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We study the effects of fluctuations on the mean-field phase diagram of a Landau-Ginzburg-Wilson
(LGW) action of the form H=%fq|<pq|2(q4+bq2+c)dq+k/4!quaql¢pqchq3(pq48(ql+q2+q3+q4),

where b may be positive or negative. In the latter case the inclusion of fluctuations may produce large
quantitative and qualitative effects in the phases and the transitions between them. The renormalization
is accomplished by resummation to all orders of two classes of diagrams and is reminiscent of a calcula-
tion earlier described by Brazovskii (Zh. Eksp. Teor. Fiz. 68, 175 (1975) [Sov. Phys.—JETP 41, 85
(1975)]). Since the LGW theory (with b <0) may be extracted from an isotropic frustrated-lattice model
of microemulsion it is possible to compare the predictions of the present study with earlier Monte Carlo
simulations of the Ising model. It is therefore also possible to describe the correlation functions in the
disordered phase, which had earlier been identified as the bicontinuous phase of the microemulsion mod-
el. In particular, strong renormalizations of the two length scales d and £ originally introduced by
Teubner and Strey [J. Chem. Phys. 87, 3195 (1987)] to describe the bicontinuous-microemulsion phase
are derived. In addition renormalizations of the surface energies are derived and discussed in the con-
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text of bicontinuous microemulsion.

PACS number(s): 82.70.Kj, 64.60.Ak, 64.60.Cn, 68.45.Gd

I. INTRODUCTION

There are a number of physical systems that are de-
scribed by a Landau-Ginzburg-Wilson (LGW) Hamiltoni-
an where the signs of the gradient and squared-gradient
terms are, respectively, negative and positive. This situa-
tion is quite different from the familiar LGW theory of
the nearest-neighbor Ising model and, it may be shown,
reflects the presence of spatial frustration in the underly-
ing lattice model. Thus, ordering problems in alloys,
frustration in the exchange interactions of spin models
[1], and latterly, systems containing oil, water and surfac-
tant all may be discussed with such a LGW Hamiltonian
[2]. Our discussion will focus on the latter, but the calcu-
lations we describe apply equally well to these other situ-
ations.

The thermodynamic structure of the systems composed
of oil, water, and amphiphile presents a fascinating
theoretical and experimental problem. There have been
numerous experiments in this area, including thorough
studies of phase diagrams, small-angle-neutron-scattering
(SANS) experiments, and measurements of the interfacial
tensions [3]. These have led to the development of our
understanding of the complex structure of microemul-
sion. For example, the SANS measured structure factor
in the bicontinuous microemulsion phase has been shown
to have a maximum at long but not diverging length
scales. It has been argued that this implies the presence
of some long-range order on “mesoscopic” length scales
within the disordered phase. This phenomenon has been
explored by Teubner and Strey [4], who proposed a fit to
the scattering data which implies the presence of two

45

length scales. Thus, from Orstein-Zernike theory we ex-
pect that the correlation function in a disordered fluid to
decay as

—lr=r'l/€

¢ (1.1)

glr—r')= r—r]
with £ being the fundamental length scale. Teubner and
Strey found a remarkably accurate fit to experiments on
bicontinuous microemulsion using the correlation func-
tion

e e Ir=rl76  aplr—r'|
r')= —r| sin p
Here, d may be interpreted as a new length scale describ-
ing the incipient periodic ordering. They related this to a
Gaussian Hamiltonian that had gradient and squared-
gradient terms of opposing signs, an insight that also elu-
cidated the relevance of the lattice models to the study of
microemulsion.

Quite a bit may be said about d and . From experi-
ments performed by Chen et al. [3], one finds that the ra-
tio of d /& typically lies in the range 2.6—4.5. Also, one
can understand the evolution of d and £ as a function of
surfactant concentration [3].

The above experimental observations are signatures of
what we call bicontinuous microemulsion. There are
many other experimental observations that appear to be
correlated with those described above. For example,
numerous experiments have been carried out to measure
interfacial tensions and the wetting behavior. One can
show that these phenomena are also implicit in the LGW
theory of the type discussed in the present paper [6].

(1.2)
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However, we shall focus mainly on the phase diagram
and correlation functions.

Numerous theoretical models have been devised to try
to explain the experimental observations. One approach,
first proposed by Widom [4], consists of constructing a
lattice model for the oil-water-amphiphile solution. The
resulting model consists of + and — spins placed on the
cubic lattice having nearest-, next-nearest, and diagonal-
neighbor interactions. The Hamiltonian can be con-
veniently written using lattice difference operators [5]:

H:%EUnLnUn ’ Ln:a4Aﬁ+a2Ai+a0 ’ (13)
n

A f =foitfe1—2fc, x=0,£1,%£2,..., (1.4)

a,=—m, a,=—(j+12m), ay=—6(j+5m), (1.5)

where j is related to the chemical potential of the amphi-
phile, relative to that of oil and water, and m is related to
the length of the amphiphile chain. This Hamiltonian
was earlier analyzed within mean-field theory [5] and a
complete phase diagram in terms of the microscopic cou-
pling constants j and m was derived, in less detail, by
Monte Carlo simulation [7].

