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The motion of dynamically neutral Brownian particles that are influenced by a unidirectional velocity
field of the form v(x, y)=vary~ sgn(y)x, with P~O, is studied. Analytic expressions for the two-

dimensional probability distribution are obtained for the special cases P=O and l. As a function of P,
the longitudinal probability distribution of displacements exhibits bimodality for p(p, and unimodality
otherwise. A simple effective-velocity approximation is introduced that provides an integral form for the
longitudinal probability distribution for general p and predicts the existence of this transition. A numer-

ical exact enumeration of the probability distribution yields P, = 4. The power-law model parallels the

behavior found for tracer motion in a class of non-Newtonian fluids, where a unimodal-to-bimodal tran-
sition is also found to occur.

PACS number(s): 47.15.—x, 47.50.+d, 05.40.+j, 02.50.+s

I. INTRODUCTION

The phenomenon in which a Brownian particle moves
faster than diffusively arises in a number of diverse situa-
tions. In the context of fluid mechanics [1—3], for exam-
ple, a dynamically neutral tracer particle in a linear shear
flow with fluid velocity v(x, y) ~yx exhibits a mean-
square longitudinal displacement that grows in time as
(x(t) ) -t It is als.o well known that the probability
distribution of longitudinal displacements for the
tracer particles is Gaussian, PL (x, t) = fP (x,y, t)dy
-exp(constXx /t ). In the context of random media,
enhanced diffusion can arise when there is a steady uni-
directional convection field whose magnitude depends
stochastically on the transverse coordinate [4,5]. One
such example is a system where the magnitude of the lon-
gitudinal velocity is itself determined by a random walk
[6]. In a typical realization of this "random-walk" shear
flow, the longitudinal velocity at transverse coordinate y
increases as y', a feature that leads to faster-than-
ballistic motion of a tracer particle. The competition be-
tween transverse mixing and the large effective longitudi-
nal steps imposed by the flow field also leads to a bimodal
form for PL(x, t) in a single random-shear-flow
configuration. This intriguing aspect of the system
motivates our present work.

In this paper, we investigate the motion of a dynami-
cally neutral tracer particle that moves in a deterministic
velocity field v(x, y) =vo~y~~sgn(y)x (Fig. 1). This can be
viewed as the average over many configurations of the
random-walk shear-Now problem. We find, rather strik-
ingly, that the probability distribution of longitudinal dis-
placements exhibits a transition from unimodal to bimo-
dal behavior as P is varied. One of our primary goals is
to clarify this phenomenon. A potential application of

this result is that power-law shear flow qualitatively mim-
ics the flow field of a non-Newtonian fluid under fixed
external shear. In this latter system, we have also found
that there is a transition from a unimodal to a bimodal
probability distribution when the flow condition of the
fluid is varied. Thus the shape of PL(x, t) may provide
useful information about the flow field of the ambient
fluid.

In Sec. II, we discuss some basic scaling properties of
PL (x, t) in power-law shear flow. The exact solutions for
the full two-dimensional probability distribution in the
special cases of P=O and 1 are then presented in Secs. III
and IV. In the case of "split flow, " P=O, our solution
represents the extension of the classical arcsine law [7],
which is equivalent to the distribution of longitudinal dis-
placements, to the full distribution in the plane. We then

FIG. 1. Velocity profile of power-law shear flow and a
schematic illustration of the trajectory of a dynamically neutral
Brownian particle in this flow field.
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describe an alternate way of obtaining the probability dis-
tribution for the case of linear shear flow, P= 1. While
the exact solution in the continuum limit is well known

[1—3], our simple approach for the discrete case clearly
exhibits the connection between Brownian motion in
linear shear flow and a temporally inhomogeneous
diffusion process, where the diffusion coefficient grows as
t . In Sec. V, we present an effective-velocity approxima-
tion for writing PL(x, t) for general P, which predicts a
unimodal-to-bimodal transition at P= —,'. In Sec. VI, nu-

merical results from exact enumeration are given that
suggest that the critical value of P is —,'. In Sec. VII, we

present exact enumerations for the qualitatively similar
problem of tracer motion in the flow field of a non-
Newtonian fluid under a constant external shear stress.
A unimodal-to-bimodal transition is again found as the
flow conditions of the fluid are varied.

II. SCALING PROPERTIES

x, , —(vot)(Dt)~~ (2)

with the correlation-length exponent v= 1+0/2. The in-
crease in longitudinal velocity with time scale is the un-

derlying mechanism that leads to x, , growing faster
than linearly with time. It is interesting to notice that,
for P =0, x is independent of the diffusion coefficient D.

