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The problem of constructing a field theory that describes the dynamic critical behavior of semi-
infinite systems whose dynamic bulk critical behavior is represented by model B and whose order
parameter is conserved both in the bulk and at the surface is reconsidered. Particular attention is
paid to the derivation of the boundary conditions satisfied by the order-parameter field P(x, t) and
the associated response field P(x, t) It is s.hown that the extremely complicated boundary conditions
for P obtained recently by Binder and Frisch [Z. Phys. B 84, 403(1991)]simplify considerably if all
irrelevant surface contributions to the action are discarded. In particular, the boundary conditions
for both P and P do not involve time derivatives. Although power counting alone admits surface
terms other than those anticipated in the paper by Dietrich and Diehl [Z. Phys. B 51, 343 (1983)],
the requirements of detailed balance imply that these extra terms are either absent or redundant. As
an application and test, the relaxation of the order-parameter profile from a spatially homogeneous
initial nonequilibrium state into thermal equilibrium is investigated, using a zero-loop approximation.
The results are in conformity with those of Binder and Frisch.

PACS number(s): 05.40.+j, 68.35.Rh, 64.60.Ht

I. INTRODUCTION

In a recent paper [I] Binder and Frisch (BF) investi-
gated the dynamics of surface enrichment in binary mix-
tures that are in contact with an impenetrable wall favor-
ing one of two components. To this end they considered a
semi-infinite lattice-gas model with Kawasaki dynamics
[2] and investigated it using a layerwise molecular-field
approximation. Upon making a continuum approxima-
tion, they derived an equation of motion for the (coarse-
grained) order-parameter field P(x, t) (denoted g by BF).
Since the dynamics of the model conserves the order pa-
rameter, its dynamic bulk critical behavior should be de-
scribed by the familiar model B of Halperin, Hohenberg,
and Ma [3]. Not surprisingly, therefore, the equation
of motion found by BF, for points away from the sur-
face, agreed precisely with the one that model B yields
if a time-dependent Ginzburg-Landau (TDGL) approxi-
mation is used.

This equation of motion is a partial diff'erential equa-
tion involving spatial derivatives up to fourth order.
Hence, for a system with boundaries, the question arises
as to which boundary conditions can, and should, be
required to make the solution well defined. BF exam-
ined this question in some detail for the semi-infinite ge-
ometry considered, namely, the d-dimensional half-space
lR+ ——(x = (xll, z) I

x 6 R ', z ) 0) bounded by
the z = 0 plane, with periodic boundary conditions ap-
plied along the x~~ directions. As boundary conditions
for P(x, t) at the wall OV (the z = 0 plane) they ob-

tained two formidable expressions, which are too long to
be repeated here. Both of these boundary conditions not
only involved spatial derivatives but also time derivatives,
with the second one even containing time derivatives of
spatial derivatives.

The physical problem BF addressed was how the dy-
namical process of surface enrichment takes place near
bulk criticality if one starts from a spatially homoge-
neous nonequilibrium order-parameter profile P(x, t =
0) = PI I. As pointed out by BF, there exist no pre-
vious studies of this problem for the case of a conserved
order parameter; earlier studies of critical dynamics in
semi-infinite systems have focused almost exclusively on
the case of a nonconserved order parameter. Specifi-
cally, in the field-theoretic analysis of dynamic critical
behavior in semi-infinite systems presented by Dietrich
and Diehl [4], an explicit two-loop calculation was per-
formed only for a semi-infinite model A. On the other
hand, the structure of the ultraviolet singularities, the re-
sulting renormalization-group (RG) equations, and their
consequences for the dynamic surface critical behavior
near the ordinary and special (surface) transition [5, 6]
were also discussed for a semi-infinite version of model
B. In addition, explicit results for the free response prop-
agator of semi-infinite model B in various representations
were presented in Appendix A of Ref. [5]. In that work,
the question of boundary conditions of the dynamic the-
ory was bypassed inasmuch as the eigenfunctions that
diagonalize the free propagator of the static theory were
assumed to carry over to the dynamic theory. Since the
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static action involves only squares of spatial derivatives,
only a single (and well-known [7—10, 5]) boundary con-
dition at BV is needed in the static case. In Ref. [4],
this static —and hence time-independent —boundary
condition was implicitly used, and no second boundary
condition was given for P(x, t) in the case of model B. In
view of BF s findings mentioned above the question arises
as to whether the RG analysis of Ref. [4] really applies to
model B or whether it needs to be modified. (In the case
of model A, the dynamic action involves only squares of
spatial derivatives, so that again no boundary condition
for P other than the static one is required. Furthermore,
the boundary condition used for P in Ref. [4] is correct,
too. Thus the entire model-A analysis of Ref. [4] is based
on a proper choice of boundary conditions. The above-
mentioned problem arises only in the case of model B.)