All of the bicontinuous microemulsion phenomena, in-
cluding interfacial tensions, and the form of the structure
factor, appear to be captured in an extended model [6].
However, when microscopic parameters for microemul-
sion extracted from the mean-field phase diagram are in-
serted into the equations for d and &, the results follow
neither the evolution given by experiment, nor by
Monte-Carlo simulations [2]. The reason for the failure
of these formulas is that fluctuations have been neglected.

Actually, it is also of interest to study the amphiphile-
amphiphile (lipid-lipid) correlation function. However,
for technical reasons, which will be discussed in Appen-
dix C, fluctuations are more difficult to treat in this case
so we choose not to include it in our present study.

Here we present a systematic analytical treatment of
fluctuations. For the solvent correlation function this is
accomplished by constructing a coarse-grained LGW
Hamiltonian corresponding to the microscopic Hamil-
tonian (1.3). Even though the mean-field treatment of the
lattice model fails in accounting for fluctuations properly,
we believe that the underlying relationships between the
microscopic variables and macroscopic properties which
are obtained in the formulation of the lattice model are
correct. This conclusion can be justified qualitatively by
examining the Monte Carlo simulation of the lattice mod-
el [7]. In any case the results of the Monte Carlo simula-
tions are in effect the ‘“exact” answer to the three-
dimensional-lattice model.

Now if one compares the mean-field phase diagram
with the Monte Carlo phase diagram one sees remarkable
similarities, except that there is a shift of the order-
disorder transition temperatures by 200% in regions of
the phase diagram where spatially inhomogeneous phases
are present [7]. Also, in these same regions the order of
the transition is changed from the mean-field prediction
of second-order to a weak first-order transition [7]. It
was previously shown how this change could be studied
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within the renormalization group ([8]. There, it was
pointed out that the renormalization-group flow was
confined to that region of parameter space were no fixed
points were accessible, this resulting in a runaway trajec-
tory. This is the usual scenario for the weak fluctuation-
induced first-order transition. However, such an analysis
gives no information on the properties of the phases or
details of the transformations. In the present calculation,
the fluctuation effects are explicitly taken into account by
summing up to all orders the leading classes of diagrams.
Scattering data and the evolution of d and £ are comput-
ed and compared to the Monte Carlo simulation. The ex-
plicit equation for the first-order phase-separation line is
found in terms of microscopic parameters.

II. THE HAMILTONIAN

We begin our study by constructing an effective LGW
Hamiltonian [8]. To do this we perform a Hubbard
transformation on the partition function of the Hamil-
tonian (1.3). The result of this transformation is

z=3 ¢ = [Dge ", 2.1)
{0,
1 do,
De,= , (2.2)
¢ (detL,)'”? H (2m)1/?
2.3)

H=—13 ¢,L, '¢,— ZIn(2 coshy,) .

The LGW Hamiltonian is constructed by expanding
the last term in the equation and keeping only the terms
up to quartic order, since typically, all of the higher
powers will be irrelevant to the study of near critical be-
havior of the theory. Transforming to Fourier space we
see that the coefficient of the quadratic term is —L, T—1.
We therefore define

K,=L,+1 (2.4)
within the mean-field theory, the phase transition from
the paramagnetic to the nonuniform phase with wave
vector q, occurs at ch =0 and VK‘IC =0 [5]. Thus, close

to the transition line we can expand in powers of K, to
obtain

H=%fq|¢>q|2quq

+]—'2fq¢q1q>q2¢)q3¢q46(ql+q2+q3+q4) . (2.5)

The Hamiltonian (2.5) is a coarse-grained version of the
original lattice-model Hamiltonian (1.3), and the
coefficients b in Eq. (2.6) are very similar to coefficients a
of Eq. (1.5).

In this paper we shall concentrate our attention on that
region of the phase diagram in the vicinity of the Lifshitz
point (q,=0). In this region it is possible to expand K,
in the powers of q to obtain

3
K =bo+b,q*+b;q*+b, 3 ¢, (2.6)

i=1

where
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by=1—6(j+5m), 2.7)
b, =(j+12m), (2.8)
by=—m, (2.9)
by=—L1(j+12m), (2.10)

and i =1, 2, and 3 denotes the x, y, and z directions, re-
spectively. It is worth pointing out that the resulting
form of the LGW Hamiltonian is believed to be the sim-
plest possible for description of the bicontinuous phase
and, therefore, in some sense is canonical. The scaling of
the bare coupling constants with the microscopic energies
and chemical potentials is an additional benefit of having
begun with a lattice model.

