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Theory of Rayleigh-Benard convection in planar nematic liquid crystals
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A rigorous three-dimensional linear and weakly nonlinear analysis of Rayleigh-Benard convection in

planarly aligned nematic liquid crystals is presented. We use realistic boundary conditions and allow for
a stabilizing magnetic field. The analysis includes a determination of all parameters of the amplitude
equation in different regimes of the magnetic field where normal, oblique, and parallel rolls occur. It
turns out that there exists a range at intermediate fields were the primary transition is subcritical for the
standard material (4-methoxybenzylidene-4'-n-butylaniline). The ("nonlinear" ) stability of rolls is deter-
mined to second order in the amplitude so that nonpotential effects (especially mean flow) are included.
In the low-field supercritical range the roll solutions are destabilized at a secondary threshold via a
skewed-varicose instability leading presumably to spatiotemporal chaos. In the high-field supercritical
normal-roll range a secondary transition can lead to oblique rolls that are ultimately destabilized by a
short-wavelength instability.

PACS number(s): 47.25.Qv, 47.20.Ky, 61.30.Gd

I. INTRODUCTION

Rayleigh-Benard convection (RBC) in isotropic fluid
layers (pure fluids or mixtures) heated from below has
been studied intensely during the past 25 years [1—3]. A
characteristic feature of this system is its isotropy in the
plane of the layer. As a consequence one may find
periodic roll patterns, squares, or hexagons with arbitrary
orientation at the convection threshold (we ignore the
effects of boundaries). This holds as long as the patterns
are stationary and the transition is continuous. Above
but near threshold these patterns exist stably within
wave-number bands that are limited by instabilities that
reflect the symmetries: The Eckhaus instability, which is
connected with translational invariance and is therefore
very universal [4], and the zigzag instability, which is a
consequence of rotational symmetry [1]. Additional in-
stabilities come in at a finite distance from threshold (this
is the case at least for the experimentally relevant rigid
boundary conditions). As a result the ordered patterns
may become unstable, resulting in a more or less disor-
ganized dynamic state ("phase turbulence" or "weak tur-
bulence" or "spatiotemporal chaos" [5]). In isotropic
fluids this destabilization is affected by the skewed-
varicose instability involving mean flow [6,7].

Clearly the study of pattern-forming instabilities in
fluid layers with broken rotational symmetry is of in-
terest, and here the use of liquid crystals is very helpful.
Up to now much effort has been devoted to electrohydro-
dynarnic convection (EHC) of planarly (homogeneously)
aligned nematics [8—13]. This system has a strong axial
anisotropy due to the surface anchoring of the director.
As a consequence one can have at threshold normal rolls,
which are aligned perpendicular to the undistorted direc-
tor, or oblique rolls (roll axis oblique to the director),
with interesting transitions between them. Starting from
normal rolls at threshold one experimentally tends to find
a secondary transition to oblique rolls, and then either a

transition to a bimodal structure [8] or (probably more
frequently) to spatiotemporal chaos [8,14,15]. There ex-
ists as yet no satisfactory quantitative explanation of
these scenarios. Two reasons are responsible for this fact:
First the usual theory is very complicated [13] and
second it appears that additional mechanisms not con-
tained in the standard description and not yet identified
clearly play a role.

In this situation it seems important to study these phe-
nomena in other pattern-forming systems with the same
axial anisotropy, such as RBC in planarly aligned nemat-
ic liquid crystals. In this system the anisotropy of the
thermal conductivity leads to spatial focusing of the heat
current and thereby to a drastic lowering of the threshold
compared to that of an. isotropic fluid [16—18]. An ad-
vantage over EHC is the simpler structure of the stan-
dard hydrodynamic equations that are expected to quan-
titatively describe the experiments. In the past theoreti-
cal work on RBC in nematic liquid crystals has concen-
trated mostly on the two-dimensional linear stability
analysis for normal rolls. The basic results agree well
with the somewhat limited experimental observations
[19]. Recently a full three-dimensional linear analysis has
been done mainly with simplifying free boundary condi-
tions [20,21]. It revealed that in some range of a stabiliz-
ing magnetic field oblique rolls occur at threshold, and
transitions from normal to oblique and even parallel rolls
(roll axis parallel to the director) are possible when the
magnetic field is changed.

The nonlinear analysis of RBC in nematic liquid crys-
tals has been carried out only to lowest order, i.e.,
0 (E'~ ), where e measures the distance from threshold in

appropriate dimensionless units, to determine the nature
of the bifurcation from the static to convective state. It
has been confined to normal rolls and zero magnetic field.
Utilizing free boundary conditions in Ref. [22], a super-
critical (or forward) bifurcation for vanishing magnetic
field was predicted. This result was subsequently
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confirmed for rigid boundary conditions [23].
We here extend the weakly nonlinear analysis to arbi-

trary roll direction and arbitrary stabilizing magnetic
fields. Moreover, we go to order e (or more precisely,
second order in the amplitude of the structure), so that
nonpotential effects connected with mean flow are cap-
tured. From this analysis we can first decide whether the
bifurcation at threshold is forward or backward. In our
case we find in fact for the standard material 4-
meth oxybenzylidene-4-n-butylaniline (MBBA) a back-
ward bifurcation at intermediate magnetic fields. Second,
in the forward range, where our analysis yields the non-
linear roll solution near threshold, we can test its stabili-
ty. We find that stable rolls are restricted to occur in a
region of rather small e, a situation which is reminiscent
to the low-Prandtl-number case in isotropic fluids [1].

The paper is organized as follows. In Sec. II we de-
scribe the underlying thermohydrodynamic equations.
Section III contains a full three-dimensional linear
analysis with rigid boundary conditions. We present the
threshold and the critical wave vector as functions of the
magnetic field. We also provide an analytic approxima-
tion that captures the threshold behavior semiquantita-
tively. It is mainly used to gain some insight into the
scenarios. In Sec. IV the weakly nonlinear analysis is in-
troduced and applied to the periodic roll solutions. We
give results for the amplitudes which can in principle be
measured. In Sec. V the lowest-order amplitude equation
that includes the slow modulations of the periodic pat-
tern is presented and discussed. It describes destabiliza-
tion of rolls by the two-dimensional Eckhaus mechanism.
Section VI contains the higher-order weakly nonlinear
analysis as applied to the stability of the rolls. We con-
sider this the most important result of our work. In the
low-field forward bifurcation range the destabilization for
increasing e is affected by a skewed-varicose mechanism
where mean flow is decisive and which probably leads to
spatiotemporal chaos. At high magnetic field the first
destabilization of normal rolls is by the zig-zag (undulato-
ry) mechanism, which can lead to a transition to oblique
rolls. Section VII contains some concluding remarks. In
Appendix A the dimensionless quantities used in this
work and the full set of equations are given. Appendix B
lists the material parameters for the material MBBA
which are used for our calculations Similar results are
available for 5CB (4-n-pentyl-4'-cyanobiphenyl) and can
be obtained from the authors upon request. Details of
the weakly nonlinear stability analysis of Sec. VI can be
found in Appendix C.

aT 2

at
+v.VT=» V T+» V-[n(n-VT)] .a (2.1)

Kii and Ky denote the thermal diffusivities parallel and per-
pendicular to the director axis, respectively. Tempera-
ture dependence of Kii and Ki has been neglected. It is in
particular the diffusivity anisotropy, K, —Kii Ky, that
gives rise to the "heat-focusing mechanism" [16,17].

