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Dynamic slowing down in dense percolating microemulsions
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The dynamic slowing down of the first cumulant and the stretched exponential decay of the droplet

density-time correlation function at long time, previously observed for the one-phase sodium-di-2-

ethylhexylsulfosuccinate (AOT)-water-decane microemulsion system, are attributed to the approach to

a percolation threshold as the volume fraction of the microemulsion is increased at constant tempera-

ture. A model for dynamic light scattering, formulated along the line of the scattering from a system of
transient polydispersed fractal clusters, quantitatively accounts for all the light-scattering data reported

so far and also for some additional results.

PACS number(s): 82.70.Kj

I. INTRODUCTION

The structure and dynamics of a three-component ion-
ic microemulsion system, AOT (sodium-di-2-
ethylhexylsulfosuccinate) —water —decane, has been exten-
sively studied by neutron and light scattering in the past
ten years [l —5]. It has been firmly established that in the
vicinity of room temperature, a one-phase microemul-
sion, called the L2 phase, occupies a large area of the
Gibbs triangle stretching out from the oil corner. Small-
angle neutron-scattering experiments showed that
throughout the L2 phase the microemulsion consists of
water droplets coated by a monolayer of surfactant mole-
cules, dispersed in a continuum of oil. Assuming that the
solution is incompressible, we can calculate the volume
fraction of the dispersed phase P as P=P +P„where P
and P, are the volume fractions of the water and the sur-
factant, respectively. When the molar ratio of water to
surfactant, X=[water]/[surfactant], is kept constant at
say 40.8, the water core has an average radius of about 50
A and the one-phase microemulsion shows a large variety
of interesting physical phenomena upon varying the tem-
perature or/and the volume fraction of the dispersed
phase. The latter quantity can be adjusted by changing
the amount of decane in the sample while keeping X con-
stant. The T-P phase diagram of the system with
X=40.8 depicted in Fig. 1 shows a cloud point curve,
separating the lower homogeneous microemulsion phase
from the upper two-phase microemulsions, extending
from /=0. 04 to 0.40. This cloud point curve, which is
also the coexisting curve for the pseudoternary system,
has a highly asymmetric shape with a lower consolute
point occurring at $, =0.098 and T, =39.960'C. The
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FIG. 1. The phase diagram of the AOT —water —decane mi-
croemulsion at X=40.8. The inset shows two typical electrical
conductivity curves at percolation.

phase separation line ends abruptly in a cusp at /=0. 40
and T=50'C, where it joins to another phase boundary
separating the homogeneous microemulsion phase (at
lower temperatures) from a lamellar phase L (at higher
temperatures). In the T-ttp phase diagram shown in Fig. I
there is also a percolation line that we determined by
electrical conductivity measurements [6]. We show in the
inset of Fig. 1 the value of the electrical conductivity as a
function of volume fraction, at constant temperatures,
which increases by 5 orders of magnitude when crossing
the percolation line. The behavior of the electrical con-
ductivity over a large domain of the phase diagram can
be explained as follows. Far below the percolation
threshold, the conductivity can be well described by the