Now the physical meaning of the term quadratic in
momentum is evidently just a surface energy. We also
note that the coefficient b, the effective bare tension, con-
tains both an interaction term (m) and the relative chemi-
cal potential (j) [2,5]. Therefore the bare tension may be
chosen by adjusting molecular structure and concentra-
tions independently. In this regard it is important to
maintain the picture of the interface as one that is truly
open to mass transfer, rather than a simple mechanical
surface. The coefficient of the quartic term in momentum
reflects both curvature and compression contributions,
and will also serve to set the energy scale, while the ¢*
term is the leading effect of the excluded-volume interac-
tions. Since near the Lifshitz point the cubic anisotropy
is small, we may spherically average the last term in Eq.
(2.6). Finally normalizing the quartic term of (2.6) to 1
we have the effective action

H=1 [ lgql*(a*+bq*+c)dg

A
o FaFapepid@tatata) 21D
and

p— =200 +12m)
(j +32m)

_ 120(j +5m)—20
(j +32m)
800

A=— 2.14
(j+32m)? @14

(2.12)

) (2.13)

We will use this action as a starting point for the analysis
of the fluctuations in model (1.3).

III. ANALYSIS OF FLUCTUATIONS

There is an important observation that may be made
immediately. In the region of parameter space where
b <0, K, will attain its minimum on a surface lql=q,
and, thus, the volume of fluctuations of the order param-
eter will be large. To make this observation more con-
crete we calculate the zeroth-order approximation of

(@*r)):

(Hr)y=—1—[a? 1
err (277')3f qq

4+bq2—|-c )

(3.1

The integral may easily be performed using contour in-
tegration to give

1

- . (3.2)
47(2Ve +b)17?

(@Xr))=

Thus in the region where 2V'¢ = —b the theory will be
fluctuation dominated. It is interesting to see how this is
related to the phase-transition line predicted by the
mean-field theory. This line is given by the equations
K 4 =0 and VK% =0, which implies that

)2
c(j,m)———b(]’m) =0

4 (3.3)

for the region of parameter space where b <0 (below
j+12m =0, see Fig. 2), this reduces to 2V'¢c = —b, the
region of large fluctuations in Eq. (3.2). It is thus not
very surprising that in the region where the action (2.11)
is the correct continuum approximation to the Hamil-
tonian (1.3), the mean-field theory fails completely. The
situation is similar to that encountered by Brazovskii in a
somewhat different context [9]. He was able to demon-
strate that the large phase-space volume of fluctuations
was sufficient to change the order of the phase transition.
We will use an analysis similar to his to try to understand
the effects of fluctuations in the more general action
(2.11).

Before beginning, it may be worth discussing at a qual-
itative level the effects that we seek to describe. From the
examination of the Monte Carlo simulations we note that
within mean-field theory the order-disorder transition
occurs at much too small values of the couplings j and m,
that is, at too high a temperature [5,7]. As expected, at
this mean-field transition the propagator (1.2) falls off as a
power law and, normally, renormalization-group pro-
cedures would account well for the coupling between the
independent modes via the quartic spin term, affecting
only the exponent of the power law and causing correla-
tions between fluctuations to fall off more rapidly. This is
expected to be the case when there are many fluctuations
of comparable energy. However, in this case the density
of states of such comparable modes is so large that cou-
pling between them causes much more rapid decay of
correlations than at a critical point. In fact, one can view
the interaction of these modes as producing a sort of
screening, causing the renormalized constants to produce
a finite correlation length, rather than a simple
modification of the critical exponent. Paradoxically, the
magnitude of the effect is so great that it may be studied
perturbatively, rather than requiring the complete
machinery of the renormalization group. This is because
the renormalized second-order transition is shifted to
zero temperature, the true transition occurring via a
first-order transition, at which the correlation length
remains finite.

We study the renormalization of the coupling con-
stants within a modified Hartree approximation. The ful-
ly self-consistent equation for the self-energy is shown di-
agrammatically in Fig. 1 and may be written
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= A 1 . 3 }\'_2 1 ’ . . e —L- 3 3 3 3.4
2P)=5 55 JGlas)d’q+ 7 = [G(g;2)G(k;3)G(p—q—k;2)d’qd’k +O(A) (3.4)
G(q;2)=—; 5 ! . (3.5
q*+bq +c—2(q)
f
This equation corresponds to the resummation of the - (3.8)
most divergent diagrams of the theory. We note that our 2m(4c—b2)1 2’
choice of normalizing the coefficient of q* to 1 is a calcu- 1 Ve b 172
lational convenience and was not necessary. It is satisfac- —= 542 , (3.9)
tory if the coefficient of the quartic term in the expansion 4 2 4
of 3(q) is small. Later we shall see that, typically, this is 2 Ve b 172
indeed the case. —F = | (3.10)
The one-loop diagram, being momentum independent, d 2 4
will renormalize only the coefficient ¢, while the other di- The renormalized ¢, and b, are given by
agrams will renormalize both the quadratic and quartic " i’
terms via the second and fourth derivatives of 2(q) in a ¢, =c—Z2(0), (3.11)
Taylor expansion for small g. That one may neglect the <
higher powers of g that are generated by renormalization b,=b—32"(0) . (3.12)

and truncation of the self-consistent series at low orders
in the evaluation of 2(0) and Z'""/(0) is an assumption
that is difficult to justify rigorously [9], though one can
estimate the corrections by evaluation of one further or-
der than that considered in the renormalization. Howev-
er, on general grounds one can argue that the corrections
are small. The interested reader should consult Appen-
dix B for a discussion of this point.