For describing the probability distribution, it will be
convenient to introduce the scaled longitudinal and trans-
verse displacements,

For a fluid in which the flow field is v(x, y)
=vo~y~~sgn(y)x, the probability distribution of an im-

mersed dynamically neutral Brownian particle obeys the
convection-diffusion equation

BP(x,y,t), , ~ dP(x, y, t) r) P(x,y, t)
X Qy

where the subdominant contribution of diffusion in the
longitudinal (x) direction has been neglected at the
outset. Our primary goal is to determine the distribution
of longitudinal displacements, Pr (x, t) =jP (x,y, t }dy,

with the initial conditions P(r, t =0)=5(0). The trans-
verse displacement behaves in a purely diffusive manner,

y —&Dt, as can immediately be confirmed by integration
of Eq. (1) over x. On the other hand, the root-mean-
square longitudinal displacement x, , may be roughly es-

timated by noting that the longitudinal velocity at time t
is v„(y (t) }-vo(Dt)~~ Conseque. ntly,

We can immediately deduce the value of the large-
distance shape exponent 6 by constructing a rough esti-
mate for the probability of finding the extreme walks that
contribute to the tail of the distribution [8,9]. For
power-law shear flow, the most longitudinally stretched
walk must have each transverse step in the same direc-
tion, in order that the walk has the largest possible veloc-
ity at each time step. This implies that the probability of
finding a stretched walk decays as a pure exponential in t,
e '. On the other hand, a stretched walk has a longitu-
dinal displacement, which scales as x,„(t)
—f 'y~dy-t'+~. This maximal value corresponds to a

scaled displacement (-t~, and correspondingly, fL(g)
-exp( —t ~ ). Since we have argued that this probabili-
ty decays as a pure exponential in t, we conclude that
5=2/P. Using v= I+P/2, the expression for 5 can be
written as 5= ~1

—
v~ '. This is of the same form as the

classical Fisher relation [10] between the shape and size
exponents 5 = ( 1 —v) ' for the usual situation where
v(1.

III. SPLIT FLOW

In this section we present an exact solution for the
two-dimensional probability distribution of displacements
in the case of "split flow, " where the velocity field is

v(x, y)=vosgn(y)x (Fig. 2). Within a discrete version of
the problem, the transverse behavior is simply a sym-
metric random walk, while the longitudinal displacement
is proportional to the difference n+ —n, where n+ and
n are the number of steps that the transverse random
walk spends in the upper and lower half planes, respec-
tively. Since n+ +n equals the total number of steps n,
the probability distribution in the plane can be found
once we determine P„(y,n+ ), the probability that an n

step random walk is at transverse position y and has
spent exactly n+ steps in the upper half plane.

Consider first the special case of P„(y =O, n+ ), the
probability that an n-step walk, which starts and ends at

y =0, spends n+ steps in the upper half plane. Rather
surprisingly, this probability is independent of n+ [7],

P„(y =O, n+)-(I/2m. n )'~

To obtain the corresponding probability for arbitrary y, it
is helpful to visualize the individual random paths that
contribute to this probability as the sequence of points

g=x/(vot)(Dt)~, ri=y/v Dt (3) y ~ v„(y)

respectively. In terms of these scaled variables, we may
also write the probability distribution in the following
convenient scaling form:

f (j,r) )
—= ( vot)(Dt)"+~'~ P (x,y, t) . (4)

From this, we also define the scaled form of the longitudi-
nal probability distribution as fl (()—:ff (g, g}dr). We

expect that this function has the asymptotic behaviors

fL(()~const as $~0, and fL(g) —e ~, as /~co. FIG. 2. Velocity profile of split flow.
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[i,y;] in a space-time representation (Fig. 3). For a walk
that starts at [0,0] and ends at [n,y„] there will be a
"break point, "which is the last time that the walk passes
through the axis y =0. Without loss of generality, we
need only consider the case y„)0. We define the break
point to occur at time step n —k, and divide the trajecto-
ry from [0,0] to [n,y„] into a "return" segment from
[0,0] to [n —k, O] and a "first-passage" segment from

[ n —k, O] to [n,y„J. The probability for the full trajecto-
ry can then be computed as the convolution of the proba-
bilities of these two segments.