In the present paper we will present a detailed inves-

tigation into the question of which boundary conditions
should be required for a proper semi-infinite model B.
Rather than trying to derive these boundary conditions
by means of a coarse-graining procedure from a micro-
scopic theory, we prefer to construct the continuum field
theory directly, utilizing general principles such as the
locality of the action in space and time, relevance ar-
guments, detailed balance, and the consequences of the
conservation law for the order parameter. The advan-
tage of this procedure is that it enables us to relate the
boundary conditions to the general properties of a class
of dynamic models rather than to the special properties
of a particular microscopic model.

The remainder of this paper is organized as follows.
In the following section we reformulate the problem in
the language of the functional-integral representation of
stochastic dynamic models [11—15] and discuss the gen-
eral constraints that the dynamic action should satisfy.
Choosing the most general J compatible with these con-
straints, we then derive the boundary conditions for gl

and P and discuss their significance. Our result for the
surface terms of J' —and hence the boundary condi-
tions —can be obtained directly from the general form
of g derived in Ref. [11]. This can be done in a con-
trolled fashion by replacing the contact form [oc b(z) and
its derivatives] of the surface terms in the static Hamilto-
nian through a sequence of smooth functions of z that ap-
proach the contact form. In Sec. III we apply the theory
to the problem of surface enrichment, using the TDGL
(zero-loop) approximation. This serves to check that the
universal properties of the large-distance and long-time
behavior found by BF are correctly reproduced within
our much simpler theory with time-independent bound-
ary conditions. Our conclusions are summarized in Sec.
IV.

II. CONSTRUCTION OF THE MODEL

A. Constraints on the dynamic action

A convenient framework for our reasoning is the La-
grangian functional-integral formulation of stochastic dy-
namic models [11—13]. Since we are concerned with
model B, we assume that no slow variables other than P

are present. Under these circumstances the model can be
specified by a functional probability density of the form

[16] exp( —J(P, P})dt's, P}, where P is the response field
associated with P. Restrictions on j can be obtained by
exploiting the following general properties P1, . . . , P7,
which the model we wish to define should have.

(P1) Locah ty 'of the action J in space and time. We
presume the interactions as well as their perturbation
caused by the surface to be of short range (i.e. , to de-

cay sufficiently fast as distances increase). Accordingly
the functional J may be assumed to be local in space.
Owing to the absence of other slow variables it may be
taken to be local in time, too (which is tantamount to
the assumption that the dynamics can be described by a
Markovian process). Hence P may be chosen in the form

js(x, t)d z

Li(xi', t) d" xi'

where Cs and Li are functions of P and its space and
time derivatives, taken at points x g V and (x~~, 0) C OV,
respectively. At this stage, the initial time tp and the final

time ty may be assumed to be finite; the limits tp ~ —oo
and tf ~ +oo will eventually be taken at the end of the
calculation.

With a view to our subsequent analysis, let us also
make the following remarks. As is well known (see, e.g. ,

Ref. [12]),the functional g in general should also contain
a contribution depending on the way time is discretized.
We shall omit this (measure) term oc 0(0), choosing a
prepoint discretization corresponding to the definition
0(0)—:0. At certain points we applied the standard rules
of differential calculus to J. This should be interpreted
in the sense that the time discretization at the beginning
of the calculation was changed into a midpoint discretiza-
tion [corresponding to the choice 8(0) = I/2] and at its
end was changed back to the original prepoint discretiza-
tion.