The equation for the director n can be interpreted as
the balance of the total torque I exerted on the director.
It has the form

nXr=O. (2.2)

The torque I contains elastic, viscous, and in the pres-
ence of a magnetic field H, magnetic contributions,

5GI'= — —y, N —yzA n+p~, (n H)H, (2.3)

(2.4)

with the three elastic constants k», k22, and k33 The
functional derivative 5G/5n is defined as 5G/5n;
=aG/an; —B,(BG/Bn;i) (the notations BJ=Bxi and
n; =r)n, /dx are used .throughout). The viscous part is
determined by the rate of change of the director relative
to the moving fluid, E =dn/dt+ —,'nX(VXv)
(d /dt =8, +v V, the substantial time derivative), and by
the coupling of the symmetric strain tensor A, i.e.,
A;i =

—,'(v;i+vl; ), to the director
From momentum conservation follows the equation of

motion for the velocity field v:

—
p +F+v'.T=o,dv

dt
(2.5)

where p is the mass density. F=pg is the gravitational
force (g is the gravitational acceleration) and T the stress
tensor

'J V J 'J (2.6)

Apart from the pressure p the tensor is constructed from
an elastic part

BG
(2.7)

where y& and y2 are the rotational viscosities which can
be expressed in terms of the shear viscosities y, =a3 —a2,
y2=a3+a2. G is the elastic free-energy density

G =
—,'[k„(V n) +k~~(nX VXn) +k33(nXVXn) ]

II. FUNDAMKNTAI. EQUATIONS

The thermohydrodynamic equations for nematic liquid
crystals, which involve the velocity field v, temperature
distribution T, and the director field n, consist of the
heat-transport equation, equations for the balance of
momentum and angular momentum, and of the continui-
ty equation together with constitutive relations. These
equations are described in detail in Ref. [24], and will be
collected here for convenience.

The heat-transport equation is

and the viscous stress tensor

t=a&nn(n. A.n)+aznN+a3Nn+a~ A

+a~n(n A)+a6(n. A)n (2.8)

V.v=0 . (2.9)

with the viscosity coe%cients a,-, i =1,2, . . . , 6. The
quantity a4/2 corresponds to the isotropic viscosity.

The fluid will be treated as incompressible so that the
continuity equation has the form
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The usual experimental setup consists of a layer of a
nernatic liquid crystal of thickness d confined between
two horizontal flat plates maintained at different temper-
atures. For convenience, we choose Cartesian coordi-
nates (x,y, z) such that the lower and upper plates are sit-
uated at z = —d/2 and d/2, respectively. We concen-
trate on the planar configuration where the director at
the upper and lower boundaries is parallel to the
confining plates and aligned along the x axis. The ap-
plied magnetic field is also taken along that direction
[H=(H, O,O)], so that it provides additional stabilization
of the planar configuration.

As in the Boussinesq approximation, we neglect the
temperature variation of material parameters across the
slab with the exception of the mass density p in the gravi-
tation force in Eq. (2.5)

p( T)=po[1 —a( T —To) ] (2.10)

(a is the thermal-expansion coefftcient). Furthermore,
the temperature distribution across the layer is described
by its deviation P from the undisturbed profile

T = To —Pz+P(x, y, z, t) (2.11)

v=6f +eg, (2.12)

where the differential operators 5 and e are defined as

fi=(a„a„a,a„—a„' —a,'), e=(a„—a„,o). (2.12')

The application of these operators on Eq. (2.5) leads to
two equations for f and g, in which the pressure is elim-
inated.

The torque-balance equation (2.2) determines only the
torque components locally perpendicular to n. We obtain
the relevant two equations by projection of I on the cor-
responding local coordinate system

I (nXz)=0, I [z—n (z n)]=0, (2.13)

with z the unit vector in z direction.
Finally the equations are to be supplemented by the

realistic rigid boundary conditions

P=n, =n =f =a,f =g =0 at z =+d/2 . (2.14)

Sometimes we shall also refer to results based on free
boundary conditions

with P=(T, d&2
—T, d&2)ld and To the temperature

in the middle plane without convection.
The general equations are always satisfied by the

homogeneous solution /=0, v=O, n„= 1, n =n, =O.
The most natural variables to describe the convective
state are therefore v, n„n, and P; n„results from the
normalization n =1.

The assumed incompressibility of the fluid is taken into
account by the introduction of two velocity potentials f
and g [25]

p=n, =a, n =f =a,f =a,g =0 at z=+d/2 . (2. 15)

The whole system of equations is written in dimension-
1ess form as explained in Appendix A. One is then left
with three important dimensionless parameters that
determine the physical properties: The Rayleigh number
R as main control parameter, the Prandtl number P,
which is the ratio of the thermal and viscous diffusion
times, and F, the ratio of the director-relaxation and the
thermal diffusion times

agpgd a4/2 y, d /k&& y, ~~R= Pr= F=
(a4/2)K, ppK, d /s-, k~~

(2.16)

An additional control parameter is supplied by the mag-
netic field which we choose parallel to the x axis so that it
stabilizes the unperturbed state. We use the dimension-
less field h=H/Hf, where

Hf =(m. /d)[k„ I(p(go)]' (2.17)

(2.18)

The quantities L and B; denote matrix differential opera-
tors. The components of vector N2 (N3) are quadratic
(cubic) in V and its spatial derivatives. These quantities
are obtained by a systematic expansion of our basic equa-
tions. The explicit expressions are somewhat lengthy and
will not be reproduced in this paper.

III. LINEAR ANALYSIS

A. General formulation

With increasing control parameter R, the homogene-
ous state V=(g, n, n„f,g) =0 loses stability at a critical
threshold value R, . According to the standard technique
one examines at first the general equations (2.18) linear-
ized around V=O, i.e.,

L (a. , a, , a, ;R)v —B,(a„,a„a, )—v=0,a"'' at
(3.1)

and investigates the possibility of exponentially growing
infinitesimal disturbances V. Written out in detail Eq.
(3.1) reads in dimensionless units (see Appendix A, the
primes are left out)

is the splay-Freedericksz transition threshold.
In the following we will often use a shorthand notation

for the five equations which determine the unknowns P,
n„n, f, and g. When these quantities are combined to a
vector V, the equations read symbolically

LV+N2(V~V}+N, (V~V~V)+

=(B +oB,(v}+B2(V~V)+ )—V .
C}

( a, +~„a'„+a,'+a,')—y R~.a.n, Rb, zf =—0, —

(a,'+k„a,'+k„a,' —Fa, —~'h')n, +(1—k„)a a, n +—[
—V'+y(h, —a,')]a„f——(1+y)a a,g =o,

(3.2)

(3.3)
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(k„—1)a,a, n, +( a—,' k—„a,' k—„a„'+ra,+~'h')n, +rya„a, a,f +—[b, —y(a„' —a,')]g =0,F
2

(3.4)

—6,(()+( aa,2 —a,b,, )B„a,n, +(a,+a, )a„a,a,a, n,

+[a,a'. a,'+-,'(a, —a, )a'. V'~, +V'~, +-,'(a +a )a.'a,'V' V—'~,a, /P„]f+a.a, a, [a,a,'+ ,'(a-+a )V ]g =0, (3.5)

a,a, a, a, n, +( a,B,
' —a,a'. )a, n, + [ a, B'. +—,'(a, +a, )V']a„a,a,f

+[a,B 8 +—,'(a —a )B„b, + —,'(a +a )a,'V'+V'S, —a,a, /P„]g =0, (3.6)

where y=yz/y„V =8„+8 +B„and 32=3, +3 .
The modal solutions for systems with a large aspect

ratio (lateral dimension of the slab much larger than
the thickness d) are of the general form
V=Vp(q, z)exp(At+iq x) with q=(q, p) and x=(x,y).
Then in a shorthand notation Eqs. (3.2) —(3.6) transform
into

[C(q, B, ) RD(q,—B, )]V =pA B(pq, B, )V p, (3.7)

L+(a. , a, , a, ; )RV=~*B,+(a„,a„a, )V, (3.8)

where the adjoint 6+ of an operator 8 is defined as usual
by the relation

( U, eV) =(0+V,V)

for arbitrary vectors U and V with

&V, V)= fV'*Vd'x

(3.9)

(3.10)

being the appropriate scalar product. The superscript T
denotes the transposed vector. The integration is per-
formed in an appropriate periodicity area in the x-y plane
and across the width of the cell in the z direction. Note

where L was decomposed into the R-independent opera-
tors C and D. One is then left with a system of coupled
linear differential equationS in z with the boundary condi-
tions (2.14). Clearly the solution can be constructed by
superposition of exponentials of z. The procedure is in
practice often cumbersome because of numerical
difficulties.