The initial return segment takes n —k steps, and by
construction n+ —k of these lie in the upper half plane.
Consequently, the probability for this segment is
P„k(y =O, n+ —k). By construction, the subsequent k-

step segment touches y =0 only once. Hence the trans-
verse coordinate of the time-reversed segment is exactly a
k-step first-passage trajectory from y =y„ to y =0, and
the probability for this event is [7]

coordinates defined in Eq. (3) (note that ~g~ & 1).
It is instructive to examine the asymptotic behaviors of

this probability distribution. Consider first the behavior
of longitudinal slices, i.e., fix il and vary g. For rl «1
and —I+2v) &/&1, Eq. (8) reduces to

f (g, rl~O)- +1 2i)g
2' n(1 —.

g )'~

Indeed, this function is independent of g when iI=0. For
constant positive rl, the profiles of f (g, il) are sharply
peaked at /=1, as determined by the leading behavior of
= I/&1 —g. For g~ —1, however, the probability de-
cays exponentially as exp( —r) /I+() [see Fig. 4(a)].
Note also that the area of the constant g profiles is pro-
portional to exp( —il /2), as expected. For fixed nonzero
g, the profiles of f (g, il ) are peaked at a nonzero value of
r) that depends on g [Fig. 4(b)]. More surprisingly, note

fk(y)-y(2/mk')'~ exp( —y /2k) .

The convolution of these two probabilities yields

&.(y, n+ ) = g P„k(0,n+ —k)fk(y)
k=y
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The lower limit of k is y, since the walker must spend at
least y steps in the first-passage segment of the trajectory
in order to reach transverse position y. Changing vari-
ables to u =y /2k, defining x =Uo(n+ n), and—replac-
ing n by t, the integral can be performed to give
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FIG. 3. Space-time representation of a random-walk path
that contributes to P„(y,n+). This trajectory is decomposed
into a "return" portion (. - . ~ ) and a first-passage portion
( ———), which are separated by the break point at time step
n —k.

FIG. 4. Profiles of the two-dimensional probability distribu-
tion in split fiow for (a) fixed i), i.e., f(g, i)fi x)e, dwith the
cases i) =0.1 (solid) and i) =1.0 (dashed) shown; (b) fixed g, i.e.,
fig=fixed, i)), with the cases /=0 (solid) and (=0.8 (dashed)

shown; (c) the arcsine law that gives the longitudinal probability
distribution fl 1 g).
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that the area of the profiles for fixed g increases as g in-
creases, as required by the arcsine law.

The longitudinal probability distribution is obtained by
integrating Eq. (8) over rj and it gives the arcsine law [7]:

where A,k(8} is the single-step structure function,

Ak(8}=gpk(r)exp(ir. 8), (15)

( )- 1

( 1 g2)1/2
(10)

In addition to being bimodal, the distribution is singular
at the extrema ~g~ =1. Thus the split-flow velocity field,
which corresponds to the case P=O in power-law shear
flow, gives rise to a probability distribution with an ex-
treme degree of bimodality [Fig. 4(c)].

IV. LINEAR SHEAR FLO%

A well known, and exactly soluble [1—3] limit of
power-law shear is the case of linear shear flow. Here we
present an alternative method of solution for the discrete
version of diffusion in linear shear that provides useful in-
sights into the nature of the resulting longitudinal
motion.

We define the discrete limit of linear shear flow as a
random walk that moves from (xk, yk ) to
(xk+v„(yk+ek), yk+ek) at the kth step. Here ek is a
random variable that describes the individual transverse
hop at the kth step and is governed by the time-
independent probability distribution p» ( ek ). Since
v, (yk ) =Voyk in linear shear flow, the two-dimensional
displacement after n steps can be written as

(x„/vo, y„)= (y & +y2+ +y„,~&+~2+ +e„),
=( &i+(&~+&q)+ ' '

+(e,+ +e„),e, +ez+ +e„),
=e, (n, l)+e2(n —1, 1)+ +e„(1,1) . (11)

To analyze this sum, it is helpful to reverse the order of
the eI, . Since their distribution is independent of time,
this redefinition does not affect the resulting two-
dimensional distribution. Consequently, we may write
the displacement after n steps as

and Pk(r) is the single-step probability distribution at the
kth time step. Our discussion has thus far been applic-
able to any distribution of the e&, and we now restrict the
discussion to the special case of a symmetric random
walk in the y direction. Thus at the kth step, the random
walk moves by an amount +(kvo, 1), each with probabili-
ty —,

' (Fig. 5). Therefore, the corresponding single-step
structure function is A.k(8„,8 )=cos(k8, +8»). Evaluat-
ing the product in Eq. (14) gives the structure function

r„(8)= cos(v, 8, +8, )

Xcos(2vo8, +8„) cos(nvo8„+8 ) . (16)

Moments of the probability distribution can be found by
appropriate differentiation of the structure function, Eq.
(13). This calculation gives

aj+kr (8}
( j k) —&j+k (17)

a8, a8,"

From this, we find, for example,

(x„')-v,'n'/3, (x„y„)-von'/2 .

