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Measured scaling properties of inhomogeneous turbulent flows

P. Tong
Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078

W. 1. Goldburg
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260

J. S. Huang
Exxon Research and Engineering Company, Annandale, New Jersey 08801
(Received 9 September 1991)

A turbulent flow lacking homogeneity and isotropy has been studied using the technique of photon-
correlation homodyne spectroscopy to measure velocity differences in different directions and at various
length scales. The measured intensity correlation function G(gt,L) is found to be of the scaling form
G(qtu(L)) with u (L)~ L%, where u (L) is the characteristic turbulent velocity at the length scale L and
q is the scattering vector. The exponent £ varies with scattering geometries and with flow cells. The
scaling behavior of G(gt,L) is found to be independent of spatial positions and orientations. A scaling
G(qtu(L)) indicates that the velocity-density function P(V,R) has a scaling form Q(V /u(R))/u(R).
The experiment suggests that the scaling argument can still be used to describe anisotropic and inhomo-
geneous turbulent flows, and that the exact functional form of P(V,R) (which is of scaling form) may
vary with spatial positions and orientations in turbulent flows, reflecting the inhomogeneity and anisot-

ropy of the turbulence.

PACS number(s): 47.55.—t, 47.25.—c, 42.25.—p, 05.40.+j

I. INTRODUCTION

The Kolmogorov theory [1] for homogeneous and iso-
tropic turbulence has played an important role in the
study of the statistical mechanics of turbulence. Accord-
ing to the theory, the kinetic energy is fed into the system
at the largest scale /), which is determined by the bound-
ary of the system. The energy is continuously transferred
from eddies of size R </, to eddies of smaller size, until it
dissipates when the size of eddies becomes comparable to
the viscous dissipation length /;. In the inertial range
l; <R <l,, the energy cascades at a rate € without dissi-
pation. As a consequence of the argument, the velocity
difference V (R,t) between two points in a turbulent fluid
separated by a distance R is expected to be scale invariant
in that the statistical properties of V(R,t) over varying
length scales R become identical under an appropriate
scaling of velocities [2—4]. This greatly simplifies the sta-
tistical description of turbulence. The velocity moments
(V(R,t)") become a simple power of the scaling velocity
u (R) associated with eddies of size R, and a simple di-
mensional argument gives [1,3] u (R)=(eR)'/>. It is easy
to show that the above scaling result follows if the
probability-density function P(V,R) of V(R,t) is a
homogeneous function [5,6]:

P(V,R)=Q(V/u(R))/u(R) . (1)

An interesting question one might ask is, what happens
for most “‘real” turbulent flows which are neither homo-
geneous nor isotropic? In a recent paper Knight and
Sirovich [7] have shown that the above scaling arguments
for homogeneous and isotropic turbulence can be extend-
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ed to certain turbulent flows lacking homogeneity and
isotropy. In this paper we report a light-scattering study
of such a turbulent flow, from which the functional form
of P(V,R) can be inferred. The experiment suggests that
the velocity-density function P (¥, R) in our inhomogene-
ous and anisotropic turbulent flow has the scaling form
shown in Eq. (1). This agrees with the scaling arguments
by Knight and Sirovich. Furthermore, it is found that
the exact functional form of P(V,R) (which is of scaling
form) varies with spatial positions and orientations in the
turbulent flow, reflecting the inhomogeneity and anisot-
ropy of the turbulence.

It has been shown [6,8,9] that the density function
P(V,R) is accessible by the technique of photon-
correlation homodyne spectroscopy (HS) [10]. The HS
technique differs from the standard one of laser Doppler
velocimetry (LDV), [11,12] in that LDV measures the lo-
cal velocity v(r(t)) whereas photon-correlation spectros-
copy senses the instantaneous velocity difference V(R,¢)
over a distance R, where

V(R,t)=v(r(t))—v(r()+R) .

With the HS scheme, small seed particles in the fluid
scatter light and follow the local flow. A photodetector
records the scattered light intensity, which fluctuates due
to the motion of the flowing particles. Therefore, the
output of the detector is modulated at frequencies equal
to the differences in Doppler shifts of all particle pairs in
the scattering volume. For each particle pair separated
by a distance R, this difference is q-V(R,t), and the
scattering vector q has the amplitude
q=(4mwn /1)sin(6/2). Here 6 is the scattering angle, n is
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the refractive index of the fluid, and A is the wavelength
of the incident light.

