tionary at the earliest measurable time. Higgins,
Fruitwala, and Tomlins measured the spinodal decompo-
sition of a polymer blend of poly-(a-methyl-styrene-
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FIG. 4. The growth rate R, (a) and R, /q* (b) as a function of
the squared wave number g for sample C. The values of R, are
determined from the slope of the 1/3-power plot in Fig. 3. The
interdiffusion coefficient D* is determined by the intercept of
Rq/q2 as is shown by the straight line in (b). Linearity is good.
The wave number which gives the maximum of R, is in good
accordance with half of the value which gives R, /q*=0 by this
straight line.
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coacrylonitrile) and poly(methyl methacrylate) using
small-angle neutron scattering [49] and observed the
discrepancies between the peak wave number correspond-
ing to the maximum R, in the plot of R, versus g and
g,,(0), determined from the g2-axis intercept of the plot
of R, /q? versus g and/or the initial peak position of the
scattering function. They used the semilogarithmic plot
of I(g,1) against time to determine R,. As is discussed by
Sato and Han, the semilogarithmic plot could include an
error in the determination of R, due to the contribution
from the virtual structure factor arising from the non-
negligible thermal noise. The inconsistency of the use of
Eq. (5) in the analysis of Higgins, Fruitwala, and Tomlins
may have resulted from the thermal noise effect. The
consistency of g,,(0) determined from (1) the peak of R,
(2) the intercept of the g2-axis in the plot of R, /q?, and
(3) the peak position of the scattering function just after
the quench suggests that Cahn’s linearized theory is valid
in the early stage of spinodal decomposition and a 1/3-
power plot is also suitable for the determination of R, in
our case. The parameters characterizing the early stage
of spinodal decomposition are tabulated in Table 1.

The scaled time evolution of the scaled wave number of
the peak position of the main and second peaks is shown
in Fig. 5 for the quench depths of 3.5 and 6.5 mK. The
lower curve denotes the relationship for the main (dom-
inant) peak and the upper curve denotes that for the
second peak. One master curve is obtained for both
peaks and it is ascertained that the scaling does hold over
the time range of 0<7<20 using scaling parameters
determined in the early stage. It should be noted that not
only the main peak but the second peak are well scaled
and Q,,(7) remains unchanged with time in the time
range of 7<1. The relationship of Q,,(7) with 7 for
several quench depths in the present work is shown in
Fig. 6 in the double-logarithmic plot. It is also noted that
the scaled relation of Q,,(7) with 7 holds well for both
the main and second peaks and the universal master
curve is obtained. The second peak forms a shoulder of
the main peak with the increase of time for deeper
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FIG. 5. The scaled time evolution of the scaled wave number
of the peak positions of the main and second peaks for samples
C and E. The scaling factors (characteristic time and wave
number) are 1/D *q,,(0)? and g,,(0), respectively, and are deter-
mined from the linearized theory for the early stage. The sym-
bols (0 and O denote the results for samples C and E, respective-
ly. Superposition is very good and the universal master curve is
obtained. It should be noted that none of the adjusting parame-
ters are used in this plot. The slope of the insetted line is —1/3.



TABLE 1. Parameters characterizing the early stage of spinodal decomposition.

SPINODAL DECOMPOSITION IN A POLYMER SOLUTION

Sample AT(=T,—T) 10~3¢,,(0) 10*L.© 101D * td
code (mk) 10% (cm™!) (cm) (cm?/s) (s)
A 2.1 6.8, 2.28 439 2.09° 920
B 2.5 8.15 2.37 4.22 2.24° 794
C 35 11, 3.21 3.12 2.66 364
D 4.8 15,6 3.74 2.67 3.75° 190
E 6.5 21, 4.63 2.16 427 109
F 14.5 47.1 8.31° 1.20 5.76° 25.1
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?Critical temperature (7T.) is 34.42°C and e=|T — T, | /°T..
®These values are determined by superposing the curve of g,,(¢) vs ¢ to the curve of Q,,(7) vs 7 obtained

for samples C and E.
°L.=1/q,(0).
4,=1/D*q,,(0)%

quench depth. It is emphasized that the existence of the
stationary region of Q,,(7) in 7< 1 is clear.