Now the one-loop integral has been previously per-
formed in Eq. (3.2). It is, however, more convenient to
perform the two-loop integral in real-space:

1
2n)?

2
[ G(q)G(k)G(p—q—k)d*qd’k

= [e®G¥nd’ . (.6)

G(r) is just a two-point function {@(0)p(r)) that can
easily be obtained by contour integration to give

—r/€
G(r)=K&—sin | “Zr |, (3.7)
r d
where
J
1 wirims AK3 3 . |8
—4‘!2 (0)= 9 l4(02+b2)4sm 8 tan ;

[a=3/&, b=2m/d, and K is given by Eq. (3.8)] is typi-
cally very much smaller than the renormalizations of the
other energies. We can solve these nonlinear equations
numerically for any given choice of bare couplings, b and
c. One interesting choice [5,7] is to solve the equations
along the ray j+10m =0. The significance of this ray
stems from the observation that, along it, the amount of
work required to insert an amphiphile between oil and

1
4(a2+9p2)*

Here the prime stands for differentiation with respect to
q. Inserting the above results into the self-consistent Eq.
(3.4) we obtain

2 1/2 172
b=b——— | T
4m(xy) (9x +y) 81(x +y)
N 32 [ 172
,=c+———+ 3cot™'3 | =
€r=¢ 8mVx  48mi(xy)3/? ©
172
—1{X
—cot — R
(3.14)
where
x=2vc,+b, , (3.15)
y=2v'c,—b, , (3.16)

and b and c are the bare parameters given by Egs. (2.12)
and (2.13). Note that b, has a status of a renormalized
surface tension, measured relative to the curvature con-
tribution. Also, in the results presented here the magni-
tude of the fourth derivative given by

3b

! (3.17)

sin [8tan

leo—3

FIG. 1. The self-consistent equation for the self-energy in the
modified Hartree approximation. Here the bold lines denote the
renormalized propagator, and the filled circle is the self-energy.
The first two diagrams have been evaluated in Sec. III. The
final one [O(A%)] is discussed in Appendix B.
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water is zero [2,5,7]. This ray also passes near the mean-
field Lifshitz point (Fig. 2). The results are plotted as d
and & and d /¢ (Figs. 3, 4, and 5) given by Egs. (3.9) and
(3.10) versus j along the ray. We may compare this evo-
lution of d and £ to that obtained within mean-field
theory (Figs. 6 and 7). We see that the two are quite dis-
tinct, which is hardly surprising since, as we shall see in
Sec. IV, the renormalization actually removes the
second-order phase-transition predicted by mean-field
theory. In fact, the variation of d and £ as a function of j
and at fixed m is more meaningful in the interpretation of
the Hamiltonian as a microemulsion model. By consider-
ing the transcription from coupling to solution-model
constants [4,5],

Ap=—3k+j, (3.18)
K
=——, .1
m 4 (3.19)

one sees that this choice amounts to a fixed bending ener-
gy of the amphiphilic film (x) and a decreasing amphi-
phile concentration (Au). Evidently d should increase,
reflecting the increase in domain size. The mean-field
theory of this is qualitatively correct, while the renormal-
ized theory agrees qualitatively, with fair quantitative
agreement. As an example (Fig. 8) we consider the cut
m = —0.048 for j between 0.5 and 0.66, a line that passes
close to the renormalized Lifshitz region. The values of d
increase and, in principle, diverge as one crosses the
Lifshitz point. The Monte Carlo values of m =—0.11,
and j varying between 0.65 and 0.95 corresponding to a
cut close to the Monte-Carlo Lifshitz point, are presented
in Fig. 9 for comparison. Though there is a fair amount
of scatter in the points reflecting both statistical fluctua-
tions and sensitivity to fitting for small and large values

0.05 T T T T T

ferromagnetic

Lifshitz Point
j+12m=0

m
0.05| -
j+10m=0
paramagnetic

-0.10 / .

smallq

approximation

-0.15 .

| 1 1 1 |

0 0.1 0.2 0.3 0.4 0.5 0.6

FIG. 2. The mean-field capped ellipse showing the phase
transitions between the paramagnetic, ferromagnetic, and
modulated phases. The intersection of the j+12m =0 line with
the ellipse defines a Lifshitz point. Above this line the phase is
ferromagnetic, q.=0; below there are periodically modulated
phases, q. >0. The dashed line corresponds to the disorder line,
below which the correlation function behaves as in Eq. (1.2),
and above which the correlation function behaves as in Eq.
(1.1). The hyperbola is the small-g approximation to the mean-
field ellipse. As is expected it completely coincides with the el-
lipse near the Lifshitz point and overlaps with the disorder line.