(P8) Consistency with bulk model B. The bulk dy-
namics of the model should be the same as that of the
standard bulk model B.Taken together with the locality
property P1, this means that for points off the surface

(x g BV) the model should be equivalent to the Langevin
equation

le $(x, t ) = Ao 3:Hy(x, t ) + ((x, t),
in which

(2a)

'Hp(x, t) = —h.P(x, t) + Lti', (P(x, t)),
with

(2b)

(2c)

while ((x, t) means a Gaussian random force with mean

(() = 0 and variance

(((x, t) ((x', t')) = —2Ao 6 b(x —x') 6(t —t') (2d)

for points x and x' off the surface. In the language of our
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functional-integral approach this corresponds to a bulk
density

&b = 4c) 0 —&o[(&4)' —(&4)&4 —(&4) &&b(&)] .

(3)

Note that we have distributed the spatial derivatives in
the quadratic part of Zp in a symmetric fashion; had we

distributed them in a less symmetric fashion, the result

jz dszZb would difFer from the one implied by Eq. (3)
through surface terms.

(PS) Absence of irrelevant and redundant operators
We require that the model be minimal in the sense that
only operators are included in g that are relevant or
marginal for d equal to, or slightly less than, the upper
critical dimension d = 4. Since the bulk density Zb

is already known, consider a contribution to l:i of the
symbolic form

pl-a +dt(a, b;m, a;e)
g (a b m n) C)a C)b ym yn

Here p is an arbitrary momentum scale, (9b means a spa-
tial partial derivative 8 j(Bz, , Bz;,), and gi(a, b; m, n)
denotes a dimensionless surface coupling constant.
Counting dimensions shows that for d = 4 —e the mo-

mentum dimension dl is given by

fA+ A 2
di(a, b; m, n; e) = 7 —Bm —n —4a —b +

2

vanish. An immediate consequence of this requirement
is that both the bulk order parameter

mb =— lim )~) (P(x, t)) d z
L)), L~~oo I

= (P(x, t))

as well as the excess order parameter

m, :— lim ~i [(P(x, t)) —mb] diaz
L[j, L~~oo v

[(P(x(), z, t)) —mb]dz
0

are constants of motion, where the averages in the second
lines of Eqs. (8) and (9) refer to the semi-infinite system
The above requirement

Mv ——0

is fulfilled if all monomials appearing in g other than
the p t9&t)) term of Cb are invariant under a shift p(x, t) ~
t))(x, t) + Ct(t) with an arbitrary x independent Ct(t). To
see this, note that this shift invariance can be exploited
in a standard manner to conclude that (bJ), the expec-
tation value of the implied change

bg = — dt C)(t) — tt)(x, t)
d

d& v

We will omit all contributions with

di(a, b;m, n;0) ( 0 . (6)

This is justified, provided no dangerous irrelevant opera-
tor is among these dropped contributions. Whether this
premise holds, remains to be seen. Note that condition
(6) rules out, in particular, a contribution to Zi of the
form Pc), P since di(1, 0; 1, 1;0) = —1. The irrelevance
of such a surface term (in the RG sense) is the ultimate
reason why the boundary conditions we are going to find
will not involve time derivatives.

(Pg) Conservation of the order parameter We require.
that P be a conserved density both at the surface and
away from it. Thus

of J', must vanish. Owing to the arbitrariness of 4(t),
Eq. (10) holds, indeed.

(P5) Causality. Introducing bulk sources J(x, t) and

J(x, t) as well as surface sources Ji(x~~, t) and Ji(x~~, t),
we define the functionals

g(J J.J J ) ew(JyJ)JtpJ1)

(e(~ e')+(»4')+(Jt». )+(&t & )) (12)

Here the notation ttt, is used for the field tt on the surface,
by analogy with P, . Furthermore, the abbreviations

(f, b) = f ttt J(x, t) b(x, t)
v

and

(7) (Jt, 4.)—:J dt ( Jit, tx) t~( ttt)xtt
BV

(14)

should be a constant of motion in the following strong
sense. In a mathematically satisfactory definition of
semi-infinite systems of the kind we are interested in one
would have to consider the thermodynamic limit of an
appropriate finite system of hypercylindrical shape with
cross-sectional area A = L~~, height L~, and volume

)V(= AL~ (i.e. , with V = [O, L~~] x [O, L~]) Even.
for this finite V the time derivative Mv of Mv should

I

were introduced. In Eqs. (13) and (14), the volume el-
ement d"x and the surface element d"

z~~ have been
suppressed for conciseness. The same will frequently be
done below.