The quench depth dependence of g,,(0) and D* is ob-
served as is shown in Table I. From the viewpoint of the
symmetric law of the critical-point universality [42],
0,,(0) and D* in the unstable spinodal region should
obey the same power law as in the stable one-phase re-
gion and have the same exponents as the critical ex-
ponents against AT (=|T—T,|). A detailed study of the
critical behaviors in the one-phase region has been car-
ried out for the present system and the AT dependence of
the relevant values (correlation length and diffusion
coefficient) is given by [22,50]

£, =(7.13£1.71)X 10~ 8 70-625£0015 ¢y = (15)
A=(3/8)aD £, , (16)
A=1m(T'/¢*)=7.02X10"* (cm?/s) , (17)

where £, and I are the correlation length and the decay

l0g,Qm(T)
o

0 05 0 05 10
logt

FIG. 6. The superposed scaled time evolution of the scaled
wave number of the main and the second peaks. The superposi-
tion is carried out so that the curve of g,,(t) versus ¢ for each
sample (A4, B, D, and F) is superposed to the master curve ob-
tained by Fig. 5. The notations of the symbols are, respectively,
Q, sample 4 (AT=2.1 mK); A, sample B (AT=2.5 mK); O,
sample C (AT=3.5 mK); X, sample D (AT=4.8 mK); O, sam-
ple E (AT=6.5 mK); and V, sample F (AT=14.5 mK). Both
peaks are well superposed with the same scaling factor. The
slope of the insetted line is —1/3. The solid curve denotes the
theoretical one calculated by the Furukawa theory (see text).
The representative master curve for the simple binary liquid

mixtures is also shown by the dashed curve [19,29,30].

rate of the fluctuation in the one-phase region, respective-
ly. The subscript + means that the value is defined in
the one-phase region. The temperature dependences of
4,,(0) and D* are shown in Fig. 7 in the double-
logarithmic plot. The slope of g,,(0) is evaluated to be
0.65 and the slope of D* 0.62. These values are very
close to 0.625 in the one-phase stable region by the rela-
tion of Eq. (9) and are consistent with the three-
dimensional Ising model. Therefore, it is ascertained that
the Ising model values for the exponents and the univer-
sal symmetric law are valid for the unstable region, too.
Until now, the Ising model values are assumed in the
analysis of the scaling relation in the time evolution of
spinodal decomposition for low-molecular-weight binary
mixture systems. Though a few direct determinations of

1.0r

0.2+ .

-1:.8 -AI.G —1:1.
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FIG. 7. The quench-depth dependence of the interdiffusion
coefficient D* and g,,(0) plotted as the double-logarithmic plot.
Both plots are well represented by the power-law relations. The
exponents for D* and g,,(0) against the reduced temperature €
are 0.62 and 0.65, respectively, and are in good accordance with
those in the stable one-phase region and the three-dimensional
Ising model values.
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9,,(0) and D* in the spinodal region are reported for the
polymer-polymer mixtures and mean-field values are re-
ported, the detailed study very near the critical point (the
critical concentration and temperature) determined in the
stable region is still left open and the symmetric law has
not yet been ascertained. Although the agreement of the
exponents is good, the agreement of the amplitude factors
is not so good. The inverse of £, in the one-phase region
which corresponds to g,,(0) is about 3.6 times as large as
4g,,(0) and the diffusion coefficient in the one-phase region
is about 2.4 times as large as D*. The reason for this
discrepancy is not clear at the present time, but it is
noteworthy that the ratio of the characteristic time of
&% /D, (in the stable region) to 1/D*[g,,(0)]? (in the un-
stable region) is about 0.031, —log,,(3.6)/log,,(0.031) is
1/2.7~1/3, and this discrepancy causes almost no ap-
parent change in the plot of Q,, (7) versus 7 [22,23].

The deviation of Q,, (7) from Q, (7)=1 in the early
stage in Fig. 6 indicates the onset of the nonlinear effect
in the time evolution of component fluctuation and
Cahn’s linearized theory is no longer valid in the time re-
gion of 7> 1. This time region is denoted as the inter-
mediate stage of spinodal decomposition. The crossover
from the early stage to the intermediate stage occurs
around 7=1.