With the so-called homodyne method, one measures
the intensity autocorrelation function [10]

g()={I(t'"+)I(t"))=(I)*[1+bG(qt,L)], 2

where I(t) is the intensity of the scattered light and the
angle brackets represent a time average over t'. In the
last equality, L is the size of the scattering volume viewed
by the photodetector and b is a constant which is chosen
so that G(t =0)=1. The function G (qt,L) yields infor-
mation about the velocity differences in the q direction
and at various scales R up to L. Therefore, one can
probe the anisotropy of a turbulent flow by changing the
direction of the scattering vector q. Velocity differences
at various length scales can be measured by varying the
size of the scattering volume. The HS technique mea-
sures fluctuations of velocity differences without intro-
ducing an invasive probe. Moreover, it is not necessary
to invoke Taylor’s “frozen-turbulence” assumption [13]
to interpret the measurements.

Recently, the present authors and their collaborators
have used the HS technique to study turbulent flows in a
pipe and in a square tunnel at moderate Reynolds num-
bers [6,14,15]. The Reynolds number Re is defined as
Re=Ul /v, where U is a characteristic velocity of the
flow, [ is a characteristic length scale, and v is the kine-
matic viscosity of the fluid. It was found [6,14,15] that
when Re becomes larger than a transition Reynolds num-
ber Re,, the correlation function G (qt,L) has the scaling
form

G(qt,L)=G (k) , (3)

where k=gqtu(L), with u (L)~ L* being the characteristic
turbulent velocity at the length scale L. The scaling be-
havior of G(k) indicates [6] that the velocity-density
function P(V,R) has the form as shown in Eq. (1). The
exponent £ shows a nontrivial Re dependence and reveals
a transitional character when Re is near Re,. When Re
is below Re,, the characteristic turbulent velocity u (L) is
independent of L (£=0). In the vicinity of Re,,
(Re=Re,), § increases with Re. At large values of Re, &
climbs to, and saturates at, a value close to ;.

The present paper reports a further HS study on the
turbulent flow between concentric cylinders in which the
inner cylinder rotates. The measurements of G (qt,L) re-
veal that the turbulence in the cell is neither homogene-
ous nor isotropic. The predominant turbulent-velocity
gradient is in the horizontal plane, whose normal direc-
tion is parallel to the rotating axis. The measured corre-
lation function G (gt,L) is found to be of the scaling form
as shown in Eq. (3). Put another way, the log-log plots of
G (gqt,L) at various values of the slit width L and the an-
gular velocity o, given the scattering geometry and the
beam position in the flow cell, can be brought into coin-
cidence by sliding them horizontally with respect to each
other. This scaling behavior of G (qt,L) is found to be in-
dependent of the scattering geometries and spatial posi-
tions. However, when one compares the correlation
functions measured in different scattering geometries
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(keeping the other conditions unchanged) or compares
those measured in different spatial positions, it is found
that the above scaling description for G(qt,L) is no
longer valid.

The paper is organized as follows. Section II describes
the experimental apparatus and the methods of data
analysis. The results appear in Sec. III, and the work is
summarized in Sec. IV.

II. APPARATUS AND METHODS

The outer cylinder of the flow cell was made of Plexi-
glas to admit the incident light and observe the scatter-
ing. It was 12.7 cm both in height and in diameter. The
inner rotating cylinder was a smooth brass tube, 9.4 cm
in height and 5.7 cm in diameter. The tube was shafted
along its axis and was mounted on the vertical axis of the
outer cylinder through bearings. There was a filling stem
on the top lid of the cylinder, and air bubbles could leave
from the stem. The flow cell was mounted on the center
of a square water bath, which was fixed on an optical
table. The water bath was used to index match the cylin-
drical surface of the flow cell for the scattering measure-
ments. The flow cell was filled with water seeded with
small polystyrene latex spheres of diameter 0.1 pum.
These particles follow the local flow [16] and scatter
light. The volume fraction of the seed particles was
~107* At this particle concentration, the particle mean
spacing is much larger than their diameter (dilute solu-
tion) but much smaller than the smallest turbulent scale
(sufficient sampling).

Measurements of the correlation function g(¢) were
performed with a standard light-scattering apparatus and
a multichannel correlator (Brookhaven Instruments
Model No. BI-2030AT). Figure 1(a) shows the experi-
mental setup. The lens L; focused the incident beam
from a 1-W argon-ion laser (Coherent Model No.
INNOVA-90, A=515 nm) to form a quasi-one-
dimensional scattering volume in the flow cell. A typical
beam diameter was 0.1 mm. The lens L, imaged the laser
beam without magnification onto a slit (S) of variable
width L from 0.1 to 3 mm. Light passing through this
slit fell on the photomultiplier (PM), which recorded the
time-varying intensity I (¢). The photomultiplier was lo-
cated far behind the slit, so that light was collected from
roughly one coherence area. The transistor-transistor-
logic pulse train from the photomultiplier went to the
correlator, whose output gives the homodyne autocorre-
lation function g(¢) as shown in Eq. (2). Measurements
were made at room temperature at the scattering angle
6=90".