lIIIlI TTTT

Illllllll

Illlllllll

¢
&
T T l T 1 T T l T 17T [ LI

11 L1 11 l 111 l 1111 l L1 11 I 111 I 11 11 l 1
3 4 5 8 d 8 9
J
FIG. 3. The renormalized £ along the j+10m =0 ray.
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FIG. 4. The renormalized d along the j+ 10m =0 ray.
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FIG. 5. The renormalized d /£ along the j+10m =0 ray.
These values are in reasonable agreement with experiment.
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FIG. 6. The mean field d along the j+10m =0 ray. The pre-
cipitous rise in both d and £ (see Fig. 5) is a consequence of the
mean-field critical transition. Mean-field theory cannot, there-
fore, be applied to larger values of j.
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FIG. 7. The mean field £ along the j+ 10m =0 ray. See also
caption to Fig. 5.
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FIG. 8. The renormalized d and £ as a function of j with m
held at a constant value of —0.048. This ray passes close to the
predicted renormalized Lifshitz point.

J
FIG. 9. Monte Carlo data for d and £ as a function of j, with

m held at a constant value of —0.11. This ray passes close to
the Monte Carlo predicted Lifshitz point.

of d, we note that both theory and simulation are in quite
good qualitative agreement with such experimental
values of d and £ as a function of concentration as we
possess [3]. However, as of yet no serious attempt has
been made to fit a sequence of data using the recursion re-
lations (3.13) and (3.14).

Finally, it is possible to study the locus b,(j,m)=0.
This corresponds to the ‘ideal” situation where the
effective renormalized “tension” is zero. This no longer
corresponds to the ray j+12m =0, but becomes the
curve in Fig. 10. The fact that such a stable condition ex-
ists for fluctuating, interacting surfaces is highly nontrivi-
al when one views these as mechanical objects. Thus, any
bare surface Hamiltonian with tensionless surface will re-
normalize to one that possesses a tension. This reflects
the fact that the condition of zero renormalized tension
and finite renormalized curvature is an unstable fixed
point for a mechanical surface [11]. The same trends are
evident in the present Hamiltonian since a zero bare ten-
sion becomes renormalized to a finite value. However,
the Hamiltonian along b,(j,m)=0 is quite stable and
there is a manifold of bare values (j,m) from which it is

LS ] T T T l T T T

—.04 —

—.06 (—

—.08 1 PR L AN R S N S B

FIG. 10. Comparison of j+ 12m =0 (dashed line), and b, =0
(solid line).
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accessible. That nature is able to so successfully exploit
this rather restricted portion of the phase-diagram
reflects the fact that the bare parameters of the underly-
ing “surface,” which is open to mass exchange, can be ad-
justed rather delicately. Such a choice is in fact what we
mean by bicontinuous microemulsion.

IV. EQUATION OF STATE

So far the approximation of the two-point function has
been controlled, since it is possible to compute the renor-
malizations of all the couplings. However, the calcula-
tion of the equation of state within the same approxima-
tion becomes considerably more involved. We therefore
introduce another approximation to the equation of state
[9,10], again similar to that used by Brazovskii. It corre-
sponds to the resummation to all orders of only the
momentum independent diagrams in Fig. 1. Thus, only ¢
will be renormalized, while b will retain its bare value.
Such a procedure may be justified by the relative small-
ness of the shift in b predicted from Egs. (3.13) and (3.14),
but as we see later, it does have certain limitations in the
regime of tensionless interfaces.

The lamellar phase is characterized by a periodically
varying order parameter

@(r)=2a cos(q,r) . 4.1)
It is also convenient to define (b <0)
bZ
G g, )=c———=A, 4.2)

4

which is the inverse bare susceptibility in the paramag-
netic phase. The corresponding renormalized quantities
in the paramagnetic and lamellar phases are, respectively,

b2
Ap CP—T , (4.3)
2
AL_CL_—%‘ (4.4)

Note that here cp and c¢; are the renormalized masses in
the paramagnetic and lamellar phases, and that b is
unaffected by the present resummation of the
momentum-independent diagrams.

The equation of state is calculated by dividing the orig-
inal field into a mean () and fluctuating part (¢), in-
tegrating over the latter and finding the derivative

hix)= _OF =< 5H

8p(x) \ 8@(x)

4.5)

’
Y= const>

where F is the free energy associated with the action
(2.11) and A(x) may be thought of as a position-
dependent magnetic field. It is then possible [9] to show
that, if one includes only the momentum-independent di-

agrams, the equation of state is given by
h=Apa—1ia?, 4.6)

where the equation for renormalized inverse susceptibili-
ty in the lamellar phase is given by

7315

A 1
- T — + )\,a 2
87 (2v ¢, +b)'?

while the renormalized inverse susceptibility in the
paramagnetic phase satisfies
A 1
87 (2v/cp+b)?

