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Dynamic structure factor in a nonequilibrium fluid: A molecular-dynamics approach
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The dynamic structure factor for an Enskog gas subject to thermal constraints is studied both by
molecular dynamics and by fluctuating hydrodynamics. Good quantitative agreement is demonstrated.
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Molecular dynamics (MD) has proved very useful for
the study of statistical properties of fluids. For a long
time this technique has been mostly devoted to equilibri-
um systems, using periodic boundary conditions [1]. In-
creasing computing capacity has permitted consideration
of nonequilibrium systems as well [2]. One of the major
achievements of nonequilibrium MD (NEMD) was the
development of methods that allow the simulation of far-
from-equilibrium states in periodic geometries, thus
avoiding the perturbations due to the presence of boun-
daries [3,4]. There exists however a variety of problems
that do not allow such treatments. This is specifically the
case of microscopic simulation of systems exhibiting
complex behaviors, as, for example, in the Rayleigh-
Bénard problem [S], shock waves [6], or flows past an
obstacle [7]. In all of these cases, one has to study fluids
surrounded by thermal reservoirs or moving insulated
walls. Given the fact that the scales reached in MD are
extremely small, the question arises as to the influence of
boundaries on the statistical properties of the system.

While it has been established that macroscopic hydro-
dynamics remains valid at these microscopic scales [8,9],
not much is known about the behavior of fluctuations,
especially in constrained geometries. The study of fluc-
tuations is certainly the first step to understanding the
microscopic mechanisms that are at the origin of macro-
scopic behavior of fluids, specially in the presence of in-
stabilities. In any case, it is important to know whether
the hydrodynamic model remains accurate to interpret
the fluctuation spectrum. The present paper is devoted
to this problem, both for equilibrium and nonequilibrium
systems.

We consider an assembly of 1000 hard spheres that are
allowed to move in a rectangular box of length L, (in the
x direction) and volume V. For practical convenience,
lengths and masses are scaled by the sphere diameter d
and the particle mass m, respectively, i.e., d =m =1.
Similarly, by an appropriate scaling of time and veloci-
ties, the equilibrium temperature and the Boltzmann con-
stant are set equal to unity. The box is confined between
two rigid walls, located at x =0 and L, acting as infinite
thermal reservoirs. Each time a particle hits a wall, it is
reinjected into the system having its velocity sampled
from a Maxwellian distribution at the wall temperature.
Periodic boundary conditions are assumed in the other
directions. The global number density will be set to 0.3
particles per d* and the aspect ratio L /L, to 5, leading
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to a system length L, =43.68 for L,=L,. We note that
the hard spheres occupy 16% of the system volume; this
corresponds to a moderately dense Enskog gas.

We start with an equilibrium system, i.e., we set equal
temperatures in both reservoirs To=T; =1. After the
system has reached equilibrium, statistics are taken over
10% collision times (about 5X 10° collisions per particle) in
order to measure the Fourier transform of the Van Hove
total correlation function, defined as

Fy(t)=(ng(tin_4(0)) —[{ng)|*, (1

where the brackets { ) denote ensemble average and n is
the Fourier transform of the number density:
N

expliq-r,(8)] . (2)

a=1

1
=R

Here N is the total number of particles and r;(7)
represents the position of the jth particle at time ¢. Note
that the average density exhibits two peaks near the
boundaries, the origin of which is a well-known conse-
quence of particle-rigid-wall interactions [10].

To improve the statistics, g, and g, are set to zero, i.e.,
we limit ourselves to the study of “reduced” variables
defined as the space average over y and z directions.
Since the system is finite, the wave vector q can only take
discrete values: q=gq,ly, ¢,=2wk/L,, k=12,...,
where 1, represents the unit vector in the x direction.
Given the small size of the system, we are forced to
choose small values of k in order to remain in the hydro-
dynamic regime (typically k =1 or 2).