The scattering geometries used in the experiment are
sketched in Fig. 1(b). The direction of the incident beam
was varied in three directions: the azimuthal (¢) direc-
tion [A in Fig. 1(b) ], the radial (r) direction [R in Fig.
1(b)], and the vertical (z) direction [V in Fig. 1(b)]. For
the three scattering geometries, the corresponding
scattering vectors q=gq; —q, are

q4 =q¢e¢+qrer ’
qr =q4e5tq,e, , )
qy=g,e, tq4e; .
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One can probe different components of the velocity
difference V(R,t) by varying the direction of q, since the
correlation function g (¢) is only sensitive to the product
q-V(R,t) [see Eq. (5) below]. Figure 1(b) lists the com-
ponents of the velocity gradients measured in each
geometry. Notice that L is the length of the laser beam
viewed by the photomultiplier, and it can be varied by
opening the jaws of the slit.

As mentioned in Sec. I, the correlation function
G(gt,L) senses the velocity difference V(R,t) of a pair of
points in the turbulent fluid separated by a distance R. In
the real experiment the photodector receives light from
particle pairs having a range of separations (0<R <L),
and their contributions to the scattering intensity I (¢) are
proportional to the number fraction of the particle pairs
in the scattering volume. When the particles are evenly
distributed in a one-dimensional scattering volume of
length L, the number fraction of particle pairs separated
by R is [6] h(R)=2(1—R/L)/L. To better assure that
the equation is applicable, the incoming laser beam was
mildly focused by the lens L, [see Fig. 1(a)]. Because of
the frequency beating, the light scattered by each pair of
particles contributes a phase factor cos(gt¥) to the inten-
sity correlation function G(qt,L), and G(qt,L) is an in-
coherent sum of these ensemble-averaged (or time-
averaged) phase factors over all the particle pairs in the
scattering volume. Therefore, the function G(gt,L) in
Eq. (2) can be written as [6,8]

G(qt,L)=f0LdR h(R) [~ dVP(V,R)cos(gtV),  (5)

where P(V,R) is the velocity-density function and
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FIG. 1. Schematic diagram of (a) the experimental setup: L,
L,, lenses; S, adjustable slit; PM, photomultiplier; and (b) the
top view of the flow cell and the scattering geometries (z axis is
perpendicular to the paper); q,, incident wave vector; q;,
scattering wave vector; X, incident position of the vertical laser
beam. The components of velocity difference probed in each
geometry are also listed, where d is the distance between the
laser beam and the rotation axis, and L is the length of the laser
beam viewed by a photodetector.
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V(R,t) is the component of V(R,?) along the scattering
vector q.

The function G (qt,L) yields information about the ve-
locity differences in the direction of the scattering vector
q, and, senses fluid motions from the largest scale L,
which is controlled by a slit, down to the smallest scale
present in the flow. If the velocity-density function
P(V,R) is assumed to be of the scaling form as shown in
Eq. (1), Eq. (5) becomes [6]

Ggt,L)= [ "dR h(R)F(gu(R)) , ®)

where F(x) is the Fourier cosine transform of
Q(V/u(R)). Since the injection rate of the turbulent en-
ergy is finite, F(qtu(R)) must be a decaying function
[17], and the decay rate of F(qtu (R)) is then proportion-
al to qu (R) [6]. Equation (6) thus states that G(qt,L) is a
weighted sum of decaying functions, each of them
characterizing the fluid motion at the length scale R,
which is in the range between L and the smallest scale of
the turbulent flow. For the sake of argument, let us im-
agine that there were only two modes in a turbulence
flow: one was at the scale L and the other was at the
Kolmogorov scale L;, which is much smaller than L.
The function G(qt,L) is then a sum of F(gtu (L)) and
F(qtu (L,)) (assuming the weighting factor is unity). At
small time ¢, F(qtu (L)) dominates the decay of G (gt,L),
while F(qtu(L,)) is almost a constant. This is because
the decay rate of F(qtu (R)) is proportional to R ac-
cording to the Kolmogorov theory [1]. At large time ¢,
F(qtu(L)) has decayed to zero, and F(qtu(L,)) deter-
mines the decay of G (gt,L).