In the intermediate stage g,,(¢) or Q, (7) decreases
with time. The tine dependence of g,,(?) seems to be well
expressed by the scaling relation of Eq. (6) with a ~1/3
[7,8] for both peaks; the exponent a is independent of
time in the present system although the experimental
time range is relatively restricted (7<20). The
Furukawa theory, as Eq. (12), has been studied for the
time dependence of Q,,(7). The solid curve in Fig. 6 is
drawn using the values of 4 =0.1 and B=0.14 in Eq.
(12). The value of 4 =0.1 is estimated so that the pre-
dicted behavior in the early stage recovers the prediction
of Kawasaki and Ohta [11,15] and the value of B=0.14
is a little larger than the value of 0.045 used to fit the re-
sults of the low-molecular-weight binary mixture system
(isobutyric acid and water and/or 2,6-lutidine and water).
Beysens et al. have used B=0.022 [29] and 0.07 [30] for
cyclohexane and methanol and Bates and Wiltzius [32]
used B=0.0195 for polybutadiene isotopic mixture.
Agreement between the experimental and theoretical
master curves is good and the behavior of Q,,(7) is well
reproduced. The distinctive deviation from the ~1/3-
power dependence of Q,,(7) on 7 is not observed yet at
7~20, as is seen in Fig. 6, and the intermediate stage
seems to have a little long-time scale due to the small
contribution of the interfacial tension. The interfacial
tension plays an important role in the phase separation of
the low-molecular-weight critical mixture systems, for ex-
ample, isobutryic acid and water [19]. Siggia studied the
long-time coarsening behavior based on the capillary flow
model and finds the 7! dependence of Q,,(7) [13].
Phase separation in the large-7 region is controlled by the
interfacial tension too, and a crude estimate of such a re-
gion gives (kzT /o) V2> Q,,(1)> (0 /gAp)~ "%, where
kg, o, and Ap are the Boltzmann constant, the interfacial
tension, and the density difference of the two coexisting
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phases, respectively. The left-hand inequality gives the
estimate of the onset of such a region. As the interfacial
tension for the polymer solution has M, '”? dependence
[51], its effect should be fairly low compared with the
low-molecular-weight mixtures. In polymer solutions the
time range of the intermediate stage may be enlarged by
the small contribution of the interfacial tension similarly
with the prolonged early stage by the polymer effect (in-
crease of viscosity).

In Fig. 8 the reduced time dependence of the maximum
scattered intensity I,,(7) is plotted in the double-
logarithmic plot. I,,(7) increases gradually with time at
first and the scaling relation of I,,(7)~7° holds in the
range of 7> 1 corresponding to the intermediate stage.
In the intermediate stage, both the wavelength and the
amplitude of the dominant fluctuation mode grow with
time and the self-similar structure does not yet exist, and
the scaling relation of g,,(¢) and I,,(¢) is not expressed by
a single parameter. Therefore, the inequality b >3a
should be applied [26]. The value of a is approximated to
be about 1/3 as is shown in Fig. 6 and b is estimated to be
about 2.2 as is shown in Fig. 8. The results of I, (7)
against 7 do not fall onto a universal curve and show sub-
stantial deviation with each other because of non-self-
similarity in the intermediate stage.

The variation of the profile of the scattering function
with the time of lapse as a function of the wave number
with both being scaled by the peak intensity and peak
wave number is shown in Fig. 9. Furukawa proposed a
simple form for the structure factor in the region of a
self-similar structure with the concept of dynamic scaling
[15]. Equation (14) indicates that the tail of the structure
factor is approximated by a g ® dependence, which
means the formation of a self-similar structure [25]. On
the other hand, a ¢ —* dependence in the tail of the struc-
ture factor in the three-dimensional system is known as
Porod’s law and reflects the formation of the interface be-
tween two coexisting phases [48]. The g dependence of
the scattering function is of great interest especially be-
cause there exists the second peak adding to the dom-
inant main peak in our system. The top curve in Fig. 9
corresponds to 7=2.64 and to the beginning of the inter-
mediate stage. The slopes around log;y(q/g,,)=0.6 and
at the far right in the figure seem not to be expressed by
any meaningful power-law relation as discussed above.
The next two curves correspond to 7=9.6, and 7=21s,

lognlm(T)

FIG. 8. The double-logarithmic plot of the peak intensity
Im(7) of the main peak vs scaled time 7. The meanings of the
symbols are the same as those in Fig. 6.
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loglo(q/qm)