Causality means that if the sources J and Jl vanish
for t & t~~„, then the functionals 2 and W must be
independent of the sources J(x, t) and ji(x~~, t) with t )
t . Specifically, the cumulants
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must vanish whenever t~ ) maxi&i&~+M(ti) for at least
one t~, j = 1, . . . , N+ M. This rules out surface terms of
the form specified in Eq. (4) with m = 0; i.e. , the surface
coupling constants gi(a, b; 0, n) must vanish.

For later use, let us also recall from Refs. [11]and [13]
the form of the dynamic action one obtains for a general
Gauss-Markov process on a discretized time lattice in the
continuous t, ime limit. It reads

dt [4(4 —F) —4 D4]. (16)

For the bulk model B defined by the Langevin equa-
tion (2a), the noise correlation (2d), and the replace-
ment V ~ K", the quantities F and D are given by
F = Ap A/4, and D = —Ao A. In the semi-infinite case
that we are concerned with, the interpretation of Eq.
(16) remains to be clarified: according to our consider-
ations above one expects boundary contributions to F
[i.e. , contributions oc b(z)], whose precise form must still
be determined. Likewise, we must find out which sur-
face terms are produced by the term involving D and
which boundary conditions should be required for this
operator. We will return to these questions below. For
the moment it suffices to note that the form (16) of the
dynamic action ensures causality. (See, e.g. , Ref. [12].)

(P6') Detailed balance and relaxation to thermal equi-
librium. As a standard property known from bulk critical
dynamics [3], we have the condition that the system relax
from (almost) any initial configuration P(x, to) = qiI ~(x)
to a thermal equilibrium state characterized by a Boltz-
rnann factor exp( —'H). The Hamiltonian 'H in our case
has the form

[2(7P)'+Pi(g)]d z+ Lli(g) d 'zii . (17)
BV

Tg(x, t) = e4, $(x, t), —

with ~~
—+1. Since we are dealing with a purely re-

laxational model, both choices of the time parity e~ are
possible. (Depending on whether P is imagined as a par-
ticle density or spin density, one would choose ~y

——+1

Its bulk density is dictated by the requirement that the
operator 'H~ in Eq. (2b) coincide with the functional
derivative b'R/bqt up to surface terms. Just as we did
not include a bulk magnetic field in H, we will ignore for
the time being all contributions to the surface density
Mi that break the symmetry P ~ —P. The appropriate
choice then is [5]

&i(0) = —,'co 4'

Of course, the inclusion of symmetry-breaking surface
terms would be absolutely indispensable for a proper in-
vestigation of surface enrichment. Our rationale here
is that we must first understand the symmetric case;
once this has been achieved, the addition of symmetry-
breaking terms will turn out to be a relatively straight-
forward matter.

In order to discuss the consequences of detailed balance
for the action g, let 2 denote time reversal. For the
time-reversed field we have

and —1, respectively. ) We introduce the conditional func-
tional probability density

&((&'") t2
I {&")ti) ~

y(~)

d(&)

7'((&'") t I(&'") t ) e ""

(21)

As discussed elswhere [17], this relation can be used in
conjunction with ergodicity to prove the limiting behav-
ior

(22)

where Z['H] denotes the partition function pertaining to
'H. Since the Hamiltonian is time-reversal symmetric,
'H(g) = 'M(e~ P), Eq. (21) yields

~~", (& 0) + 7t(4(to))

= g,'; (TP, 7P) +'H{TP(—t&)) . (23)

The difference of the Hamiltonians can be written as

&(&~(—tg)) —&(~(t ))

= f" e~~ (&&&)+ (4H~. ) I, (24)
BV

where we have introduced the surface operator

'H p, = bt,'(P, ) —0„$ .

Here P, (x~~)—:P(x~~, z = 0), while cI„denotes the normal
derivative 0, I,-o. Substituting Eq. (24) into Eq. (23)
and comparing the terms oc P in the integrals Jz and

f&& with those on the right side, we recover the usual
bulk equation

2 P(x, t) = ep[P(x, t) —'Rp—(x, —t—)), x g OV

and obtain the boundary condition

B„P(x„t)= Ll,'(P(x„t)), x, g OV .

(26)

(27)

In the derivation of Eq. (27) we have presumed, in accor-
dance with P3, that Zi does not contain terms oc P. The
boundary condition (27) is precisely the one known from
the static theory. Thus P3 and detailed balance are suf-
ficient to ensure that the static boundary condition (27)
carries over to the dynamic theory.