Therefore, the initial decay of G (gt,L) is dominated by
the large-scale motions, and the small-scale motions con-
tribute to the long-time tail of G (g¢,L). In principle, one
can obtain information about velocity fluctuations at all
length scales (0<R =L) from a single measurement of
G (gqt,L) (or by Fourier-transforming G (qt,L) to get the
whole frequency spectrum of velocity fluctuations).
However, such an analysis requires a detailed modeling of
the velocity-density function P(V,R) in Eq. (5). The ini-
tial decay time 7(L) of G(qt,L), on the other hand, can
be extracted from the data without modeling the density
function P(V,R). As mentioned above, the decay time
7(L) is proportional to [qu(L)]™!, where u(L) is the
characteristic velocity difference at the scale L. Tur-
bulent motions at various length scales can be examined
by measuring the L dependence of the decay time 7(L).

It is often difficult to determine the initial decay time
of a nonexponential decaying function. We therefore use
the zeroth moment of G (gt,L) as a definition of the decay
time 7(L). With this definition, which emphasizes the in-
itial decay of G (gt,L), 7(L) is

T(L)=f0°°dt Ggt,L) . 7

Using Eq. (7), one can numerically calculate 7(L) from
the measured G (gt,L) without knowing the exact analyt-
ic form of G(qt,L). The advantages of using the HS
technique are its high spatial resolution and ease of use.
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The high signal-to-noise ratio of the technique ensures
that experimental errors are essentially statistical. The
uncertainties for 7(L) in our measurements were below
5%. At a moderately high scattering intensity
(I ~10°-10° counts/s), it only took ~5 min to collect the
data with an adequate signal-to-noise ratio when the slit
width L =2 mm. At the smallest slit width L =0.1 mm,
it was necessary to collect data for roughly 30 min.

It should be noted that in obtaining Eq. (5) we have as-
sumed [6] that the photodetector is an ideal one (i.e., its
detecting area is infinitesimally small) and that G (qt,L)
varies on only one dominant time scale 7(L)~1/qu (L).
In the real experiment, however, G (qt¢,L) will decay by
virtue of the Brownian motion (diffusion) of the seed par-
ticles even in the absence of the flow. The corresponding
decay time T;=1/(¢*D)~10"* s where the diffusivity D
is inversely proportional to the radius of the diffusers.
The time T; was much longer than the decay time 7(L)
associated with turbulent-velocity fluctuations and can be
safely ignored in our experiment. Another characteristic
decay time is the particle transit time 7, =o /U, where o
is the diameter of the laser beam and U is the mean veloc-
ity of the flow. This lifetime-broadening effect was very
small in our experiment, the measured decay time (L)
being always a factor of 10 shorter than T,. The particle
transit time imposes a limitation on the smallest length
scale (L = o) that one can get to in measuring G (qt,L).
In our experiment a typical beam diameter was 0.1 mm.
The largest length scale L that one can reach in the ex-
periment is determined by the requirement that the light
received by the photomultiplier be spatially coherent
[10]. This condition was satisfied in our experimental set-
up as long as the slit width L was less than 2 mm. If the
slit opens too widely, the light received by the photomul-
tiplier is no longer spatially coherent and the measured
G (gt,L) tends to be flattened at large times [18].

III. EXPERIMENTAL RESULTS

In order to map out the turbulent-velocity field, several
hundreds of correlation functions have been measured in
three different scattering geometries. The function
G (qt,L) was measured as a function of the angular veloc-
ity o of the inner rotating cylinder (0=2mf, with f in
turns per second), the slit width L, and the spatial posi-
tion of the laser beam in the flow cell. The angular veloc-
ity ® was varied from 42 to 385 sec”!. The correspond-
ing Reynolds number Re=wa?/v is in the range from
3% 10* to 3X 10°, where a (=2.8 cm) is the radius of the
inner rotating cylinder and v is the kinematic viscosity of
water. Our visual observations show that the fluid in the
flow cell is turbulent even at the lowest angular velocity
@=42 sec” . The visual observations were made by add-
ing polymeric flakes (Kalliroscope AQ 1000, 1% concen-
tration) to water. The Reynolds number corresponding
to this angular velocity (Re~10*) is much larger than the
critical Reynolds number Re, for the Taylor vortex insta-
bility [19] (Re, ~10?).