3 2exp( —y /2n)
Uo"

P„(x,y)-

Xexp[ —6(x —(v)n) /von ], (19)

Thus the mean-square longitudinal displacement in linear
shear grows as t, and perhaps less well appreciated, the
longitudinal and transverse displacements are coupled so
that cross correlations are nonzero.

Finally, the probability distribution P„(r) can be easily
extracted from Eq. (16) by the standard procedure of ex-
panding this expression for small O„and 0~, reexponen-
tiating, and then performing an inverse Fourier trans-
form of the result. This gives the long-time limit of the
probability distribution as

v'

(x. y. )=~i("o 1)+@2(2vo,1)+ +e (nvo 1) . (12) where (v ) =voy/2 is the average velocity of the trans-

According to this expression, the longitudinal displace-
ment in linear shear flow is equivalent to a one-
dimensional random walk in which the magnitude of the
kth step is simply proportional to k. This fundamental
relation is the key that allows us to obtain the full two-
dimensional probability distribution in linear shear flow
by elementary methods.

For this purpose, we introduce the structure function
[11]

1 step 2 3 4

I „(8)=Q P„(r)exp(ir 8), (13) 3 2 1

where P„(r) is the probability that an n-step random
walk is at r. According to the convolution theorem,

r„(8)=g ~„(8),
Ic =1

(14) FIG. 5. Sequence of single-step distributions in linear shear
flow.
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verse coordinate in the range [O,y]. For fixed y the proba-
bility profile is a Gaussian function that is peaked at
x = ( v )n and whose width grows as t ~

An advantageous consequence of our method of solu-
tion is that it exposes the basic equivalence between con-
vection diffusion in linear shear flow and a temporally in-

homogeneous random-walk process in which the step
length grows linearly in time. In the continuum limit,
this leads to a diffusive process with a time-dependent
diffusion coefficient D(t)=Ax (t) /b, t =D(vot) . Conse-

quently, the longitudinal probability distribution obeys

V. EFFECTIVE-VELOCITY APPROXIMATION

Since the exact expression for PL (x, t) is bimodal for
P=O and unimodal for P= 1, the distribution must
change between these two shapes as P varies between 0
and 1. We now wish to determine the location and the
nature of this shape transition. To derive the functional
form of PL (x, t) for general P, we introduce the following
effective-velocity approximation [6]. We hypothesize
that at a fixed value of y =yo, the probability distribution
P(x,yv, t) is given by the Gaussian form of Eq. (19), but
with the average longitudinal velocity (v ) now propor-
tional to y~. This may be realized by allowing the param-
eter Uo to acquire a dependence on y, which is determined

by ( v (y) ) ~ v&(y)y =y~, «
vo(y) y~ ' . (21)

With this hypothesis, Eq. (18} predicts that at fixed

y =yv, the longitudinal dispersion 5x (yo) is proportional
to y~o ', a result that we have also confirmed numerically.
Thus, for 0&P&1, the relative longitudinal width de-
creases with yo, although the velocity increases in yo.

In our effective-velocity approximation, we use the
two-dimensional Gaussian distribution, Eq. (19), together
with the velocity given in Eq. (21), and integrate over the
transverse coordinate to obtain an approximate form for
PL(x, t) In performing . these steps, it is convenient to
reexpress the integrand in terms of the scaled coordinates
g and q and use symmetry of the integrand in rt to write
the integral over positive g only. This computation gives
(dropping all irrelevant numerical factors)

ft(g)- I dye' ~exp( —2g )exp( —6g' g ~)
g=o

Xcosh(6/q ~} . (22)

For large g', the asymptotic behavior of the integral is
determined by the maximum of the function in the ex-

BP (x, t) d P (x, t)
=D(vot}

t Bx

The solution to this equation is the Gaussian

fL (g)-&3/2mexp( —3g /2) [following the notations of
Eqs. (3) and (4)], a result that also follows directly from
Eq. (19). Since the distribution is a pure Gaussian, the
large-distance tail of this distribution, which is predicted
by the argument given in Sec. II, is actually valid over the
entire range of g.

ponential at gv=g'~~. Performing the integral by the La-
place method yields the large-distance behavior

fL (g) —exp( —g ~~), (23)

which gives the same shape exponent as that predicted by
the naive argument of Sec. II.