fluctuating charge model of Eicke, Borkovec, and Das-
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Gupta [7] for a large interval of volume fractions. In this
model, the mechanism of charge transport resulting in
conduction is attributed to the Brownian diffusion of
charged droplets. Under this mechanism the electrical
conductivity can be shown generally to be equal to the
mean-square fluctuation of charges of the drop1ets divid-
ed by the Stokes friction coe%cient. The droplets acquire
charges owing to exchange of monomers between the
droplets and the surrounding pool of monomers. The
mean-square charge fluctuation has been calculated using
a thermodynamic fluctuations theory by Eieke, Borkovec,
and Das-Gupta. In this theory the conductivity is pro-
portional to the volume fraction and temperature. Hall
[8] has recently improved the calculation of the mean-
square charge fluctuation by considering more carefully
the monomer-droplet chemical equilibrium. In the resul-
tant theory the conductivity is a nonlinear function of
temperature which depends on the maximum number of
charges a droplet can acquire. We have been able to ana-
lyze the temperature dependence of the conductivity at
low volume fractions and concluded, based on the Hall
theory, that the maximum charge on a droplet is one
electron. As the volume fraction increases beyond 0.10
the charge fluctuation theory fails and the system begins
to show electrical percolation behavior. Close to the per-
colation threshold the increase of the low-frequency con-
ductivity can be described by a power-law divergence
with an exponent s' which has the value expected for a
dynamic percolation, s'=1.2+0. 1 [9,10]. In this regime
it can be conjectured that transient fractal clusters are
formed in the dense-rnicroemulsion system so that surfac-
tant molecules (anions) or counterions (cations) can mi-
grate from droplet to droplet within a cluster. The
overall shape of the percolation line, which is asyrnptoti-
cally tangentia1 to the spinoda1 line associated with the
cloud point curve, can be accounted for theoretically by
using a model of percolation in probability due to Xu and
Stell [11]. The model assumes an interdroplet potential
consisting of a hard core plus a small but long-ranged at-
tractive Yukawa tail with temperature-dependent param-
eters [12]. Above the percolation threshold the conduc-
tivity increases further toward the value of the aqueous
phase and the decrease toward the percolation threshold
can also be described by a power law with an exponent
t =1.9+0.1, consistent with the static percolation index
[9,10]. The frequency dependence of the dielectric con-
stant has also been measured by us in the dense-
microemulsion regime close to the percolation threshold
[10]. Frequency dependence of the dielectric constant is

found to deviate from the Debye relaxation form which,
in the time domain, would correspond to an exponential
decay. We were able to fit both the real and imaginary
parts of the dielectric constant by the Cole-Cole disper-
sion law and extract its exponent e and the average relax-
ation time ~. Again, we found that the average relaxation
time ~ increases dramatically on approaching the per-
colation threshold and the exponent u reaches a max-
imurn there too. Rheological properties of the dense rni-

croemulsion have also been studied. We measured the
static shear viscosity as well as the ultrasound velocity
and absorption [13]. A rapid rise of the static shear

viscosity in the dense microemulsion region has been ob-
served. There is also unambiguous evidence of a visco-
elastic behavior of dense microemulsions. The absorp-
tion data for various volume fractions and temperatures
can be reduced to universal plots by scaling both the
sound absorbtion and the frequency by the measured
shear viscosity. The viscoelastic behavior can be inter-
preted as coming from the high-frequency tail of the
viscoelatic relaxation, describable by a Cole-Cole relaxa-
tion formula with unusually small elastic rnoduli. The
shear viscosity measurements of the mieroernulsions have
been extended by Majolino et al. [14] to difFerent volume
fractions and temperatures. They observed a steep rise of
the relative viscosity (with respect to decane) on ap-
proaching the percolation threshold, reaching a well-
defined maximum right after. The data are accounted for
by these authors considering the dense microemulsion as
a colloidal system in which aggregation phenomena takes
place. On the basis of a two-fluid model, they identified
two different contributions to the viscosity. The first one
is connected to the repulsive (hard-sphere) part of the po-
tential while the second one is directly 1inked to the small
but long-ranged attractive potential that directly contrib-
utes to the formation of aggregates. This latter contrib-
utio becomes important near the percolation threshold.

Another remarkable feature of the three-component
microernulsion system is the occurrence of a dynamic
slowing down in relaxation time of the droplet density
fluctuations on approaching the volume fraction of
$, =0.65 at T=23'C, near the percolation threshold.
This phenomenon has been detected by dynamic light-
scattering experiments [3,4]. The dynamic slowing down
is revealed from the examination of the time-dependent
droplet density-density correlation function as a function
of P. It decays initially exponentially with a first cumu-
lant I „andgradually evolves into a stretched exponen-
tial of the Kohlrausch-Williams-Watts form. A direct
measure of the dynamic slowing down can be obtained by
plotting the first cumulant I, as a function of the volume

fraction at constant temperature. This plot wi11 result in

approximately a linear decrease toward zero at the per-
colation threshold P at that given temperature. Varia-

tion of the first curnulant as a function of the magnitude
of the scattering wave vector q also shows an unusual