A, =Ag+ @.7)

Ap=Ay+

(4.8)

We now make an ansatz [12] that in the region of interest
we can approximate

AL,Pz—g(Z\/?,:;+b). 4.9)
With this approximation Egs. (4.7) and (4.8) become
AL=A0+—)‘—— Vb a2, (4.10)
87V 24,
V—h
AP=A0+A—_b_ . (4.11)
87V 2A,

In the absence of the magnetic field Eq. (4.10) simplifies
further to become

MW —b
8724,
Equation (4.12) has real solutions for —Ay=A.. At this
point a nonuniform metastable state will appear with a
finite amplitude a, and eventually evolves into the ther-
modynamically stable phase [9].

To find the phase-separation curve it is necessary to
calculate the free-energy difference (AF) between the
lamellar and paramagnetic phases. To achieve this we as-
sume that the field A4 is no longer zero but varies uniform-

ly across the phase boundary, commencing with A =0,
a =0, and terminating with A =0, a#0[9]. Then,

—A, =Ay+ (4.12)

-
OF _ 5 OF %o _,) 4.13)
da - a¢p da
a. a. }\,
= hda= | "2Aada—~a}. 4.1
AF fo 2h da fo ada 2% (4.14)

The integral on the right can be carried out by changing
variables with the aid of Eq. (4.10) to obtain

vV—b

1
AF=——(A} —A3)+
£ P 872

2A

(A2=Ap)—al.

A
4
(4.15)

Finally, making use of the equation of state (4.6) in zero
field, the expression for the free energy simplifies to
1 Vi—b
AF=—— (A2 4+ A2 D (A1/2_A1/2
2k( 1 tAp)+ 817\/2(AL Ap?),

(4.16)

where A; and A, are given by Egs. (4.11) and (4.12). To
study these equations it is convenient to write them in di-
mensionless form. Thus, let

VB
8mV2

(4.17)
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and [ Ted_ ™ T 11 T T T 1 LA N B
Ap=ax, | (4.18) —oef N T .
A, =a¥x, , 4.19) A o
-.08 —
Ag=a?*"x, (4.20) B ?
Equations (4.11) and (4.12) then become g ! L‘ =
1 C
-xL :.XO+ —_— (4.21) —-12 — §
VxL : -
1 - i
Xp=Xg+—F——, (4.22) -4 - ]
vV 'xp B ]
—.16 _I 1 l Il 1 1 1 I 1 1 1 1 l 1 1 1 1 l ]
and the free energy 6 R 5 0
at”’? _XLZ — xp2 — ’ .. . .
AF= X +\/xL _——— \/xp (4.23) FIG. 11. Isotropic-Lamellar first-order transition line (solid
2 2 line) in the j,m, parameter space as it is shown to come asymp-

The equation can be solved numerically to show that AF
changes sign at x,=—2.03081. The phase-separation
line is then given by

A,V =bGm |

872

_b(jm)* _
4

c(j,m) —2.03081

(4.24)

We note that this refers only to the lamellar-disorder line
because of condition (4.1). In fact, it can be shown that
the Hamiltonian (2.11) produces numerous tubular and
cubic phases for small values of j [S-7].

The plot of the curve (4.24) in the j,m plane is shown
in Fig. 11. It is in qualitative agreement with the phase-
transition line obtained from the Monte Carlo data, giv-
ing about 100% shift in critical temperature and being of
the first order. However, it also possesses an additional
feature that the Lifshitz point is no longer present. In-
stead the curve becomes asymptotic to the line
jt12m=0. Based on our calculation of b,(j,m)=0,
which separates the ferromagnetic from the lamellar
phase, we believe that this prediction is incorrect and
rather reflects the fact that, for the paramagnetic-
lamellar phase-transition curve, we have not included any
momentum-dependent diagrams in the free-energy calcu-
lation. Physically this means that we have failed to per-
mit the tension to renormalize along the transition curve.
Where the bare tension b is vanishingly small this is a
serious error. However, it does not effect the basic pre-
diction that the lamellar-disordered phase boundary is a
fluctuation-induced first order, nor does it affect the prop-
erties within the disordered (microemulsion) phase. Even
so, this limitation does have the unfortunate consequence
that the status of the Lifshitz point beyond the mean-field
theory remains uncertain. Below we shall argue that, on
the basis of the present calculations, it becomes a Lifshitz
tricritical point. However, if at all possible the free-
energy calculation should be pursued to the two-loop lev-
el.

We now turn to the curve of transitions from the fer-
romagnetic to the paramagnetic phases. Under renor-
malization this mean-field line of second-order transi-
tions,

totically close to the j+ 12m =0 line (dashed line).