The measurements of G (gt,L) reveal that in our work-
ing range of w, the predominant turbulent-velocity gra-
dient is in the horizontal (r,¢) plane. Figure 2 compares
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FIG. 2. The measured G(gt,L) in the R geometry (open cir-
cles) and in the V geometry (solid circles). The measurements
were made when ©=209 sec” ! and L =1.0 mm.

the measured correlation functions G(qt,L) in the R
geometry (open circles) and in the V geometry (solid cir-
cles). The measurements were made when »=209 sec !
and L =1.0 mm. It is clearly seen that G (qt,L) in the R
geometry decays much faster than that in V, indicating a
larger velocity gradient in the R geometry. The decay
time 7 in the R geometry is 1 usec, whereas 7=1.8 usec
in the V geometry. The decay time in the R geometry
corresponds to a velocity difference of 4.4 cm/sec at the
scale of 1 mm. Notice that the measured G (g¢,L) in our
flow cell is highly nonexponential, which is of different
functional form from those measured in a pipe and in a
square tunnel [6,14,15].

When the laser beam enters the cell vertically (V
geometry), the measured G(qt,L) is less sensitive to the
change of L than to the beam diameter. The decay time 7
increased by a factor of 1.8 when the beam diameter was
decreased from 0.2 to 0.1 mm while only a factor-of-1.15
increase was found in 7 when the slit width L was
changed from 1.0 to 0.5 mm. This suggests that the ve-
locity difference over the beam diameter (=0.1lmm) is
larger than that over a vertical distance L (=1.0mm). In
the horizontal plane the measured 7 for the A geometry is
approximately twice larger than that for the R geometry,
which indicates that the strongest velocity gradient in the
horizontal plane is in the radial direction. Therefore, the
turbulence in our flow cell is neither homogeneous nor
isotropic. The differences of the velocity field in different
spatial positions and in different orientations are also
shown in its scaling properties, to be discussed below.

In spite of this anisotropy, it is found that the mea-
sured G(qt,L) has the scaling form as shown in Eq.(3).
Log-log plots of G(gt,L) for various values of the slit
width L and the angular velocity o, at the fixed scattering
geometry and the fixed beam position in the flow cell, can
be brought into coincidence by sliding them horizontally
with respect to each other. The decay time 7(L) defined
in Eq. (7) [see the discussion about 7(L) below] quantita-
tively characterizes the amount of the horizontal transla-
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tion that is required to bring the correlation functions
into coincidence. Figure 3 shows typical G («) as a func-
tion of k=t/7(L) for various values of w and L. Since
7(L)=[qu(L)]~"', where u (L) is the characteristic veloc-
ity difference at the scale L, the scaling argument k can
also be written as k=qtu(L). The correlation functions
in Fig. 3(a) were measured at the R geometry and those
in Fig. 3(b) were obtained at the V geometry. Similar
scaling behavior for the measured G (qt,L) is found at the
A geometry and in other beam positions.

As mentioned in Sec. I, a scaling G (k) can be obtained
if the velocity-density function P(V,R) in Eq. (5) has the
scaling form as shown in Eq. (1) [6]. This scaling form
for P(V,R) implies that the turbulent velocity V(R,t) is
scale invariant, i.e., all its moments { V(R,t)") obey a
power law of R [6]. This is expected from the Kolmo-
gorov theory of isotropic turbulence [1-3]. Recently,
Knight and Sirovich [7] showed that the above scaling ar-
guments for homogeneous and isotropic turbulence can

10 F VW, T T =

(a)

G(r)

&

107! 10° 10!

G(k)

10 °

107!

FIG. 3. The scaling function G(k) vs k=qtu(L) =~t/7(L):
(a) in the R geometry and (b) in the V geometry. The experi-
mental conditions are L=1.0 mm, »=209 sec™! (open trian-
gles); L =0.3 mm, ©=262 sec™! (solid triangles); and L=0.2
mm, =209 sec”! (open squares).
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be extended to certain turbulent flows lacking homo-
geneity and isotropy, and suggested this might work
more broadly. Our turbulent flow is certainly neither iso-
tropic nor homogeneous, and the scaling results in Fig. 3
support the scaling arguments by Knight and Sirovich.

Another important quantity in the statistical descrip-
tion of turbulence is the scaling velocity u (R) as a func-
tion of the spatial separation R. The scale dependence of
the scaling velocity can be examined by measuring the L
dependence of the decay time (L), since
T(L)~[qu(L)]~!. It is found that the decay time (L) as
a function of L obeys a power law, 7(L)~L ¢ [ie.,
u(L)~L*%]. Figure 4 shows the measured 7(L) as a func-
tion of L at the fixed ®=209sec”!. The two curves in
Fig. 4(a) were obtained in the V geometry when the verti-
cal laser beam was 1.2 cm away from the outer wall of
the flow cell (upper curve) and when the beam was 2.5 cm
away from the wall (lower curve). Figure 4(b) compares
the measured 7(L) in the V geometry (upper curve) with
that in the R geometry (lower curve).