feature. Far away from the percolation threshold one ob-
serves the usual q dependence, indicating the diffusion of
an object the dimension of which is smaller than the in-

coming wavelength, whereas when close to the percola-
tion threshold one observes a q dependence indicating
diffusion of an object the size of which is larger than the
wavelength of light. This crossover behavior is similar to
light scattering near the critical point. Similar experi-
mental results have also been reported by Magazu et al.
[5]. A fit of the long-time tail of the density-density
correlation function to a stretched exponential function
gives the stretched exponent P which decreases to values

as small as 0.7, an approaching P, and with the average

relaxation time which increases to a maximum of a cou-

ple of hundred microseconds. Static light-scattering in-

tensity has also been reported by Magazu et al. [5].
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Measurements were performed as a function of the
scattering angle in the range from 20 —150'. Close to the
percolation threshold, these authors observed a strong
dissymmetry in the scattered intensity. The forward
scattering increases strongly on approaching the percola-
tion threshold from below. This effect was interpreted as
formation in the dense microemulsion of transient fractal
aggregates of a fractal dimension D close to two. The mi-
croemulsion in the vicinity of cloud point curve, namely
in the critical regime, has also been extensively studied by
different experimental techniques (neutron scattering [2],
light scattering [15], and dielectric relaxation [6]). As
evident from the percolation line depicted in Fig. 1, the
electrical conductivity is extremely sensitive to percola-
tion phenomena all over the phase diagram including the
vicinity of the critical point. On the other hand, light
scattering is sensitive to Auctuation of the droplet densi-
ty. It is thus dominated by the critical fluctuations when
near the cloud point curve [15]. However, when the
volume fraction is above 0.40, which corresponds to the
cusp in the phase diagram, both light scattering and elec-
trical conductivity are sensitive to the dynamical percola-
tion of the microemulsion droplets.

In this paper we shall attempt to undertake a unified
analysis of static and dynamic light-scattering data below
the percolation threshold based on a model which takes
into account explicitly the existence of polydispersed
fractal clusters in the dense microemulsions. As we stat-
ed above, in this regime the clustering of the microemul-
sion droplets is well described by a picture of dynamic
percolation, which is distinct from the geometrical per-
colation of the static percolation theory. We shall as-
sume that the average size of the fractal clusters increases
according to a power law when approaching the percola-
tion threshold. This is the basic physical mechanism for
the dynamic slowing down. It is somewhat surprising
that this simple theory can quantitatively account for
various experimental measurements described above, us-
ing the standard power-law indices for the fractal dimen-
sion and the polydispersity exponent taken from three-
dimensional percolation theory.

II. THEORY OF DYNAMIC LIGHT SCATTERING
FROM POLYDISPERSED FRACTAL CLUSTERS

On the basis of previous small-angle neutron-scattering
measurements [1,2], we know that the microemulsion
droplet is on the average spherical with an average hy-
drodynamic radius R, of 85 A. The electric field scat-
tered by a single microemulsion droplet labeled j whose
size is much smaller than 1/q,„,where 1/q,

„

is about
iq-r.

300 A in a light-scattering experiment, is given by ae
where a is the scattering amplitude of a droplet, assumed
all identical, and r is the positional vector of the center
of mass of the droplet with respect to a fixed origin in the
sample. Imagine dividing the sample into a collection of
clusters each labeled by an index k. Let rj=pkj+xk
where xk is the center-of-mass position vector of the clus-
ter k and pk is the positional vector of the jth droplet in
the kth cluster. The exponential phase factor is thus
decomposed into two terms and the scattered electric

field due to all particles in the sample can be written as a
sum over the clusters

Ak(q, t)=a g e
j=1

(2)