We have therefore solved the eigenvalue problem for I,
by a Galerkin method. All quantities are expanded in
terms of orthogonal functions of z which satisfy the
boundary conditions Eq. (2.14). For the velocity poten-
tial f we have chosen the Chandrasekhar functions C„(z)
[26,27]; for the remaining quantities (P, n„n~, and g) a
set of trigonometric functions, namely S„(z)
=sin[nm. (z+ —,

' )], was used.
After truncation and projection onto the orthogonal

set one is left with a homogeneous linear system for the
expansion coefficients. The eigenvalues A,(q,p; R, h ) are
determined by standard eigenvalue packages. Usually
one needs only a few modes (not more than five for each
quantity) and then the approach is very efficient. We
have always checked our results by increasing the num-
ber of modes until deviations become insignificant.

For each eigenvector Vp of Eq. (3.7) one can construct
a corresponding one U of an adjoint eigenvalue problem,
defined by

=To '[e g(q —q, )
——

g (p —p, )

—2ak 4 (q q, )(p —p, )]— (3.11)

with e=(R —R, )/R, . The coherence lengths g, and the
parameter a, which is nonzero only for "oblique rolls"
(q, &0 and p, &0, see below), are calculated from the re-
lation

( U(q), L Vp( q) ) =cz [R —R p(q) ] /R, ,

valid near threshold with a proportionality factor c~.
U(q) denotes the adjoint eigenvector corresponding to
the largest eigenvalue (the growth rate). The characteris-
tic time To is obtained from

T = (U(q, ),B V (q, ) ) /c„. (3.13)

that (U, LV) ((U, BpV) ) is zero if U and V do not be-
long to the same eigenvalue A, . The eigenvectors of the
adjoint problem can also be classified by the wave vector
q and expanded in terms of the same orthogonal function
set C„and S„. In the framework of the truncated Galer-
kin expansion the adjoint problem is obtained from the
transposed coefficient matrix of (3.7).

For fixed wave number q=(q, p) and small R all eigen-
values A, have negative real parts. We concentrate on the
eigenvalue with the largest real part which is defined to
be the growth rate o(q,p;R., h). When increasing the con-
trol parameter R the growth rate cr crosses zero from
below and one has destabilization. From o(q,p;R, h) =0
one gets the neutral surface Rp=Rp(q, p). Minimizing
Rp with respect to (q,p) yields the threshold R, and the
critical wave vector q, =(q„p, ). In our planar geometry
we found that in all cases the imaginary part of A, is zero
at the threshold. We have therefore always a steady bi-
furcation in contrast to a Hopf bifurcation as found in
other cases (e.g., for homeotropic configuration [28,29]).
For a steady bifurcation it is easier to determine R, as the
lowest positive eigenvalue of (C —RD)Vp=0 instead of
solving the general eigenvalue problem (3.7) for A, .

It turns out that the eigenvectors can be characterized
by their symmetry under inversion of z. At the threshold
the quantities P, n„and f are symmetric (corresponding
to S„and C„with odd n) while n and g are antisym-
metric (S„with even n)

The linear analysis also gives important information
about the characteristic times and lengths. The growth
rate 0. can be expanded near threshold as follows:

o =Tp '[R —Rp(q)]/R,
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Keeping the leading terms in the expansion of Ro(q)
around q, leads directly to Eq. (3.11). The numerical re-
sults for To, g„gz, and a will be given and discussed in
Sec. VB.

B. Analytical threshold formula

obtains a closed expression for the neutral surface
Ro(q, p) that can easily be evaluated on a pocket calcula-
tor [the primes for the dimensionless quantities (see Ap-
pendix A) are again left out]

(~z+ ~„qz+p z) [Pg, —I', (/3, —P, )q'p']'
Ro(q, p)=

I, (q +p ) [/3z+~ a, FNq /(y, M)]
The threshold behavior can be obtained semiquantita-

tively from the general linear equations by retaining only
the leading mode in the Galerkin expansion. One then

I

where the following abbreviations have been used:

(3.14)

/3O=4n+r/. , q +p, /3, =ariz(4~ +p )+(—I+a,+ z), +riz)q, /3z=(/30q +/3jp ),
/33=Iz(r/, q +p )+I5[a,q +[(g,+z)z)q +2p ](p +q )]+2(z),q +p )(q +p )

z), =(2+a5 —az)/2, z)z=(2+a, +a6)/2,
(3.15}

I3I4
N =K, az/3z—/n+a3/3. O+a3 1

z (P& /3p)~I, p +q

M =K,Kz —(1—
kzz )I4p

K) =4m k22+ 33q +p +~ h

—~~+k q2+k p2+~2h 2

I3I4—(1—
kzz ) (aztI, + a3/3o)p

~ I)

(3.16)

(3.17)

We have used the following overlap integrals (the integra-
tion runs from —

—,
' to —,

' in our reduced units)

I, =Jf dz C, S, , I =Jf dzS, B,C, ,

I = —Jf dz C, a,s„ I,= Jf dz S—, a,S, ,

I = —Jfd CzBC, , J '=fdzSS, =05,
with the trigonometric functions S, (z), Sz(z), and the
Chandrasekhar function C, (z). The integrals have the
following numerical values: (I„Iz,I„I4,Is ) = (1.3948,
2.6667, 4.9399, 24.6052, 1001.1278).

C. Results and discussion

In the following we present our results for the critical
wave vector and the threshold. We have concentrated on
accepted material parameters of MBBA (see Appendix B
and Ref. [30]). In Fig. 1(a) the critical wave numbers are
plotted as functions of the reduced magnetic field h.
With increasing h the destabilizing modes at threshold
(characterized by the wave vector q, ) change their orien-
tation in the x-y plane. First we have the rolls perpendic-
ular to the x axis ("normal rolls, " q, &0, p, =0) which is
the conventional pattern. Then the roll pattern tilts ("ob-
lique rolls, "q, WO, p, &0), and finally the rolls are aligned
parallel to the x axis ("parallel rolls, " q, =0, p, @0). The
transitions from normal rolls to oblique rolls (at h -=36 in
our units) and from oblique rolls to parallel rolls (at
h —=62) are continuous, that is, the wave vector q,
changes continuously. The two transition points, at
which the symmetry of the roll pattern changes, will be
called the lower (h =36) and upper (h =62) Lifshitz points
as introduced in Ref. [8] for EHC and in analogy to the

usage in the theory of phase transitions [31] (see also Sec.
V A).

Figure 1(b) shows the threshold R, =Ra(q„p, ) as a
function of the reduced magnetic field h. For not too
large values of the field the threshold R, behaves parabol-
ically (R, =6.96+3. 18h ); it increases then monotoni-
cally with the field and saturates at the values for isotro-
pic fluids R, =1707.784 with q, =O, p, =3.117 [27]. In
this region the director distortion is suppressed altogeth-
er by the magnetic field and the remaining anisotropies of
the viscosity play no role other than selecting the roll
direction. Indeed Eqs. (3.2) —(3.6) reduce to the equations
for an isotropic fluid with viscosity a4/2 and diffusivity K~

if one sets n, =n =0 and B„=O [32]. Between the
Lifshitz points the determination of R, requires a three-
dimensional calculation. For comparison we have includ-
ed in Fig. 1(b) the results of a pure two-dimensional cal-
culation where the rolls are forced to stay normal (p=O)
for all values of h (upper dashed line). One obtains

q, =2.16 and R, =2060 for h ~ oo, a value considerably
higher than that for parallel rolls.