The transition point between bimodality and unimodal-
ity can be determined by evaluating the second derivative
of Eq. (22) at /=0. Omitting irrelevant factors, this cal-
culation yields

~ f drt exp( 2ri—)(3' ~ rl —~)
0 r]=0

oc I 4—3P
2

8 P——
9

(24)

where the last expression is valid only for P& —', . For
P) ~4, the second derivative of fL (g) at /=0 diverges, in-

dicative of a cusp in the distribution function at the ori-
gin. The effective-velocity approximation therefore pre-
dicts that the transition point between unimodality and
bimodality occurs at P, =

—,', compared to our numerical

estimate P, =—,
' (see below}.

Similar qualitative results are obtained if we use an
effective-velocity approximation with the two-
dimensional distribution of split flow as the basis for writ-
ing the general P distribution. In this case, the amplitude
of the velocity vo must now acquire the y dependence
vo(y)=y~, in order to obtain the appropriate magnitude
of the longitudinal velocity at y =yo. Using this result,
and following step by step the reasoning that led to Eq.
(22), we obtain an expression for fL (g) that is character-
ized by a shape exponent 5=2/P and the longitudinal
dispersion 5x(yv)-yz~ ', in agreement with the results
obtained by using the distribution of linear shear as the
basis for the effective-velocity approximation. The ana-
lytic expression that determines the critical value of P is
complicated and numerically we estimate that P, =0.5.
Thus both effective-velocity approximations predict qual-
itatively similar properties for the longitudinal distribu-
tion.

VI. EXACT ENUMERATION
OF THE PROBABILITY DISTRIBUTION

To test our predictions about the nature of the longitu-
dinal probability distribution, we now present the results
of a numerical exact enumeration [12] in power-law shear
flow. At the start of the enumeration, there is a unit
probability at the origin, and we evolve the probability
distribution according to the recursion relation

P„+,(x,y) = g ,'P„(x —v„(y'),y') —. (25)

This evolution process takes into account both transverse
diffusion and longitudinal convection. In the case of a
noninteger value for the velocity, this recursion formula
would lead to the probability being propagated to posi-
tions between lattice sites. When this occurs, the intersti-
tial probability element is split longitudinally between the
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0.9

[a)

0.6—

two nearest-neighbor sites, with the relative weight of
each component ensuring that the correct average dis-
placement occurs.

Over the temporal range of our enumeration (up to 128
time steps), the longitudinal distribution is a scaling func-
tion of g to a high degree of accuracy. This verification
of scaling thus excludes the possibility that the longitudi-
nal distribution could undergo a unimodal to bimodal
transition as a function of time. Consequently, the nu-
merical determination of p, is relatively unambiguous.
In Fig. 6(a) we plot the scaled probabilities versus the
scaled coordinate for various values of p. At p= 1, the
distribution is a Gaussian, and as p is decreased the dis-
tribution develops broader shoulders. As p~p„ the dis-
tribution becomes flat at the maximum, indicative of the
vanishing of the second derivative at (=0. Numerically,
we find the critical value of p to be 0.75+0.01. As p is
decreased beyond this point, the bimodality of the distri-
bution becomes more pronounced, and ultimately a
singularity develops at ~g~ =1 when P=O. Qualitatively,
these features mirror our theoretical predictions.

VII. AN APPLICATION
TO NON-NEWTONIAN FLUIDS

A potential application of the abstract power-law shear
flow problem is to the Brownian motion of a dynamically
neutral tracer particle in a class of non-Newtonian fluids,
where the shear (assumed to be along the y direction) and
the force along x, ~, are related by

+xy

du

Thus the exponent n quantifies the nonlinearity of the
fluid [13]; for n = 1, one recovers a Newtonian fluid,
while if nAI, one has a "power-law" fluid. Under the
application of a shear, a power-law fluid develops a flow
field in which the longitudinal velocity has a functional
dependence on the transverse coordinate that qualitative-
ly resembles that of power-law shear flow. Hence, we
might expect that tracer motion in a non-Newtonian fluid
will exhibit the same rich spectrum of behavior as in
power-law shear. In particular, by varying the exponent
n, or equivalently, by varying external parameters of the
flow itself, it should be possible to obtain both bimodal
and unimodal distributions of longitudinal displacements
for tracer particles.