1—6(j+5m)=0, (4.25)

remains second order and thus cannot be renormalized to
arbitrary high order in the diagrammatic expansion [13].
Only the simple momentum-independent Hartree (one-
loop) diagram is infrared convergent and, in fact, the
high-momentum regularization is accomplished automat-
ically by the retention of the o(g*) terms in the bare
propagator, rendering a cutoff unnecessary. Thus, we
can locate the new curve of second-order phase transi-
tions by solving the equation ¢, =0, essentially (3.14) with
the A% term on the right-hand side omitted. The result is
presented as a curve of dots in Fig. 12.

We shall now attempt to synthesize the information
from the various calculations in order to present a
coherent picture of the phase diagram. Thus, we have
both the renormalized ferromagnetic-paramagnetic curve
to order A and a fluctuation-induced first-order
paramagnetic-lamellar curve to order A which should, as

FT T ! L B T T LI B B
- Ferromagnetic-Isotropic Second-Order Curve -
—05 L - N —
B S weo
- N TTeeal L .
N TTmeeal -
N, Teeeal
- N R i
~ -
N Tt 4
- N
\4
- N 4
g AN
27, AN 1
-1 «% N
% N
L e N _
% \.
L o N 4
£ N,
- Q"x, AN 4
\.
\. -4
- N
\
-.15 . —
e b e e b e e by
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FIG. 12. The renormalized phase diagram. The j+12m =0
line (dashed line) is drawn for perspective. The main features
are the intersection of the ¢, =0 curve (dotted line) with the
b,=0 curve (solid line). This intersection point defines the pre-
dicted renormalized Lifshitz point.
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in the mean-field theory, join along with the lamellar-
ferromagnetic transition to form a corrected phase dia-
gram [14]. However the problem with this procedure is
evident from the examination of Fig. 12. There we see
that the lamellar-ferromagnetic curve intersects the
ferromagnetic-paramagnetic-transition curve, but the
fluctuation-induced first-order lamellar-paramagnetic-
transition curve fails to intersect either of the above. We
alluded to what we believe to be one possible origin of
this problem earlier in [14]. It was noted that the con-
tinuous Hamiltonian of the type (2.11) cannot contain
within its phase diagram an isotropic Lifshitz point.
Such a point is unstable with respect to thermal fluctua-
tions that occur in model (2.11). However, a Lifshitz or a
Lifshitz tricritical point might indeed occur in the phase
diagram of a lattice Hamiltonian (1.3), since the
symmetry-breaking effects of the lattice might be
sufficient to stabilize it to thermal fluctuations. In this
case a consistent treatment of the Lifshitz region, should,
in principle, make all of these phase-separation curves
join. For the continuous Hamiltonian (2.11) the most
likely scenario is that thermal fluctuations prevent order
from developing in the vicinity of Lifshitz point at any
finite temperature, causing the paramagnetic phase to in-
trude between the ferromagnetic and lamellar phases. In-
clusion of higher classes of diagrams might help to clarify
some of these questions.

In the absence of more complete treatment it seems
likely that the topology of the phase diagram implied by
the present calculation for model (1.3) is still correct. In
that case the intersection of the renormalized
ferromagnetic-paramagnetic and disorder curves is the
location of the new Lifshitz tricritical point. That it
should be a tricritical point is evident from the fact that it
will simultaneously be the terminus of the curve of
fluctuation-induced paramagnetic-lamellar phase transi-
tions and the beginning of a curve of second-order
ferromagnetic-paramagnetic transitions. These remarks
have been represented in the sketch of the proposed re-
normalized phase diagram, Fig. 12. We emphasize, how-
ever, that the precise nature of the Lifshitz region of the
lamellar-paramagnetic curve still remains an open ques-
tion.

V. CONCLUSIONS

In summary then, we point out that starting with a
lattice-model Hamiltonian, we have extracted a Landau
theory with bare parametric dependences. This theory
can be quantitatively renormalized to produce the renor-
malized transition lines and correlation functions of the
theory. These are in fair agreement with the Monte Car-
lo data, in contrast to the erroneous predictions of the
mean-field theory. We have established that a tension-
free renormalized Hamiltonian is quite accessible to a
range of the bare parameter b, and conclude that the
large-swelling limit of bicontinuous microemulsion
should be, in principal, accessible to experiment.

Each segment of the renormalized phase diagram
seems fairly satisfactory; the qualitative and sometimes
quantitative agreement with Monte Carlo is established,

7317

strengthening the sometimes difficult interpretations of
the latter. The major weakness remains the lack of any
effective Hamiltonian that can carry one across the
Lifshitz region precisely at the order-disorder transition.
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APPENDIX A

The ansatz of Sec. IV is not necessary. In fact the
equations can be solved numerically. However, this is
considerably more difficult and the closed form for the
phase transition line (4.24) is no longer obtainable. Of
course the final justification of this ansatz is that it indeed
gives the same phase-transition curve as the full numeri-
cal solution. In this appendix we carry out this calcula-
tion.