As far as normal rolls are concerned our results are
consistent with the existing literature (for a recent review
see [19]}. The basic new instability mechanism through
heat focusing was elucidated in a one-dimensional model
[18] and needs no further explanation here. At zero mag-
netic field we can compare our results with those of Refs.
[17, 30, 33 —35] of a two-dimensional analysis. We get ex-
actly the same threshold as that reported in Refs. [30]
and [35], namely q, =3, AT, =2.7'C. For finite magnetic
fields agreement with the result of Ref. [35] is also found
for normal rolls [i.e., the upper dashed curve in Fig. 1(b)].

The substantial difference from previous calculations
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comes from the fact that for higher magnetic fields a
three-dimensional calculation is necessary. This was no-
ticed before in a calculation using free boundary condi-
tions [20,21]. The main features of the bifurcation behav-
ior were obtained there, but with considerable quantita-
tive differences: The normal-oblique roll transition
occurs at h= 17.5 (instead of h= 36 for rigid boundaries}
and the oblique-parallel roll transition at h =34.7 (instead
of h =62).

The characteristic features of the transition in the R-h
plane are also obtained from the analytic approximation
Eq. (3.14). In fact the threshold curve [Fig. 1(b)] changes
by less than about 1% in comparison to the full numeri-
cal result. The two terms in the square bracket in the
denominator characterize the two destabilization process-
es: The first term pertains to the classical isotropic mech-
anism, whereas the term proportional to ~, describes the

4.5

4.0
CL

3I5
U

a) 3.0
C)
E 2.5
C
4)

2.0

1.5
O

1.0
O

0.5

I I I I I I I I I I I I I

0.0
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

reduced magnetic field h

0

200 I I & \
I

& I »
I

I I I I
I

& I ~ &

I
~ I ~ I

I
I I I I I1l I ~

I
I I «

I
I & I &

I
& ~ I I

I
I ~ I l

{
I I ~ 1I I I I 1

I
I &1I2

2000; (b)

1800:
1600 =

1 400:
1 200— i50," "& I""I' i ~ "i" 'I" ~

' ' I" 'I"' s ''s

125-
1000 =

100,-

800 =

600 = 50 '-

400: 25',-

I . .I. ..&. . .I. .. .I. . I. I . . I. ~ . I.. .I. I . I . ~ .200: 0 1 2 3 4 5 a

0 iI» i I ii ~ i I »» I »» I «» I» ~&I ~» i Ii I » Iiiii I ii i iI »» I » i i I i » i-

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

red v ced magnetic field h

FIG. l. (a) Critical wave numbers q, and p, as functions of
the reduced magnetic Seld h (H =hHf ). For large h the critical
wave number (and threshold) of the isotropic RBC is ap-
proaches with roll axis parallel to the director. (b) Threshold
R, as a function of h (solid line, normal rolls; dashed line, ob-
lique rolls; dotted line, parallel rolls). The upper dashed line for
higher magnetic fields results from a two-dimensional calcula-
tion (normal rolls), and the bar (above the upper dashed line)
marks the asymptotic value R, =2060 for h ~ 00.

heat-focusing mechanism. Since I' is usually large
(F= 1182.65 in our case) the heat focusing dominates ex-
cept for high fields (then K, and ICz become large and
therefore N/M small). The heat-focusing mechanism
usually favors normal rolls (note the factor q2 in the ex-
pression} in contrast to the isotropic one which usually
favors parallel ones, and this explains the rather complex
threshold behavior. From Eq. (3.14) one sees that the an-
isotropy of the heat conductivity also enters into the first
bracket in the numerator. This bracket is proportional to
the heat difFusion [compare with Eq. (3.2)]. Now consid-
er rolls with variable orientation and fixed spacing, so
that q +p is constant. Since ~~~) 1 this contribution
favors convection with p&0 where heat diffusion is less
efficient than for normal rolls (p=0) (note that horizontal
diffusion counteracts convection). Thus by increasing KI
one can in fact produce a situation with oblique rolls
occurring at threshold at zero magnetic field. This ten-
dency is aided by small values of k22 because this favors
relief of splay by twist, which requires pAO. Since this
last effect is strongest at zero field [see K2 in Eq. (3.14)],
the oblique rolls typically first vanish with increasing field
and then reappear again at higher fields.

Oblique rolls were observed at h=O in an experiment
[21]. A direct comparison with our results is not possi-
ble, because the confining plates in the experiment had
rather poor heat conduction. In that case one would
have to use different boundary conditions which have
been shown to favor oblique rolls [21).

IV. PERIODIC ROLL SOLUTIONS IN A WEAKLY
NONLINEAR ANALYSIS

A. General formulation

V=V)+V2, (4.1)

where V2 is orthogonal to V, . The first part V,
represents a superposition of the linear modes Vo(q),

The treatment in this section will be initially kept gen-
eral so that it applies also to later sections. From the
linear analysis we obtain the destabilizing modes of the
homogeneous rest state nucleating a roll pattern with
wave number q. Their growth rate o. vanishes at the neu-
tral surface Ro(q). For values of R slightly above the
neutral surface, the absolute value of 0. is small. The
starting point of our perturbative expansion scheme will
be a state that lies in the subspace spanned by the linear
modes with small ~0 ~. The procedure corresponds to the
center-manifold reduction for finite-dimensional dynami-
cal systems [36]. Although for systems with an infinite
number of degrees of freedom a mathematically rigorous
justification is lacking, the approach is considered well
founded from general principles [37—40]. It generalizes
the well-known multiple time- and space-scale treatment
of pattern-forming systems by the amplitude {or en-
velope) equation formalism [41] and now includes au-
tomatically higher-order derivatives and nonlocal contri-
butions.

Thus the general solution is written up to second order
in the amplitude in the form
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A„(q)=s (qp)6(q —qp)+s*(qp)ti(q+qp),

which corresponds to a stationary-roll solution

Vi„=s (qp)Vp(qo)exp(iqp x)+c.c.

V2„ is obtained from Eq. (2.18) at order A

LV2„+N2(V, „~V,„}=0.

(4.3a)

!4.3b)

(4.4a)

This equation can be treated with respect to the hor-
izontal coordinates in Fourier space. The solution splits
into three disjoint pieces of V2„(q) with q=+2qo and

q=O. For example, for q=2qo and q=O, Eq. (4.4a) be-

comes

which depend on z and have been determined by the
linear analysis [see Eq. (3.7)],

V, = Jdq A (q, t)exp(iqx)Vo(q), (4.2)

where the q integration extends at most over small re-
gions centered around wave numbers +qo, where for
given R the value of qo is restricted by the condition
~[R —Ro(qo)]/Rp(qo)~ &&1. Since Vo( —q)=Vp(q), the
amplitude A (q, t), which is yet undetermined, also
satisfies A (

—q, t) = A '(q, t) to ensure the reality of V, .
Then making use of the fact that the amplitude A (q, t) is
small, we expand the nonlinearities of the general equa-
tions (2.18}systematically in powers of A up to the third
order. V2 is evaluated in second order and finally A (q) is

determined from the third-order terms.
In general one would obtain nonlinear integro-

differentia equations for the amplitudes A (q). If one is
interested in periodic solutions the equations simplify
considerably and one then obtains the conventional
stationary-roll solutions. For wave vector qo and R
slightly above threshold, one starts with the following an-
satz for the amplitude in (4.2):

(4.4c)

In (4.4b) and (4.4c) all derivative operators 0 and 0
have to be replaced by iq and ip, respectively, with ap-
propriate wave vectors q [e.g., 2qo in the linear operator
L in Eq. (4.4b)]. In a similar way we will in the following
switch between real space and q space without always
mentioning it explicitly. The z dependence of V2„ is
treated by the same Galerkin ansatz as in the linear case.
Equation (4.4a) therefore becomes a linear inhoinogene-
ous system for the expansion coeScients of V2„, which
can be solved uniquely because the inhomogeneity is or-
thogonal to the linear solutions (opposite symmetry with
respect to the inversion of z).