For example, consider the case of plane Couette flow.
For two parallel planes at y = —L and L moving at veloc-
ities —

uo and +uo, respectively, along the x direction,
the steady-state velocity profile is [13]

0.3— gm (g )m
v( }=vsn() —(A, —L)

(27)

0 ——

0.030—
(b)

where m = 1+1/n, and A. is a constant with the dimen-
sion of a length whose value depends on details such as
the external pressure gradient, the velocity at the bound-
ary, etc. Qualitatively, this velocity profile is very similar
to that in power-law shear flow (Fig. 7), and there is a
similar correspondence between the probability distribu-
tions [Fig. 6(b)]. The analogy with power-law shear flow
should hold as long as &Dt (L, as the influence of the
transverse boundaries of the system are irrelevant within
this temporal range. Our enumeration for the case
k=L =32 after 32 time steps exhibits a transition from
bimodality at small n to unimodality when n, = —,'. This
transition can also be produced by fixing the value of n

0.010—
ll y

I

-RO

1
X

FIG. 6. (a) Exact enumeration results for the scaling function

fL (g) vs g in power-law shear flow at 64 time steps for (i)
P=0.25 (dashed), (ii) P=0.75 {dotted), and (iii) P=1.0 (solid).
(b) Exact enumeration results at 32 time steps for PI (x, t) vs x in
the flow field given by Eq. (27) for a power-law fiuid for the
cases of (i) n =

—,
' (dashed), (ii) n =

7 (dotted), and (iii) n =
4

(solid).

FIG. 7. Comparison of the velocity profiles of power-law

shear flow with vo = 1 and P=0.45 (dashed), and of a power-law

fluid in Couette flow [Eq. (27)], with vo =L = 1, A. =4, and n = —'

(solid).
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and varying A. . For example, the situation where n =
—,
'

and A, ))L corresponds to linear shear, where the proba-
bility distribution is unimodal. Conversely, the case
where n =

—,
' and A, & 32 should lead to a bimodal distribu-

tion. Thus the transition can be obtained either by tun-
ing n, the nonlinearity exponent of the fluid, or by tuning
A, , which can be achieved by experimentally controllable
parameters contained in A, . Therefore, the unimodal to
bimodal transition is an aspect of transport in non-
Newtonian fluids, which should be amenable to experi-
mental observation.

VIII. CONCLUSIONS

We have elucidated some unusual features of the
motion of dynamically neutral tracer particles that are
carried by a power-law shear flow, where
v(x,y) =vo~y~~sgn(y)x. Our main result is that the proba-
bility distribution of longitudinal displacements, PI (x, t),
is bimodal for small P and unimodal for larger P. From a
practical viewpoint, this result may apply to tracer
motion in a non-Newtonian fluid. The existence of this
transition follows from consideration of the special cases
P=o (split flow), where the distribution is bimodal, and
P= l (linear shear flow), where the distribution is unimo-
dal. For these cases, we also obtained the exact expres-
sions for the two-dimensional probability distributions.

These results serve as a starting point for writing an
effective-velocity approximation for PI (x, t) for general
P, an approach which appears to capture the essential

mechanism underlying the unimodal to bimodal transi-
tion. This mechanism can be appreciated by viewing the
full longitudinal distribution Pr (x, t) as a superposition of
longitudinal distributions for each layer with fixed y =yo.
Each component-layer distribution is characterized by its
average position (x (y) ), its width 5x (y), and its weight
e ~ '. The competition between these three factors, as
the component distributions for different values of y are
superposed, governs the shape of PL (x, t).

For the case of small P, (x (y) ) rapidly increases as a
function of y, while 5x(y) is decreasing in y. These
features lead to a bimodal form of PL (x, t) when the su-
perposition of layer distributions is performed. On the
other hand, for PS I, (x (y) ) increases nearly linearly in
y, while 5x (y) is nearly independent of y. Consequently,
the superposition of distributions for each layer should
lead to a unimodal shape. The effective-velocity approxi-
mation involves taking either the two-dimensional distri-
bution of split flow or linear shear flow, and incorporat-
ing a physically motivated functional form for (x (y) )
that concomitantly determines 5x(y). The competition
between these two quantities when the superposition over
all layers is performed provides a simple and reasonably
accurate description of the unimodal to bimodal transi-
tion.
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