It is seen from Fig. 4 that log[7(L)] lies on a straight

(a)
1.5 1
)
(9]
12}
2 1l ~
g 0.18
-
g 1)
0.7 0.22
0.5 L
0.1 0.4 1 2
L (mm)
(b)
2
)
(3]
12}
i G\e\s\g\s% |
— 0.18
=2
- 06
0.36
0.3 L
0.1 0.4 1 2

L (mm)

FIG. 4. Variations of the decay time 7(L) with the slit width
L measured at ©=209 sec!. The solid lines are power-law fits,
and the number labeled beside a line is the slope of that line. (a)
shows the measurements in the V geometry. The upper curve
was obtained when the incident laser beam is 1.2 cm away from
the outer wall of the flow cell; the lower curve was obtained
when the beam is 2.5 cm away from the wall. (b) compares the
measurement in the V geometry (upper curve) with that in the R
geometry (lower curve).
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line when L is in the range 0.2 mm <L <1.4 mm. The
largest value of L over which scaling is observed was lim-
ited by the coherent area viewed by the photomultiplier,
as discussed at the end of Sec. II. The lower cutoff at
small L was controlled by the laser-beam diameter (=0.1
mm). From the straight-line segment (solid lines in
Fig.4), we obtain the slope £, which has different values
for different scattering geometries and different beam po-
sitions. Table I lists the typical values of the exponent &
measured for the three scattering geometries when
®=209sec”!. The experimental uncertainties for the
slope £ are below 10%.

For a laminar flow one expects that the exponent
E=1[u(L)~L] in the R geometry and that £=0 in the
geometries A and V. For fully developed turbulence, the
exponent £=1 in all geometries according to the Kolmo-
gorov theory [1] [u(L)~L'”*]. As mentioned in Sec. I,
early HS measurements for turbulent flows in a pipe and
in a square tunnel [6,14,15] have shown that the Re
dependence of the exponent £ reveals a transitional char-
acter when Re is near the transition Reynolds number
Re.. When Re is above Re,, £ increases with Re and sat-
urates at a value close to % at large values of Re. We,
therefore, expect that for the turbulent flow in the con-
centric cell, £ will approach 1 from above in the R
geometry when Re is increased. This is because there is a
laminar shear in the R geometry. It is also expected that
the exponent £ will approach  from below in the A and
V geometries. In fact, it was found that the value of £ in
the V geometry was increased from 0.19 to 0.28 when the
angular velocity o was changed from 136 to 262 sec ™ .

It is clearly seen from Table I that the values of £ for
the geometries A and R are close to the Kolmogorov
value. This indicates that the turbulence in the two
geometries is nearly fully developed. Turbulence in the V
geometry, on the other hand, is weak because the value of
£ is below the one for fully developed turbulence. There-
fore, the difference of the exponent £ in the three
geometries, as shown in Fig. 4(b) and Table I, reveals the
anisotropy of our turbulent flow. Figure 4(a) shows that
the change of the exponent £ is small when one varies the
position of the incident laser beam while keeping the
scattering geometry (beam and detector directions) un-
changed. However, the absolute value of the decay time
7(L) is increased [u(L) is reduced] as the laser beam is
moved toward the outer wall. This indicates that the
flow near the outer wall is less turbulent than that in the
middle region, reflecting the inhomogeneity of the tur-
bulence.

The above scaling properties of the correlation func-
tion G (qt,L) are observed over various length scales and
Reynolds numbers when the spatial position of the laser
beam and the scattering geometry are fixed. However,
when one compares the correlation functions measured at

TABLE I. The typical values of the exponent £ measured for
the three scattering geometries when =209 sec .

Geometry A R v
Typical £ 0.34 0.36 0.18
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different scattering geometries (keeping the other condi-
tions unchanged) or compares those measured in different
spatial positions, it is found that these functions do not
scale mutually. Figure 5(a) compares the measured G(k)
at three scattering geometries. The two correlation func-
tions measured in the A and R geometries deviate from
each other at small times, and can be superimposed at
large times. This can be explained by the fact that the
large-scale motions are not isotropic, and these effects
from boundaries are much reduced as turbulence cas-
cades down to smaller scales. Notice that the turbulence
in the two scattering geometries is nearly fully developed,
and the values of their scaling exponents £ are close to
the Kolmogorov value (see Table I). In the above
analysis we have used the fact that the initial decay of