At order A we obtain from Eq. (2.18}

L V, „+N 3(V,„iV,„i V, „) +N 2( V2„iV,„)

+N2(V, „~V2„)=0 . (4.5)

The first term in Eq. (4.5) is of order [R —Ro(qo)]A„
which balances, as usual, the 0(A„) terms. The ampli-
tude is obtained by projecting (4.5) onto Vo. Technically
one switches again to q space and performs the scalar
product [see Eq. (3.10)] with the adjoint eigenvector U(q)
of the linear system. One gets an equation for ~s(qo) of
the following form:

c2(qo}
Is(qo) 12= — ~ [R —Rp(qo)]

c3 (qo)

with the abbreviations

(4.6)

L (2qp)V2„(2qo)+s (qo)N2[Vp(qp)~Vp(qp)]=0, (4.4b)

L (0)V2„(0)+ /s(qo)/2[N2[Vp(qp)/Vo( —qo)]

+N2[Vp( —qp)IVo(qo)]] =0 .

c2(q) =
& U(q), L (q)Vo(q} &,

c3(q)=d2(q)+d3(q)

(4.7a)

(4.7b)

(4.8)

(4.9)

(4.10)

d, (q)=c, (
—q, q, q)+c(q, q, —q)+c3(q, —q, q),

c3(q qi q2)= &«q»N3[VO(qi}lVo(q2)l I o(q —
qi q2}] &

d2(q) =
& U(q), N2[V2, (0) I Vp(q)]+N2[Vo(q}IV2, (0)]&+ & U(q), N2[V2, (2q) IVo( —q}]+N2[Vo( —q}IV2,(2q)] &,

where V2„(2q)=V2„(2q)/s (q) and V2„(0)=V2„(0}/
~s (q) ~

[see (4.4a)].
The quantity c2 is positive within the neutral surface.

If c3 is negative one has a forward or supercritical bifur-

cation. In Sec. IV B, it will be seen that one typically has
a backward bifurcation (c3 )0) in an intermediate
magnetic-field range. Then at least a quintic term in the
amplitude A (q) would be necessary for the description of
the nonlinear regime. For q=q, ("band center") the am-

plitudes calculated here are to leading order proportional

I

to e'~ with e =(R —R, )/R, .
In the practical calculation only a finite number

(=m„) of z modes is retained. Following Busse [42], we

consider the spatially averaged convective heat transport
at the lower plate,

ay~, »2 (4.11)

as a quantitative measure (which is also accessible experi-

mentally). Changing the truncation number (=m„), we

stop when the following criterion is satisfied:
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B. Results and discussion

We present some experimentally measurable quantities
calculated from the nonlinear roll solution. In Fig. 2(a)
the amplitudes (without the factor e'~!) at q, of the z
component of the director in the middle of the cell N,
and the y component N at z =d/4 are plotted as func-
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IJ„„„(m„+2)—J,o,(m„)I/J„„„(m„)~ 0.1% .

It turns out that four z modes (m„=4) are sufficient for
all practical purposes.

A more serious problem is the estimate of the range of
validity of the amplitude expansion. This can in principle
only be judged from a calculation including the quintic
terms in the amplitude. For simplicity we consider the
deviation of the director from the planar orientation in
the midplane of the cell where it is maximal, and then
n,

I

(0.5 as a rough estimate for the range of the validi-
ty. We found that the expansion should be applicable
with semiquantitative results at least up to @=0.1 in all
cases.

tions of h [i.e., one has n, (z =0)=e' N, cos(q x) and
n~(z =d/4)=e' csin(q x)]. In Fig. 2(b) we have plot-
ted in a similar manner the quantity (Nu —I)/e, where
Nu is the Nusselt number, i.e., the spatially averaged
total-heat current normalized to the conductive-heat
current. The most important result is that N, and
(Nu —I)/e turn out to be negative in the range
4.15&h &31, indicating a backward bifurcation in that
range. The quantity c3 [Eq. (4.7b)] changes sign when
one crosses the tricritical points h=4. 15 and h=31,
which results in the singular behaviors of N„N, and
(Nu —I)/e at these points. Thus higher-order terms in
the amplitude are needed to describe correctly nonlinear
behaviors near the tricritical points and in the subcritical
region.

A subcritical bifurcation has been found before in RBC
with homeotropic configuration [29,43]. Although a sim-
ple and detailed physical explanation is lacking in both
cases, the tendency can be understood by the following
argument: The restoring torques are linear in n„ i.e.,
harmonic for n, near zero. The anharmonicity due to the
magnetic field reduces the restoring forces (equal to nega-
tive anharmonicity, = n, )—as is characteristic for a di-
pole in an external field. The elastic restoring forces, on
the other hand, have a positive anharmonicity for con-
ventional materials with k 33 /k ] ] ) 1. Increasing the
magnetic field thus reduces the anharmonic contribution
and therefore drives the system towards a backward bi-
furcation. For large fields the anharmonicities of the
viscous forces become dominant, which again leads to
forward bifurcation as in RBC for isotropic fluids.

V. AMPLITUDE EQUATION

A. General formulation

In Sec. IV we have constructed periodic roll solutions
near threshold. One would like to describe more compli-
cated situations such as modulations with respect to
orientation and spacing of the rolls, point defects, and
grain boundaries, and last but not least the stability of the
roll pattern. It is well known that this can be achieved
for long-wavelength modulations of the roll pattern at
lowest order O(e' ) in the framework of the amplitude-
equation formalism. One starts with a wave-packet solu-
tion where A (q) is actually smeared out as provided for
in Eq. (4.2). From A (q) the conventional slowly varying
amplitude (or envelope) A (x), which appears in the am-
plitude equation, can be constructed by Fourier transfor-
mation. One then has

0.5 A (x, t)= f db, qA (q, +bq, t)exp(iraq x) . (5.1)

0.0
0

:I I I I I I: I I I I I I I

5 10 15 20 25 30 35 40 45 50 55 60 65 70

reduced magnetic field h

FIG. 2. (a) Amplitudes N, and N~ of director components n,
and n~ (see text) at q=q, as functions of the reduced magnetic
field h. (b) Reduced convective-heat transfer (Nu —1)/e (Nu is
the Nusselt number) at q=q, as function of H.

Typically the hq integration is confined to a region
O(e'~ ) and then A (x) varies on a scale e '~ . It is evi-
dent that within the framework of the amplitude equa-
tion the quantity c2(q) in (4.7a) expanded around q, to
lowest order corresponds to the differential operator in
the linear part, whereas c3(q) at q, leads to the prefactor
of the cubic term. Written out in detail we have
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T r), A (x, t)=(e+$,8 +g 8 +2ag, g t) t) )A

—gfw/'a . (5.2)

The determination of the characteristic time To, the
lengths g;, and the parameter a from the linear growth
rate cr(q, p;R) was already discussed in Sec. IIIA [note
that the expression in Eq. (3.12) corresponds to cz(q), see
also Eq. (4.7a)].