The scattered-field time correlation function G(q, t) now
is given by

G(q, t)= g(Ak(q, t)Ak( q, O)e— " " ),
k, k'

where the angular brackets denote an ensemble average
to be taken over all the possible realizations of the sys-
tem. We assume that on approaching the percolation
threshold, the fluctuation of the amplitude Ak(q, t),
which corresponds to the internal rearrangement of the
cluster, becomes much slower than the characteristic
time of the diffusive motion (translational and rotational
motion) of the cluster. Specifically, for the system we are
studying, the cluster rearrangement time Tz is of the or-
der or longer than 1 ms near the threshold [10]. On the
other hand, the first cumulant of the measured time
correlation functions is of the order of 10 rad/s which
corresponds to a relaxation time of 0.1 ms. Thus we can
treat the time evolution of the diffusion of the cluster as-
suming the cluster to be rigid. This physical assumption
allows us to decouple the statistical average in G(q, t) into
two separate statistical averages

G(q, t)= g (Ak(q, t)Ak( —q, O))(e " "'
) .

k, k'

(4)

Since the time scale of the Auctuations of the first factor
is much slower than the second, we may to a good ap-
proximation set

G(q, t)= g (Ak(q, O)Ak( —
q, O))(e " " ) . (5)

k

The fact that we can retain only the diagonal term in k is
because we can plausibly argue that at t =0, the droplet-
droplet correlations exist only within a cluster. In fact,
we shall use as the real-space pair-correlation function a
form which contains an explicit exponential cutoff factor—r/Rke, where Rk is the radius of gyration of the k clus-
ter. We have then

—D
G(q, t)= g kSk(q)e

k
(6)

In writing Eq. (6) we have approximated the second fac-
—Dkq t2

tor in Eq. (4) by e, expressing continuous diffusion
of a cluster containing k droplets. We denote by Dk the
effective diffusion constant of a cluster. Sk(q) is the intra-
cluster structure factor defined as

E, (q, t)= g Ak(q, t)e
k

where the amplitude Ak(q, t) is the scattered field due to
the collection of the particles inside the k cluster and is
given by
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—D
G(q, t)= f dk N(k)kSk(q)e

1
(7)

In photon correlation spectroscopy one measures the nor-
malized function C(q, t)=G(q, t)IG(q, O). The intrapar-
ticle structure factor S&(q) for a fractal cluster containing
k droplets, where q is the Bragg wave number of the
scattering, has been given by Chen and Teixeira [16]. In
the q range for light scattering, aside from a constant fac-
tor, it can be written as

( Ak(q, O)Ak( —
q, O))/k, which we shall introduce ex-

plicitly later on. In practice, we can replace the sum over
k by an integral over k extending from one to infinity by
introducing a cluster size distribution function N(k). We
finally obtain the central formula for the intermediate
scattering function
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sin[(D —1)arctan(qRk ) ]
Sk(q) =k

(D —1)qR (1+ R )'
(8)

I (x) (I+ 2)
Io

(9)

where we have introduced the correlation length g and
the scaled variable x =qg. The behavior of the normal-
ized intensity is reported in Fig. 2, together with the ex-
perimental points measured by Magazu et al. [5] at 25 'C
and volume fractions of the dispersed phase ranging from
0.05 to 0.58. The parameters we used to make the com-
parison between the theory and the experiment are the
ones pertinent to percolation, namely D =2.5 and ~=2.2,
together with the value of the exponent v=0. 88 which
determines the divergence of the correlation length on

This is the Fourier transform of a pair-correlation func-
tion g(r)=r exp( r/—Rk). In Eq. (8), Rk is the ra-
dius of gyration of the k cluster and D its fractal dimen-
sion, the two being connected by the relation
R k

=R
&
k . In the light-scattering range qR, =0. 1 so

the droplet form factor is always nearly unity. From Eq.
(8), for qRk (1,S(k,q) can be approximated as

S) (k, q) =k [1—,'D(D —1)q—Rk]

=k exp[ —[D(D+1)/6]q Rk2]

while for qRk &1, it takes the form

S2(k, q) =k I sin[(D —1)n./2)l(D —1)](qRk)

The cluster-size distribution function N(k) for the per-
colation clusters has the scaling form [17]
N(k)=k 'f(k Is ), characterized by the two ex-
ponents ~ and 0., and where s has the meaning of average
number of droplets in a cluster. Numerical simulations
for three-dimensional percolation clusters indicated a
fractal dimension of D =2.5, a polydispersity exponent
v=2 2, and o =. 0.45 [17]. Assuming o =0.5 and a
Gaussian cutoff function [18,19], we have
N(k) =k 'e