FIG. 9. The normalized structure factor as a function of the
normalized wave number. Normalization is obtained by the in-
tensity of the main peak I(g, ) and the wave number of the
main peak g,,, respectively. The scaled time for each curve is
7=2.64 (sample C); 7=9.6, (sample E); 7=21.5 (sample E); and
7=180 (sample F), from the top to the bottom, respectively.
The numbers for respective insetted lines mean the value of the
slope.

respectively. For the upper curve the slope around
log,0(q/q,,)=0.6 is not expressed by a ¢ —° dependence,
but the slope at the far right is well expressed by a ¢ —*
dependence. On the other hand, for the lower curve the
slope around log,y(q /q,,)=0.6 is now well expressed by
a ¢ % dependence, but the slope at the far right seems to
be fitted by two lines of ¢ “® and ¢ ~*. It seems that the
region where the ¢ ~® dependence holds decreases and the
region where the ¢ ~* dependence holds increases during
this time region. The bottom curves shows the scattering
profile at 7=180 and may be in the late stage. The slope
around log,y(q /q,,)=0.6 is still well expressed by a ¢ ¢
dependence and the slope at the far right is well approxi-
mated by the line of a ¢~ * dependence. Takenaka,
Hashimoto, and Jinnai analyzed their results for the late
stage of spinodal decomposition and related such a ¢ —*
dependence of the tail to the growth of local structure as
the interface where semimacroscopic phase separation al-
ready occurs and the global structure has self-similarity
[52]. In this context, the second peak reflecting the finer
structure compared with the dominant peak should have
a tendency to form self-similar structure a priori to the
dominant mode and its time evolution may originate the
formation of the interface between the final coexisting
two phases at equilibrium. The appearance of a shoulder
in the structure factor is recently predicted by several au-
thors [16,32,52,53] though the position of such a shoulder
is a little smaller in g /g,, (¢/q,, ~2-3) than our present
case (q/q,, ~4-5). Bates et al. and Takenaka et al.
have found that the second peak appears only as a shoul-
der in contrast to our result. The scattered intensity of
the second peak (or shoulder) is about two orders of mag-
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nitude less than that of the main peak, which is in accor-
dance with theories [16,53]. The reason why the second
peak in the PDMS-DEC system has a slightly higher
wave number is not clear at present. This may be related
with the asymmetry of components (polymer and low-
molecular-weight solvent) and the broadness of the main
peak, which is observed too in other polymer solutions, of
polystyrene and cyclohexane by Lal and Bansil [33]. It
should be noted that in our recent experiment of spinodal
decomposition for isobutyric acid and water such a
second peak is observed from the intermediate stage
though it appears as a shoulder [54]. Therefore the origin
of this second peak seems to be an important subject in
the analysis of spinodal decomposition [55].

CONCLUSION

The time evolution of spinodal decomposition in a crit-
ical mixture of polydimethylsiloxane—diethyl carbonate
was investigated by the time-resolved light-scattering
method with the aid of a Fourier-transform lens for the
sake of the improvement of the signal-to-noise ratio,
expecially focusing on the early and intermediate stages
of phase separation. The early stage of spinodal decom-
position predicted by Cahn’s theory was clearly observed
and the linearized theory works very well. The second
peak adding to the main (dominant) peak was found at
the higher-scattering-angle region characteristic to the
intermediate stage. The reduced wave numbers of both
peaks are well scaled by the same reduced time resulting
in the universal master curve using the characteristic
wave number and interdiffusion coefficient determined in
the early stage. These characteristic wave-number and
interdiffusion coefficients are represented by a power-law
dependence on the quench depth and the exponents show
good agreement with the three-dimensional Ising model.
The symmetric law of critical universality is ascertained
for the critical exponents. The tail of the structure factor
for the second peak has a tendency to have a ¢ ~® depen-
dence even in the intermediate stage and the shape of
such a tail changes to result in a ¢ ~* dependence finally
in the late stage. This suggests that in the intermediate
stage the most dominant component fluctuation mode
does not reach final equilibrium concentration, but there
exists another fluctuation mode (structure) having larger
wave number and/or smaller wavelength, and a self-
similar structure begins to be formed in the larger dom-
inant fluctuation. Therefore, the mechanism of phase
separation in spinodal region should not be understood
only by the monotonous kinetics of the single fluctuation
mode, and the understanding of the mechanism of the ap-
pearance of fine structure in the intermediate and late
stages of spinodal decomposition should be quite impor-
tant.
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