In Fig. 1 we represent the dynamic structure factor
Sq(w), also called the scattering function, defined as the
time-Fourier transform of F, q(t). The statistical error, es-
timated from successive runs of 10* collision times, does
not exceed 8%. Besides the Rayleigh line, we observe
two other peaks. The second one is the Brillouin line,
centered roughly around w=C,27k /L,, where C; is the
sound speed (here k =1 and C;=2.44 in system’s units),
whereas the first one, located at half the distance of the
Brillouin line, reflects the finite-size effect. In macroscop-
ic systems the presence of boundaries does not give rise to
any measurable effect in the Rayleigh-Brillouin spectrum,
at least in equilibrium [11]. This is not the case here,
mainly because the distance between the containing walls
remains smaller than the sound attenuation length (by
about a factor of 4, for k =1). A sound wave, generated
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FIG. 1. Dynamic structure factor computed from MD (cir-
cles) and from fluctuating hydrodynamics in the equilibrium
case (To=T,=1).

through density fluctuations, will therefore be reflected
several times by the boundaries before being damped
through dissipative processes. As a consequence, one
may expect standing sound waves across the system [12],
which are at the origin of the extra peak observed in Fig.
1. Although the latter has been predicted theoretically
for a liquid with a vanishing thermal expansivity
coefficient [13], it is the first time that such a peak is seen
through MD computations. To be sure of its origin,
however, one needs to compare the measured spectrum
with its theoretical counterpart, obtained through the nu-
merical solution of the fluctuating hydrodynamic equa-
tions [14], using the method discussed in Ref. [15].

To proceed, we need the explicit form of the equation
of state and of the transport coefficients of the fluid. For
equation of state, we use the empirical Carnahan-Stirling
relation, known to reproduce accurately the data com-
puted in our range of densities [16]. For the transport
coefficients, we use the expressions obtained from the
first-order Chapman-Enskog solution of the Enskog equa-
tion [17]. The computed scattering function is also de-
picted in Fig. 1.

As can be seen, there is an excellent agreement between
fluctuating-hydrodynamics and MD results. The agree-
ment, however, becomes gradually less satisfactory as we
consider higher values of the wave number, either by in-
creasing k or decreasing the system length. The main
reason for this discrepancy comes from the fact that we
have used in our hydrodynamic equations an average uni-
form density profile, whereas a density boundary layer,
extending roughly over one sphere diameter, has been ob-
served in MD simulation. A full agreement with hydro-
dynamics can then only be expected for those fluctuations
having wavelengths several times larger than the charac-
teristic length of the boundary layer. This conclusion un-
derlines also the fact that MD cannot be used for the
study of small wavelength fluctuations, as described by
generalized hydrodynamics [18], in systems which are in
contact with rigid bodies.

Let us consider again the scattering function depicted
in Fig. 1. A careful analysis of the data shows that the
Brillouin peak is shifted to the left by about 8%, as com-
pared to its theoretical value [11] w=C,2wk /L,. The

same remark holds for the finite-size peak which, accord-
ing to the results of Ref. [13], must be located at half the
distance of the Brillouin peak, i.e., at o=C,wk /L,. Al-
though the physical origin of this shift is not clear at
present, the numerical analysis of the fluctuating hydro-
dynamic equations for a wide range of parameters leads
to the following conclusions: first, as the system size in-
creases, the shift goes to zero, roughly as L, !/, Second,
the origin of the shift seems to be crucially related on the
coupling between the thermal modes and the sound
modes. The subject clearly calls for more theoretical
work.

Next, we consider nonequilibrium systems by setting
unequal temperatures for the reservoirs. Several situa-
tions have been considered and for each case the comput-
ed temperature profiles are extrapolated to find the
effective wall temperatures. The latter are found to be
different from the corresponding imposed wall tempera-
tures by about 4%. Note that this temperature slip is a
well-known consequence of the thermalization procedure
we have used in our MD simulation (stochastic thermal
walls) [19,20]. The effective wall temperatures are then
used as temperature-boundary conditions in the corre-
sponding hydrodynamic equations which are solved nu-
merically to give the macroscopic temperature and densi-
ty profiles. Even for the strongest nonequilibrium situa-
tion we have considered (the temperature variation was
about 4% over a sphere diameter), we find a perfect
agreement with the measured profiles, except near the
walls where a density boundary layer was observed, very
much as in the equilibrium case.

Having established the validity of the macroscopic hy-
drodynamic equations, we next consider the fluctuations.
Contrary to the equilibrium case, the imaginary part of
the function F,(¢) is found to be nonzero, indicating a
broken time-reversal symmetry induced by nonequilibri-
um constraints. As a consequence, the structure factor
exhibits an asymmetry with respect to w. This is shown
in Fig. 2, where S ,(w) is depicted for T;,=0.52,
T;=1.46, and k=1 (the imposed wall temperatures
were T,=0.5 and T =1.5). The theoretical graph of
Sq(a)), obtained from the numerical solution of the fluc-
tuating hydrodynamic equations, is also depicted and, as
can be seen, it shows excellent agreement with MD re-
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FIG. 2. Same as Fig.
(Ty=0.52, T; =1.46).