The scattered intensity is assumed to follow the
Ornstein-Zernike law, as suggested by experiment [5],
which, when normalized by its q=0 value Io, can be
written as

FIG. 2. The normalized scattered intensity as a function of
the scaled variable x =qg for the set of data reported in Ref. [5],
approaching the percolation threshold at constant temperature.
The inset shows the measured data.

approaching the percolation point (=go()I)~ —P) ". We
get P~ =0.59, in accordance with the measured value on
the percolation line [6], and go =257 A, a value of the or-
der of magnitude of the constituent droplet diameter
2R i.

The calculation of the scattering properties from a po-
lydisperse system proceeds along the line similar to the
one used by Martin and co-workers [20,19,21,22] for per-
colation clusters and colloidal aggregates. If we assume
that the clusters are rigid, the first cumulant

1 dC(t)
C(t) dt t=O

of the normalized droplet density-time correlation func-
tion C ( t) can be calculated as

with

+ l+ 1

2p

H (2 —r —1/D, x) x
G(x, O} h

I,(x)= f dk N(k)k Sk(q)Dk q, (10)
G(q, O)

where Dk =Dk ( 1+ I /2p ) is the effective diffusion
coefficient and Dk =D

&
k ' is the translational

diffusion coefficient of the k cluster. The effective
diffusion coefficient includes both the translational and
the rotational motion of the cluster. The latter is written
in terms of the translational diffusion coefficient, a deriva-
tive of the interparticle correlation function and the ratio

p of the hydrodynamic radius to the radius of gyration of
the k cluster Dz, a quantity that we assume to be of the
order of one [23]. The result for the dimensionless
linewidth r,*=r,/D, R &q is

I-„( )
F(3—r—1/D, x) (1+ 2) —(D/2)(3 —~—1/D)

G(x, O}
—D
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G(x, O)=F(3—r, x)(1+x )

+H (2 r—,x )(x/h) (12)

We have defined the two scaling functions dominant in
the small and large x range as

F(a,x)= I (a)—I (a, h (1+x )Ix }

and

10

10
0.2

0
0.4 0.6

10 ~

6 t

0 T=22.6 C, 8 = qo, m 3

T = 22.6'C, 8 = (i(0', sef. 4

T=22.6'C, 8 = 90', st. 4

T=226C 8 130 xef 4

H (a,x)= [sin[(D —1)2r/2] l(D —1)I I'(a, (x Ih ) },
where I (a,x)= f dt t' 'e ' is the incomplete gamma

function and h=[D(D+1)/6]' . The dimensionless
hnewidth shows the behavior I,*=x ' for x «1 and

I,*= const for x »1, when ~& 2. To support the model,
we have performed a series of dynamic light-scattering
experiments in the dense one-phase region of the
decane-water-AOT microemulsion system, correspond-
ing to X=40.8, in the vicinity of the volume fraction (t)

equal to 0.60. We have also analyzed the published data
of Chen and Huang [3], Sheu et al. [4], and Magazu
et al. [5]. Figure 3 shows the scaled first cumulant I,"
plotted as a function of x '. Data are taken from a set of
measurements performed by Chen and Huang [3), Sheu
et al. [4], Magazu et al. [5], and ourselves and fall essen-
tially in the region 0.5&x &10. The experimental data
indicate a crossover from a q to a q dependence of the
cumulant near qg= 1. It is to be noted that we use the
same value of the parameter go for all the measurements.

I

10
10

T =25'C, 8 = I)e', ref. 5

Q, T = 25'C, ~ = IL56, J:f.5

10

~ V=~, 8= 90

~ V=23&~ 8= 90

+ T=~, y=0.60

10

However, we change P for difFerent temperatures, ac-
cording to the measured percolation locus [6]. The inset
shows the measured cumulant as a function of (() at con-
stant q, and illustrates again the collapse of the measure-
ments according to the predicted universal law. Finally,
we compute the full density-density time correlation
function in order to study its long-time behavior. Using
the method described above, we obtain

FIG. 3. The scaled linewidth for short times as a function of
the scaled variable x '. Data are taken from the references
quoted. The inset shows the measured data.