107! 10° 10t

FIG. 5. The scaling function G (k) vs k=qtu(L)=>~t/7(L). (a)
shows the measurements performed when =209 sec™!,
L =1.0 mm, and in various scattering geometries: A geometry
(solid curve), R geometry (dashed curve), and V geometry (open
circles). (b) shows the measurements in the V geometry when
®=209 sec”! and L =0.2 mm. The open circles were obtained
when the incident laser beam is 1.2 cm away from the outer wall
of the flow cell; the solid curve was obtained when the beam is
2.5 cm away from the wall.
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G (qt,L) is dominated by the large-scale motions, and the
small-scale motions only contribute to the long-time tail
of G(qt,L). [See Sec.II for the discussion about how the
function G (gt,L) senses fluid motions from the largest
scale L down to the smallest one.] For the V geometry
the measured G (qt,L) fails to scale with those measured
in geometries A and R. The fluid flow in this geometry is
less turbulent, as indicated by a slow decay of G(qt,L)
and a small exponent . Figure 5(a) is suggestive that
small-scale velocity fluctuations become isotropic when
the scaling exponent § approaches its asymptotic value.

Figure 5(b) compares G (k) measured in two different
spatial positions when the laser beam enters the cell verti-
cally (V geometry) with =209 sec ™! and L =0.2 mm.
The open circles were obtained when the incident laser
beam is 1.2 cm away from the outer wall of the flow cell;
the solid curve was obtained when the beam is 2.5 cm
away from the wall. It can be seen from Fig. 5(b) that the
two correlation functions fail to scale with each other at
large times, suggesting that the small-scale motions in the
two spatial positions are very different. This can be un-
derstood by the fact that the flow near the outer wall is
less turbulent than that in the middle region [see the dis-
cussion about Fig. 4(a)]. Figures 5(a) and 5(b) indicate
that the functional form of G(qt,L), and hence the
velocity-density function P(V,R) [see Eq. (5)], changes
when the scattering geometry and/or the spatial position
are changed.

Our results in this section, therefore, suggest that the
scaling argument can still be used to describe inhomo-
geneous turbulent flows and that the exact functional
form of the velocity-density function P(V,R) (which is of
scaling form) may vary with spatial positions and orienta-
tions, reflecting the inhomogeneity and anisotropy of the
turbulence. To further verify the conclusion, we deli-
berately inserted four radial baffle plates placed symme-
trically on the wall of the outer cylinder. These baffle
plates introduced additional inhomogeneity and anisotro-
py into the flow. The width of each baffle place was 1.3
cm, and its height was the same as that of the outer wall.
This is a typical design for a mixing vessel [20].

In the baffled cell one can clearly see that in the z direc-
tion there are large-scale velocity fluctuations, which are
absent in the unbaffled cell. When the fluid hits the
corner where the outer wall and a baffle plate meet, its
flow direction is forced to change either in the horizontal
plane (where the fluid element has to be stretched) or in
the vertical direction (up-down motion). The vertical
motion was observed by eye through the addition of po-
lymeric flakes into water. The measured G (gt,L) shows
that in the baffled cell the velocity gradient in the r direc-
tion is reduced. The maximum reduction of the velocity
gradient occurs at small angular velocities (o ~94sec ™ ');
at large angular velocities (@ >203sec™!) the reduction
becomes smaller. In the ¢ direction the velocity gradient
is approximately the same as in the unbaffled cell. Thus
the insertion of the baffle plates enhances velocity fluctua-
tions in the z direction and reduces the velocity gradient
in the r direction. One may view the turbulence in the
baffled cell as a turbulent wake generated by the baffle
plates. Furthermore, this turbulent wake is steady and
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TABLE II. The typical values of the exponent £ measured
for the three scattering geometries in the baffled cell when
©=209 sec” .

Geometry A R v
Typical § 0.3 0.45 0.21

spatially extends to the bulk region of the gap between
the two cylinders.

We now compare the scaling results in the unbaffled
cell with those in the baffled cell. Similar to the situation
in the unbaffled cell, the measured G (g¢,L) in the baffled
cell is also found to be of the scaling form as shown in
Eq. (3). Log-log plots of G (gt,L) for various values of L
and o, given the scattering geometry and the beam posi-
tion in the flow cell, can be superimposed by scaling the
time axis to k=t /7(L). Figure 6 shows the typical G (k)
as a function of k=qtu(L)=t/7(L) for various values of
o and L. These correlation functions were measured in
the baffled cell at the A geometry. The scaling behavior
of the measured G (gt,L) is also found in other scattering
geometries.