The coefficient of the cubic term is given by
g = —c3(q, )/c~ with c„defined in Eq. (3.12). One has

g )0 for a forward bifurcation and g & 0 for a backward
bifurcation. The numerical value of g depends on the
particular normalization chosen for the linear eigenvec-
tor of Eq. (3.7) and has no direct significance. We there-
fore preferred to give directly the amplitudes of the phys-
ical quantities as was done in Sec. IV B. All information
can then be extracted from the amplitude equation. In
fact, g can always be scaled to +1. For g) 0 roll solu-
tions with wave vector qo=q, +q' correspond to periodic
solutions of the amplitude equation A (x)
= A (q')exp(iq'x) with

~
~ (q') ~'=(~—kiq' —6 '—2aCA2q'p')/g (5.3)

Clearly the solution exists inside a paraboloid which coin-
cides to lowest order with the neutral surface. A (q') is
then identical to s(qo) in leading order e'~; see Sec.
IV A, Eq. (4.6). If one scales down the paraboloid by a
factor ( —,

' )'~ one gets the stability region in q space. That
is nothing else but the Eckhaus instability generalized to
the two-dimensional case [31]. For normal (or parallel)
rolls this reduces to the usual longitudinal Eckhaus insta-
bility. For isotropic systems one would in addition have
the zigzag (or undulatory) instability which in the
lowest-order amplitude-equation approximation renders
all rolls with q (q, unstable. The zigzag instability
occurs also in anisotropic systems at and near a Lifshitz
point. Since there either g2 or g, vanish (see below) a
more complicated kind of amplitude equation with
higher-order derivatives has to be used [31]. In that
equation one also has locally stable undulated roll solu-
tions (normal, oblique, or parallel) [44]. Within the sim-

ple amplitude equation (5.2) the only stable solutions in
an infinite system are the straight rolls within the stable
wave-vector range and there can be no transition to spa-
tiotemporal chaos.

Carrying the expansion of Ro(q) around q, to higher
order and transforming back to real space yields addi-
tional derivatives in the amplitude equation, which corre-
spond to higher orders in e. Such terms are, among oth-
ers, responsible for corrections to the parabolic approxi-
mation of the neutral curve.
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used). The most obvious feature is the steep decrease of
To [To-—47.13/(1+0.697h )] for small fields by almost
three orders of magnitude with increasing magnetic field.
This reflects the fact that at zero field the director relaxa-
tion time ~z-—y, d /k» is by far the longest response
time of the system and thus controls To. Clearly ~z de-
creases with increasing field and eventually the heat-
diffusion time becomes dominant. The strong depen-
dence of the director relaxation time on the magnetic
field h in nematics has obtain been stressed in the litera-
ture [19].

From Fig. 3(b) one sees that (2 vanishes, like in EHC
[11], at the lower Lifshitz point (h =36), while gi van-
ishes at the upper one (h =62). Whereas in EHC the pa-
rameter a is fairly small [11],it is near its maximally pos-
sible value 1 here (for a & 1 the growth rate o would have
a saddle point instead of a maximum at q, ). From Eq.
(3.11) one sees that, as a consequence, the ellipses traced
out by the level lines of Ro(q) =R (or equivalently, o =0)
in the (q,p) plane, with R slightly above R„are very ec-
centric throughout the whole oblique-roll range. The
long axis, corresponding to a short coherence length in

B. Results and discussion

In Fig. 3(a) the relaxation time To in units of the verti-
cal heat-diffusion time d /Ky is shown as a function of the
reduced magnetic field. Similarly, in Fig. 3(b) the coher-
ence lengths (, and g2 in units of d, as well as the cross
coefficient a in the oblique-roll range, are given for
MBBA (see Appendix B for the material parameters

0 0 I I I

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

reduced magnetic field h

FIG. 3. (a) The relaxation time To, measured in units of the
heat-diffusion time d /KI as a function of the reduced magnetic
field h. (b) The coherence lengths g, , g2, in units of the cell

thickness d, and the cross coefficient a as function of h.
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that direction, remains always roughly parallel to the
rolls.

Instead of giving the nonlinear coefficient g which is
usually defined with respect to a mathematically con-
venient normalization of the linear eigenvector, we have
given in Sec. IVB some experimentally more relevant
quantities. The quantity g has been calculated before
[22,23] for h =0. It was positive indicating a forward bi-
furcation. A quantitative comparison is not possible be-
cause the normalization of the linear eigenvector was not
given there.

Besides the simplified description of roll solutions and
their stability, the amplitude equation allows one to de-
scribe many other properties, such as the structure and
dynamics of defects [45] and of wavelength-changing pro-
cesses [46]. For that purpose it is useful to realize that by
appropriate scaling all parameters can be eliminated from
Eq. (5.2). Therefore all pattern-forming instabilities with
a steady forward bifurcation and axial anisotropy obey a
simple law of similarity slightly above threshold.

VI. STABILITY OF ROLLS AT HIGHER ORDER

A. General formulation

A (q, t) = A„(q)+5A (q, t), (6.1)

In this section we describe the effects of higher-order
terms in e which are not contained in the amplitude-
equation formalism in Sec. V. An important reason for
going to second order in the amplitude [or 0 (e) ] is that
new destabilization mechanisms come in which may lead
to spatiotemporal chaos. The new modes are character-
ized by spatial variations on a length scale much larger
than that of the underlying roll pattern and develop con-
tinuously out of the q=O part of V2 (see Sec. IV A). The
physical origin lies in the fact that bending of rolls in-
duces pressure gradients which excite the so-called mean
Pow (or "large-scale" flow or "mean drift") with nonzero
average over the cell height (it vanishes for straight rolls).
Such a flow is also characterized by a nonvanishing verti-
cal vorticity. In order to include mean-flow effects in the
amplitude-equation formalism, one has to add an equa-
tion for the vertical vorticity. This has been done for iso-
tropic systems first for free boundary conditions [47].
The equations were qualitatively correct but the results
did not agree with a rigorous stability analysis of the full
equations [48] and a further extension was necessary [39].
For rigid boundaries a corresponding equation has been
given quite recently, but a comparison with rigorous re-
sults has not been performed [49]. The free-boundary
case was recently discussed for EHC and spatiotemporal
chaos was shown to occur then already at threshold for
MBBA-like materials [50].

If one is interested only in the linear stability of rolls
one can avoid amplitude equations, which are confined to
long-wavelength scenarios and whose construction in our
complicated system to order e is not straightforward. It
is then much simpler to stay in q space, as will be done in
the following. The stability analysis is performed by writ-
ing

i ( —qo+ a).x
+s2(t)VO( —qo+a)e ' +c.c. (6.3)

Only contributions linear in s, and s2 will be retained.
The restriction to one wave vector a is sufficient because
the equations close, and the most general disturbance can
be constructed by superposition. From the second-order
equation (4.4a) one sees that the corresponding perturba-
tions 5Vz of Vz„have wave vectors q=a, +2qo+a (those
components of 5V2 which correspond to the velocity po-
tentials f and g with wave vector q=a and ~a~ small,
represent the mean-flow disturbances). At third order
the equations are closed as usual by projecting Eq. (2.18)
(linearized with respect to 5V, and 5V2) onto the linear
eigenvectors V(qo+a) and V( —qo+a). The time depen-
dence of s, (t), s2(t), and 5Vz are chosen proportional to
exp(A, t) and then we obtain a linear problem to be solved
for the eigenvalue A.. Some details of the derivation are
sketched in Appendix C. If there exist a=(a„,a~ ) such
that Re[A, (q, e;a)])0, the stationary solution at (q, e) is
unstable; otherwise, it will be regarded as stable. A
simplification is suggested by noting that A, =O(e) [or
O(~s(qo)~ )] is consistent with the equations for 5V,
[Eqs. (Cl 1) and (C12)]. Then the time derivatives are of
higher order in the equations for the second-order pertur-
bation 5V2 [Eqs. (C8)—(C10)] and can be neglected there.
We have checked the validity of this approximation by

comparison with the full numerical solution. With this
adiabatic approximation 5V2 is easily obtained as func-
tions of s, and s2 by solving a linear system in Fourier
space leading to a 2X2 eigenvalue problem for A, . We
have also tested that it is sufficient to keep in the third-
order equation only the leading-time derivative which
contains the operator Bo [see Eq. (2.18)].

For normal rolls we use the standard definitions of the
three long-wavelength instabilities (a„,a ~0) which de-
pend on the sequence of the limits: namely Eckhaus in-
stability if ay 0 zigzag instability if a„=0, and skemed-
varicose instability if a„la is finite. We have also found
a short-wavelength instability for oblique rolls (see
below).