( 1+x2)—(D/2)(3 —7')
() 2((+ 2)y 2}D/2

C(x, u}= dz z 'exp[ —z —u(1+x )'~ z '~"]
G(x, O) o

sin[(D —1)2r/2] (x/h)
dz z 'e

(D —1) G(x, O)
(13)

with v=D, q t/s'~ =D)R)hq t/g. The integrals can be
evaluated numerically for all times. Figure 4 shows typi-
cal fits to a set of data taken at different volume fractions
and corresponding to the values x =1, 3.5, and 17. It is
interesting to note that for very long times, where the

I

method of steepest descent can be applied, the leading
terms of the two integrals in Eq. (13) are

exp[ —(D+1)[v(1+x )1/2/Dx]~I

10

22.6 'C

10
U

0

10

10
0.2 0.4 0.6 0.8 1.0

-10-
-10 -5 0

ln (I; t)
10

t(ms)
FIG. 4. Typical normalized time correlation function for

various volume fractions, from Ref. [3]. The solid lines are
given by the present theory and are indistinguishable from a
stretched exponential.

FIG. 5. The normalized time correlation function for various
values of x, in terms of the dimensionless variable I,t. The
dashed lines indicate the limiting slopes P= 1 and
P=DI(D+ 1 ) for short and long times, respectively. The inset
shows the measured correlation function.
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and

exp[ —(D+ 1)(v /D )t ],
resPectively, with P=D /(D + 1). We can use the dimen-
sionless quantity l, t =1,*(x/h)v in order to eliminate
the scaling parameter v and construct a plot of the corre-
lation function C as a function of the dimensionless vari-
able T, t. The plot of Fig. 5 shows that the correlation
function decays initially exponentially like exp( —I,t)
and gradually evolves into a stretched exponential
exp[ —(I,T)~] with I, =q . The experimental data cov-
er the range up to ln(l, t ) =2.

III. CONCLUSIONS

In summary, based on an approximate scattering
theory applied to a collection of polydisperse fractal per-
colation clusters, we were able to explain quantitatively
the dynamic slowing-down phenomena observed near the
volume fraction 0.6, previously attributed to a glasslike
transition [3,4]. We have been able to document unambi-
guous evidence of percolation occurring at (()=0.6 at
T=23'C. The first cumulant I, of the droplet density
correlation function can be set in a scaled form in the
variable x=qg, as given in Eq. (11). The complete
analytical form of the correlation function is given in Eq.
(12), which asymptotically approaches a stretched ex-
ponential form for times much longer than 150/I, (see
Fig. 5). Although the true stretched exponent in the
theory is a universal number, P =D /(D + 1 ), the ap-
parent stretched exponent P', observed in previous ex-
periments [3,4], can vary anywhere between 0.6 and 1, be-

cause the time correlation functions used in the fitting ex-
tend only to the transition range t = 1/I, in the universal
plot given in Fig. 5. Furthermore, since I, is a function
of qg, the apparent exponent P* is also a function of q
and tJ). Likewise, as one approaches the percolation
threshold, the transition region moves up to longer times
and thus the measured P* approaches unity. In order to
measure the true exponent P and hence the fractal dimen-
sion D, one needs to measure the correlation function in
the range from 1 ms to 1 s.

It is pertinent to remark here that the theory presented
above near the percolation threshold bears a striking
resemblance to the well-known static and dynamic Auc-
tuations theory near the critical point [19,24]. Both
theories share a common feature, that the scaled intensity
and linewidth can be expressed in terms of universal
functions of the single scaling variable x. However, we
wish to stress that the phenomenon of dynamic slowing
down we observed near the volume fraction of 0.6 is dis-
tinct from the critical phenomenon occurring near the
cloud point curve at low volume fractions, where we have
previously made an extensive light-scattering investiga-
tion [15].
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