1, for the nonequilibrium case
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sults. The same conclusion holds for all the values of
temperature gradient examined, at least for kK =1. Again,
the agreement becomes gradually less good as we consid-
er higher values of the wave number, precisely for the
same reasons we have discussed in equilibrium case.
Note that the finite-size peaks are also asymmetric, in
qualitative agreement with the theoretical predictions of
Ref. [13].

The asymmetry of the Brillouin lines was predicted by
several authors a decade ago [21,22] and, later on, was
confirmed through light-scattering experiments [23]. Un-
fortunately, the specific nature of the boundary condi-
tions appropriate to our case, and the relatively small
value of the wave number, does not allow a direct com-
parison with the existing theories. Nevertheless, some
general conclusions can be drawn which may be used as a
guideline for future theoretical works. First of all, the
observed asymmetry is lower than the one predicted by
neglecting the boundary conditions (infinite-system ap-
proximation), in qualitative agreement with the experi-
mental [23] and theoretical results [12,24]. The precise
determination of the discrepancy needs more numerical
work and will be presented in the near future. Next, the
asymmetry grows with the imposed temperature gra-
dient. The rate of growth is linear for small values of the
temperature gradient, but a deviation from linear regime
is observed as the temperature gradient is increased [25].
Finally, we observe that the location of the Brillouin lines
depends also on the temperature gradient, in qualitative
agreement with the results of Refs. [21] and [25].

Let us now consider the Rayleigh line. Some time ago,
extensive theoretical calculations, based on both mode-
coupling theory [26] and fluctuating hydrodynamics [27],
have shown that the amplitude of the Rayleigh line in-
creases with the imposed temperature gradient |VT|2/g*,
provided the wave vector q is oriented perpendicular to
the direction of the temperature gradient V7. More re-
cently, the validity of the above prediction has been beau-
tifully verified by Law and Sengers [28] through small-
angle light-scattering experiments. From a theoretical
point of view, it is generally believed that the main reason
for the enhancement of the Rayleigh line is due to the
coupling between transverse velocity fluctuations (paral-
lel to the temperature gradient) and the entropy fluctua-
tions. On the other hand, it is easy to show that the
transverse fluctuations vanish in the limit ©®—0 (Rayleigh
scattering), if the wave vector is parallel VT. For this
reason, so far most of the existing theoretical and experi-
mental work refers to the case of wave vectors perpendic-
ular to the imposed temperature gradient, which is just
the opposite of our choice of wave vector. Accordingly,
we were expecting to find that in our computer experi-
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ments the Rayleigh line should remain quite insensitive
to the imposed temperature gradient.

Surprisingly, the MD data show that, for a given wave
number, the amplitude of the Rayleigh line grows quite
accurately as the square of the temperature gradient, in
perfect agreement with the numerical solution of the fluc-
tuating hydrodynamics equations. On the other hand,
the amplitude of the Rayleigh line decreases for increas-
ing values of the wave number, roughly as 1/¢*for k =1,
and switches to a 1/g? dependence for higher values of k.
This result confirms the existence of entropy (or tempera-
ture) long-range spatial correlations in nonequilibrium
fluids, even though the coupling with the transverse ve-
locity fluctuations is absent. Note that earlier particle
simulations, based on a Monte Carlo simulation of the
Boltzmann equation, have led precisely to the same con-
clusions, both for systems under temperature gradient
and for systems under shear [29]. Similar results have
also been obtained theoretically using a simple fluctuating
Fourier type of equations [15,30]. To sum up, our work
clearly indicates that the Rayleigh spectrum exhibits
essentially the same type of behavior as the one observed
experimentally by Law and Sengers for an opposite
choice of the wave vector. It is therefore highly desirable
to see whether or not an enhancement of the Rayleigh
spectrum can be observed experimentally for a choice of
the scattering vector parallel to the temperature gradient.

To conclude, we have reported here clear evidence of
the validity of the fluctuating hydrodynamic formalism
down to a few interatomic distances, even in the presence
of extreme nonequilibrium conditions. Fluctuating hy-
drodynamics can thus be used with confidence for the
study of fluctuations in nonequilibrium fluids, in the ab-
sence of instability. Our main goal in the future is to use
NEMD to study the behavior of fluctuations in systems
approaching convective instability, where the results of
laboratory experiments are in total contradiction with
those of the existing theories [31,32]. Whether or not
fluctuating hydrodynamics remains accurate to describe
the onset of such instabilities, is an open question (see,
however, Ref. [33]). Works along this line are in pro-
gress.
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