The Eckhaus instability corresponds to local dilation
and compression of the roll pattern; the zigzag instability
leads to an undulation along the roll axis. These two in-
stabilities are ubiquitous in pattern-forming systems and
are well known also in isotropic systems. The skewed-
varicose instability appears only if the contribution to the
velocity in 5V2(a) in second order is kept. The state the
system evolves to cannot be obtained unambiguously
from the linear perturbation analysis. Beyond the zigzag
instability it could be an undulated roll pattern, oblique
rolls, or possibly something else. As for the skewed-
varicose instability there is evidence from numerical

where A„(q) was determined in Sec. IV, Eq. (4.3a), and

5A (q, t) =s&(t)5(q —
qo

—a)+s2(t)5(q+qo —a), (6.2)

with the modulation wave vector a=(a„,a ). Equation
(6.1) gives rise to a perturbation 5V& of the lowest-order
stationary-roll solution V&„[for V&„see (4.3a)]

i (qO+a)-x
5V, =s, (t)VO(qo+a)e
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simulations that a complicated dynamical state (defect
turbulence) appears [5,7,50,51].

B. Results and discussion

In the following we describe some of the results of the
stability analysis, which we consider to be the most in-
teresting part of this work. We are mainly interested in
the low-field region and in the behavior near the lower
Lifshitz point, where we expect some analogies with
EHC.

First we discuss the stability diagram in the normal-
roll (p=O), forward-bifurcation range (h &4.15). In Fig.
4 the stable normal-roll region is shown in the e-q plane
for zero field (inside of the region limited by the dashed
and upper solid curves). Also shown are the neutral
curve (solid curve marked by NC) and the lowest-order
Eckhaus parabola (dotted), which is the only stability
limit obtained from the lowest-order analysis (amplitude
equation). Figure 4 demonstrates the importance of the
0 (e) contributions. On the solid curve marked by E des-
tabilization occurs by the Eckhaus mechanism, i.e., with
the modulation wave vector parallel to q. Compared to
the lowest-order result there is an asymmetry to the left.
It is interesting to note that this asymmetry is opposite to
that of the neutral curve. On the dashed curve one has a
skewed-varicose (SV) instability, i.e., the modulation
wave vector is oblique and mean Aow is decisive. The
stability curves (E and SV) reach the neutral curve at the
point P (wave number q = q~ ). We found that for q & q~
c3(q) is positive [see (4.6)], therefore on the neutral curve
the bifurcation type changes (forward ~ backward) at P
so that this point could be called a "tricritical point in
the e-q plane. " This scenario can be described by intro-
ducing spatial derivatives into the nonlinear term in the
conventional amplitude equation and one can show
indeed that the Eckhaus stability curve approaches the

0.20

neutral surface at P (the details will be published else-
where). For increasing magnetic field P comes down
along the neutral curve and crosses the point q =q, at
h=4. 15. In Fig. 5 the onset of the SV instability at band
center, i.e., for q =q„ is plotted as a function of h. The
stability limit reduces to @=0 as the tricritical point P
coincides with the threshold.

In order to explore the possible transitions when the
SV limit is reached for increasing e, we have examined
the stability of rolls with pAO at h=0. For given q we
find that the stability limit e decreases for increasing p.
Therefore a transition to oblique rolls is excluded. There
remains the possibility of a transition to a more compli-
cated spatial structure, or possibly, spatiotemporal chaos.

In the high-field, normal-ro11, forward-bifurcation re-
gion (31 & h & 36) the situation is different. In Fig. 6 the
neutral curve and the various instabilities are shown in
the e-q plane for h =34, slightly below the lower Lifshitz
point (h =36) at which the transition between normal and
oblique rolls occurs. The Eckhaus instability is now
asymmetric to the right, like the neutral curve. The
stable region is limited from above by a zigzag (or undu-
latory) instability (dashed) with a modulation wave vector
perpendicular to q, which is expected to lead to oblique
rolls. The zigzag curve meets the neutral curve at the
point L where q =qL. Our numerical calculations show
that for q ) qL one has 8 Ro/8 p) 0 while 8 Ro/8 p &0
for q &qL, so that for q &qL oblique rolls have a lower
onset than normal rolls and L is therefore a "Lifshitz
point in the e-q plane. " When the actual normal-oblique
transition at h=36 is approached the point L moves
down along the neutral curve and reaches q =q, . One
also sees from Fig. 6 that in some range of e the right
Eckhaus limit is preceded by a SV instability. The point
P marks again the "tricritical point in the e-q plane":
c3 ( q) becomes positive for q )q~.

In order to verify that at the zigzag instability a transi-
tion to oblique rolls is possible we have again extended
the stability analysis to oblique rolls. Figure 7 shows the
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FIG. 4. Stability diagram for h =0 in the e-q plane
(p =p, =0). NC; neutral curve. Dotted line: lowest-order Eck-
haus parabola. E: calculated Eckhaus stability borderline. SV:
skewed-varicose stability limit. The Eckhaus and SV lines
merge at the "tricritical point" P. Rolls are stable inside the re-
gion bounded by the E and SV lines.
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FIG. 5. Onset of the SV instability at the band center

(q=q, ) as a function of h. The stability region shrinks to zero

at the onset of the subcritical bifurcation.
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0.008—

h=34

characterized by oscillations between two degenerate ob-
lique rolls (a bimodal, rectangular structure is also possi-
ble). In the magnetic-field range where oblique rolls
occur at threshold we have only convinced ourselves that
rolls with critical wave vector q, are stable immediately
above onset.

VII. CONCLUDING REMARKS
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FIG. 6. Stability diagram for h =34 in the e-q plane

(p =p, =0). The stability region is now bounded from above by
the zigzag (ZZ) instability (pure undulations along the rolls),
which emanates from the Lifshitz-point L on the neutral curve.
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I
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0.006—

0.004—

results in the e-p plane at fixed q =q, for the same field
h=34. The neutral curve and the Eckhaus limit are as
expected. The extension of the zigzag instability to finite
p (dashed) is curved upward, so that oblique rolls indeed
remain stable after the normal rolls have lost stability.
Eventually, at larger e, we find that oblique rolls become
unstable (dotted lines) with respect to disturbances with
nonzero modulation wave vectors u . Such short-wave-
length instabilities could maybe lead to the development
of oblique rolls with the wave vector around (q„—p).
The scenario would then have some similarity to the
cross-roll instability [42] in isotropic fiuids. In both cases
the roll pattern becomes unstable to modes which corre-
spond to an equivalent degenerate configuration. Beyond
the stability limit one could have a dynamic situation

We hope that our predictions stimulate new experi-
rnents. In fact, in preliminary measurements on 5CB
(planar configuration) backward bifurcations have been
observed in the intermediate magnetic-field range [52].
The parameters of the amplitude equation and the stabili-
ty regions may be measured by methods introduced for
EHC [10,14,15].

We have not been able to determine the state which the
system evolves to once all roll solutions have become un-
stable. In order to do this one would have to test more
complicated (bimodal) patterns for stability. These pat-
terns include undulated normal and oblique rolls as ob-
served in EHC (the latter can presumably be identified
with the "skewed-varicose" pattern observed sometimes
[8], and were shown to exist in the vicinity of the
normal-oblique transition [31,46]). Moreover, one would
have to construct a generalized amplitude equation in-
cluding mean-How in order to test transitions to spa-
tiotemporal chaos. For EHC with free boundary condi-
tions this has been done, and for MBBA-like materials
one always finds spatiotemporal chaos [46,50]. Subse-
quently amplitude equations were constructed on a phe-
nomenological basis and used to investigate the various
instabilities [51]. A simulation with a coupled-map-
lattice approach was also performed there and apparently
the defect-mediated turbulence was obtained [51].

Comparing our results with those found in EHC within
the standard theory [13,53] we note that one of the essen-
tial differences is the absence of a backward bifurcation in
the latter case. Also in EHC the destabilization of the
primary normal-roll structure appears to occur always by
the zigzag scenario, similar to RBC in nematics in the
high-field case.