Using the exact procedure outlined in Sec. IV, except
for the ansatz, the self-consistent equations (4.12) and
(4.11) become, respectively,

2
=—2 e+ A ,
2 8m(2V ¢ +b)1?
A

8m(2y cp+b)12

(A1)

cp=c+ (A2)

Starting with Egs. (4.6) and (4.13), the equation for the
change in free energy becomes

2 2
—_ | cr
AF=— 1t
+—1ékb4{§[(2\/_c—L+b)3/2—(2\/c—p+b)3/2]
_L o 1/2 _ o 12
e 412V e +5) 22V ep+0)1 7]

—2b2[(2V ¢, +b) 2= (2 cp+b) TV}
(A3)

The values of b, ¢, and A as a function of j, and m are
given by Egs. (2.12)-(2.14). For a fixed value of j, a value
for the microscopic parameter m is found that satisfies
the equation AF=0 and the constraints (A1) and (A2).
The resulting line of first-order transitions is shown in
Fig. 13 and compared to the curve of first-order transi-
tions resulting from the ansatz. The two are in excellent
agreement.

APPENDIX B

Higher-order momentum-dependent diagrams will
contribute to Eq. (3.4) and the next one is shown in Fig.
1. The expression for the last diagram on the right is
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FIG. 13. Comparison of the closed-form isotropic-lamellar
first-order transition line obtained from the ansatz (dashed line)
and that obtained from the methods in Appendix A (solid line).

3

L_ | [G(k)G(k,)G(k;)G(q—k,—k,)

(2m)3

X G(k,+k,—k;)d’k,d’k,dk; . (B1)
Once again by changing to real space we can estimate the
bound on this integral. We find that I=~(4m)%cK?3E,
where c is a numerical factor of order 0.1. Since K and &
are large only in the vicinity of the second-order phase
transition, which has been shifted to zero temperature in
the present analysis, one would expect the expansion to
be controlled by these factors. The true situation is, how-
ever, more subtle. Consider for example the contribution
to self-energy arising from Eq. (Bl). It would seem
reasonable to estimate its contribution by using the re-
normalized values of the coupling constants from the cal-
culations in the previous order. When one performs this
estimate the contribution is quite large (mainly because
A? is large). However, this procedure is not valid due to
the strong nonlinearity of the self-consistent equation for
self-energy. Thus, even though the individual terms of
the equation are large the final contribution to the renor-
malization of the couplings is not nearly as great. We
can demonstrate this by estimating the contribution to
mass renormalization coming from the two-loop integral.
In fact, since we have the two-loop renormalized answer
we can compare it to the estimate. The true two-loop
contribution to mass renormalization beyond the Hartree
level (one loop) is fairly small (cp,,.=—12.1, ¢y =2.76,
Ciwo loop —4-9), while the procedure outlined above would
overestimate the value of the renormalized mass by 300%
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(for a sample point j=0.6, m =—0.06). We therefore
have reason to suppose that the failure of the naive argu-
ment does not represent the failure of the low-order series
(3.4) to well represent fluctuations. However, at the mo-
ment we have no more rigorous bound on the higher-
order terms.

Finally, as a check on the validity of ¢* theory pertur-
bation rather than the full nonlinearity for the Hubbard
transformation we have solved the full gap equation for
the complete nonlinear potential at one-loop order. This
calculation was carried out for the ferromagnetic-
paramagnetic boundary near the problematic Lifshitz re-
gion. The difference between the ¢* and full nonlinear
theory is small. Such a calculation for the lamellar-
paramagnetic boundary is more involved and we have not
accomplished it yet.

APPENDIX C

The correlation function for solvent and lipid scatter-
ing within the microemulsion (disordered) region are
given, respectively, in Ising model language by [5,15]

(8pfispit)y=1(o,0,) , (C1)
1
(8p;P8pt") = 2 3 (00,1300 1a)
a
(o402 00,0 |, (C2)

where o, is the Ising spin variable which may take the
values 1, and the index @ denotes a unit vector between
nearest neighbors, pAA denotes the density of a solvent
species (water or oil), and p“® denotes the density of the
lipid. The Gaussian approximation to the solvent-solvent
correlation function is given by Eqgs. (3.7)-(3.10). Finally,
for completeness, we present the Gaussian approximation
to the scattering of Eq. (C.2):

2
_ g (0)r -1(.9 ~1]|2B—¢q
S(q)= 2 tan a +tan Y
—tan~! ——”;:q , (C3)

where a=1/£ and B=2w/d. Certainly there will be
strong renormalization of the above scattering function,
just as there was for the solvent scattering. We note that
inclusion of a quartic field term in calculating the average
in Eq. (C2) would require the renormalization of the
four-point vertex function. In any case, it is not entirely
clear if a continuum field theory is satisfactory to
represent the short-distance behavior implied by Eq. (C2).
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