The decay time 7(L) in the baffled cell still obeys the
power law 7(L)~L ~¢. Table II lists the typical values of
the exponent & measured for the three scattering
geometries in the baffled cell when ©=209 sec”!. The
anisotropy of the flow in the baffled cell is clearly shown
by the difference of the exponent £ in the three
geometries. It is seen from Table II that the value of &
for the A geometry is close to the Kolmogorov value, in-
dicating that the turbulence in this geometry is nearly ful-
ly developed. Turbulence in the V geometry, on the oth-
er hand, is weak because the value of & is below the one
for fully developed turbulence. By comparing Table II
with Table I, we find that the turbulence in the baffled
cell at the R geometry is reduced. The measured £ is far
away from the Kolmogorov value. In fact, it is found
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FIG. 6. The scaling function G(x) vs k=qtu(L)~t/7(L) in
the baffled cell at the A geometry. The experimental conditions
are L=1.0 mm, ©=209 sec”! (open triangles); L =0.2 mm,
®=209 sec”' (solid triangles); and L=0.5 mm, ©=262 sec '
(open squares).
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FIG. 7. The scaling function G(k) vs k=gtu(L) ~t/7(L) in
the baffled cell at the R geometry. The correlation functions
were measured when ©=209 sec™! and at various slit widths:
L=1.3 mm (open circles)) L=0.6 mm (solid circles), and
L =0.2 mm (solid curve).

that the measured G(qt,L) is a scaling function G(k)
only when the slit width L 20.6 mm in this geometry.
Figure 7 shows the correlation functions G (k) measured
in the baffled cell at various values of L. These functions
were measured when ©=209 sec”! and at the R
geometry. It can be seen that the correlation function
G(gt,L) at L=0.2 mm fails to scale with the other
G (qt,L) (L 0.6 mm). This is because the turbulence in
this geometry is very weak at small scales, so that
G (qt,L) changes its functional form at small length
scales.

The above results suggest that scaling concepts can
also be used to describe the turbulence in the baffled cell.
However, when one compares the correlation function
measured in the baffled cell with that in the unbaffled cell
(keeping the other conditions unchanged), it is found that
the above scaling description for G(qt,L) is no longer
valid. Figure 8 compares the measured G (k) in the
unbaffled cell (solid curve) and in the baffled cell (open
circles). The two correlation functions were measured
when L =0.6 mm, 0 =209 sec” !, and in the V geometry.
From Fig. 8 we conclude that the turbulent flows be-
tween the two flow cells in the V geometry are very
different, which yields a different functional form for
G (gt,L) and hence for the density function P(V,R).

IV. CONCLUSION

The technique of photon-correlation homodyne spec-
troscopy was used to measure turbulent-velocity
differences in a Couette cell in which the inner cylinder
rotates. Different components of the velocity differences
were probed by changing the direction of the scattering
vector q. Velocity differences at various length scales
were measured by varying the size of the scattering

FIG. 8. The scaling function G(k) vs k=qtu(L)~=t/7(L) in
the baffled cell (open circles) and in the unbaffled cell (solid
curve). The two correlation functions were measured when
®=209 sec”!, L =0.6 mm, and in the V geometry.

volume. The measurements of the correlation function
G (qt,L) reveal that the turbulence in the flow cell is nei-
ther homogeneous nor isotropic. The predominant
turbulent-velocity gradient is in the horizontal plane,
whose normal direction is parallel to the rotating axis.

The measured G(gt,L) is found to be of the scaling
form G(qtu(L)) with u(L)~L%, where u(L) is the
characteristic turbulent velocity at the length scale L.
The log-log plots of G (gt,L) for various values of the slit
width L and the angular velocity o, at the fixed scattering
geometry and the fixed beam position in the flow cell, can
be brought into coincidence by sliding them horizontally
with respect to each other. The scaling behavior of
G(qt,L) is found to be independent of the scattering
geometries and the flow cells. The value of £ varies with
scattering geometries and with flow cells. A scaling
G(gtu (L)) indicates that the velocity-density function
P(V,R) has a scaling form Q(V /u(R))/u(R).

However, when one compares the correlation functions
measured in different scattering geometries (keeping the
other conditions unchanged) or compares those measured
in different spatial positions, it is found that the above
scaling description for G(qt,L) is no longer valid. Our
results, thus, suggest that the scaling argument can still
be used to describe anisotropic and inhomogeneous tur-
bulent flows and that the exact functional form of the
velocity-density function P(V,R) (which is of scaling
form) may vary with spatial positions and orientations in
turbulent flows, reflecting the inhomogeneity and anisot-
ropy of the turbulence.
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