We point out that an investigation similar to the one
presented here is underway for RBC in nematic liquid
crystals with horneotropic alignment. This very rich sys-
tem [19,54,55] has two main distinguishing features:
Without additional magnetic field it is isotropic in the
plane of the layer and thus shares many properties with
RBC in simple Auids. By adding a horizontal magnetic
field an anisotropy can be turned on continuously.
Second, a Hopf bifurcation leading to a time-periodic
convection pattern can occur [28,29,54].

0.002—

0.000
0.00 0.25 0.50 0.75

P

1.00 1.25 1.50

FIG. 7. Stability diagram for h=34 in the e-p plane at q, .
The stable region is bounded by the E, SV, and ZZ lines and in
addition by the dotted line, at which a short-wavelength desta-
bilization sets in. The curves continue symmetrically to p & 0.
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APPENDIX A

d +(),[)t,n;n ((},y —Z5„)+(),{t)]+ZU,=0,
dt

(A 1)

We have measured lengths in units of d (slab thickness)
and the time in units of the heat-di6'usion time d /~~.
The temperature scaling follows the convention used in
isotropic RB convection: (t) =P'[(a4/2))ti/(agd po)].
The viscosity coefficients, elastic constants, and heat
diffusivities are scaled as a,.=a,'-(a~/2), k;; =k;k;;,
K

~~
/c~~+J + + +J The other dimensionless quantities

are defined in Eqs. (2.16) and (2.17). After dropping the
primes the equations for the temperature, director, and
velocity read in dimensionless form (coordinates defined
in Sec. II)

dU;
e, —(1/P„) +$5; +r},(s,, y, /F+t, , ) =0 .

dt
(A5)

The expressions for quantities G, N, and A in (A6) and
t;J, s/ in (A4) and (A5) are the same as those given in Sec.
II with the material parameters replaced by dimension-
less ones. Finally the system (Al) —(A5) is expanded with
respect to (t), n„n, f, and g and can be written in the
form of (2.18).

In (A4) and (A5) the operators 5=(() ()„() (}„—() —() )

and e'=((}»,—(),0) have been applied to eliminate the
pressure. I is given by

5G FN—F(—y2/yi) A.n+m (n h)h . (A6)2

(1—n, )I, n„—n, I, n»n,—I =0,
—n. r„+n,r„=o,

dU;
5; —(1/P„) +(t)5;3+ (3J(s&, y, /F + t, ) =0,

dt

(A2)

(A3)

(A4)

APPENDIX B

Our results have been obtained with the following ma-
terial parameters for the nematic liquid crystal MBBA
[30]:

(k»k22k33)=(6X10 ' N 4X10 ' N 7X10 ' N),

(a„a2,a3, a~, as, as) =(6.5 X 10 kg m ', s ' —77.5 X 10 kg m ' s

—1 2X10 kgm 's ', 83 2X10 kgm 's

46 3X10 kgm 's ', —32 4X10 kgm 's '),
(K~~, &) ) =( l. 54X 10 ' m s ', 0.93 X 10 m s '), pa= 1000 kg m

The Prandtl number and the relaxation time ratio are
I', =447.31 and F= 1182.65, respectively. For two typi-
cal values of the thickness, d = 1 and 5 mm, the
Freedericksz transition thresholds Hf are 69.39 and
13.88 G, respectively (g, = 1.23 X 10 in cgs units).

APPENDIX C

V2 —V2r +6V2 (C4)

V2„=—v2(2q)e '""+v2( —2q)e ' '"+v2(0) . (C5)

The time dependence of V2 is governed by [see Eq. (2.18)]

V2„ is determined from Eq. (4.4a) and can be written in
the form

In the following we present in more detail the method
for the stability analysis sketched in Sec. VI A. Substitut-
ing (6.1) and (6.2) into (4.2) gives a leading-order ansatz
for the time-dependent solution V&, which is a superposi-
tion of the stationary solution V&, and the perturbation
5Vi

B t3, V =LV +N (V, jV, ), (C6)

where the term B (V)) )),V(h)as been incorporated into

N2(V)~V)) without changing the notation. 5V2 can be
expressed as

) t(7. i(2q+a).x+ 7 i( —2q+a).x+ 7. ia.x)
2 +e 0

V, =V,„+6V, ,

with

(Cl)
(C7)

V,„=s(q)V (q)e' '"+c.c. =v,e' "+c.c. ,

5V =e '[s, V()( q+ a )e 'q+ '"

+s2V()( —q+a)e' q+ '*] .

(C2)

(C3)

In (C2) the shorthand notation v, —=s(q)VO(q) has been
introduced.

In second order 5V, will lead to a disturbance 6V2 of
the stationary part Vz„

with the unknowns T+, T, and T0 whose z dependence
has the same symmetry as V2„and is treated by the same
Galerkin expansion.

Now substituting V, =V„+5V, and Vp=V2, +6V2
into (C6) and linearizing with respect to 5V, and 5V2, one
obtains

ABOT+ =LT+ + [N2[v, ~
Vo(+ ) ]+N2[VO(+ )

~ v, ] J s, ,
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ABp Tp=LTp+ [Nz[v*, IV,(+ )]+N,[V.(+ }Iv( ]]s)

(C9)

+ INz[v&Ivp( —)]+N2[Vp( —)Iv&]]sz . (C10)

ABpT =LT + [Nz[v", Ivp( —)]+N2[Vp( —)Ivt ]]s2, In (C8}—(C10) the abbreviation Vp(+):=Vp(+q+a) has
been used, and all operators (Bp, L, Nz, and N3) are un-

derstood to act in Fourier space. We then insert
V=V&+V2 into (2.18) and linearize it. After taking sca-
lar products [see Eq. (3.10)] with U( q+ a ) and
U( —q+a), eigenvectors adjoint to Vp(q+a) and

Vp( —q+a), respectively, we find

A(U(q+a), Bpvp(+ ) &s, =(U(q+a), Lvp(+) &s, +(U(q+a), N2(v*, IT+ )+N2(T+Iv*, )+N2(v, ITp)+N2(TpIV]) &

+ (U(q+a), [N2[Vp(+ }Iv2(0)]+N2[v2(0) IVp(+ )]

+N3[v~lv~ IVp(+ )]+N3[v) IVp(+ }Iv) ]+N3[Vp(+ }Iv)Iv) ]

+N3[v*, Iv, IVp(+ )]+N3[v, Iv,(+ )Iv&]+N3[vp(+ )Ivf lvt]] &s~

+ ( U(q+ a ), I N2[Vp( —) I v2(2q) ]+Nz[ vz(2q ) I Vp( —
) ]

+N3[vq Ivy lvp( —)]+N3[vylvp( —)Iv, ]+N3[Vp( }Ivq Ivy]] &s2

(Cl 1)

A (U( q+a), B—pv p(
—) &s2 = (U( —q+a), LVp( —}&sz

+ (U( —q+a), N2(v, IT }+N2(T Iv, )+N2(v f IT )p+Nz(T Ivor ) &

+(U( —q+a), IN~[Vp(+ )Ivz( —2q)]+Nz[v2( —2q)Ivp(+ )]

+N, [vf Iv*, IV,(+ )]+N, [vf IV,(+ )Iv; ]+N, [V,(+ }Ivy Iv) ]] &s,

+ ( U( —q+ a ), I N2[ Vp( —) I vz(0) ]+Nz[v2(0) I Vp( —
) ]

+N3[v)IV] Ivp( )]+N3[v)IVp( )Ivf ]+N3[vp( )Iv]IV", ]

+N3[vq Ivy I Vp( —)]+N3[vy Ivp( —
) Ivy]+N3[vp( —)Ivy Iv&]] &sz .

(C12)

Equations (C8)—(C12) are solved numerically for the eigenvalue A(q, e;a). Positive Re(A, ) signals instability.
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