(2o)

where the integration over P is over all fields P(x, t), ti &
t ( t2, with P(x, t, ) = PI'~(x) and P(x, t2) = Pl (x).
Detailed balance means that
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These conclusions do not yet exhaust the consequences
of detailed balance. As shown in Ref. [11],detailed bal-
ance implies that the quantities F and D in Eq. (16) both
can be written in terms of a reaction matrix R, so that
g takes the form

bR

(28)

If we discretized position space, R would be a symmet-
ric matrix in position space. This suggests to write the
reaction matrix of our model in the symmetric fashion

[8„—M,"(Q)]b,P(x„t) = 0, x, g i9V. (32)

As mentioned there, this boundary condition is neces-
sary in order to ensure consistency with the fluctuation-
dissipation theorem. The missing second boundary con-
dition for P follows from the physical requirement that
there be no current through the surface; that is, we must
require

erators). Before we show this by giving a formal deriva-
tion of l'. i based on Eq. (28), we first present a more
physical derivation of the desired boundary conditions.

In Ref. [4] two boundary conditions were explicitly
given: one is the static boundary condition (27) for P;
the second one reads

R = O'ApV', j„=0 (33)

where V' acts to the left, while 9' acts as usual to the
right. Whether Eq. (28) with this choice of R yields
meaningful results in our case is not yet clear at this
stage. Two issues need to be clarified. On the one hand,
we must understand which boundary conditions should
be required for the reaction operator R. On the other
hand, we must convince ourselves that the action of R
on the boundary contribution b(z) 'R~, to b'M/bg can be
interpreted in a meaningful fashion. That this is indeed
the case will be shown in Sec. II A where both issues will

be settled.
(P7) Euclidean invariance and internal symmetries

The bulk density Lb given in Eq. (3) is compatible with
the invariance of the bulk theory under the Euclidean
group E(d) of translations and rotations in Kd (as it
should). The presence of the surface causes a breakdown
of the E(d) invariance. However, the boundary terms
of J (i.e. , l:i) should still be invariant under the group
E(d —1) of rotations and translations in x~~ space.

Since we have not included any symmetry-breaking
fields in 'M, the required internal symmetry of P simply
becomes

2,". &
—4, —0}= Zi,' {4,0} . (30)

B. Boundary conditions and field equations

The restrictions implied by P1, . . . , P5 and Pi yield
a surface density of the form

l:i ——b P B„P+ ai (0„$)B„P+ a2 (7')(P) V')( P

+ as4~.'4+ ~i Pal.'4+ ~~(~-4) &.'0
+ ~. (&.'o) &.o+ u (&~~~&.o) &~~~o+ o'&.o

(»)
Using this form of g~ with arbitrary values of the sur-

face coupling constants, we would not recover the static
boundary condition (27). Detailed balance (P5) imposes
strong additional requirements. By analogy with the sit-
uation for bulk terms, one expects these to fix the values
of all dynamic surface coupling constants introduced in
Eq. (31) in terms of the static surface coupling constant
cp and Ap (except those of eventual redundant surface op-

for the normal component of the current operator

j = —ApV'Ry . (34)

Just as for the other boundary conditions, Eq. (33) is
meant to hold inside of the correlation functions. (Since
we are dealing with a field theory, j„ is a fluctuating
quantity. ) Using Eqs. (34) and (2b), Eq. (33) can be
rewritten as

B„[b.g —M (iP)](x„t) = 0, x, g BV.

where ( )&& &.J & I denotes an average in the presence of
the sources J, . . . , Jp. We wish to integrate this equa-
tion over a film that is bounded in the perpendicular
direction by the planes z = +6 and —b but unbounded
in the parallel direction, and then let b ~ 0+. In do-
ing this, we must pay attention to possible contributions
oc b(z) [which we dropped in Eq. (M), setting z ) 0].
One such term follows from the source term oc Ji, to
avoid it, we set Ji —0. Since P is a locally conserved
density even at the surface, the coe%cient of an even-
tual delta-function contribution to the term P+ T j in
Eq. (36) should vanish. Finally, no b-function contribu-
tions linear in P occur other than the boundary term
oc 0„$ arising from the necessary integration by parts of
(b/bg) f dt f&('VP), because no monomials quadratic in

P are contained in l:i. Combining these considerations,
we conclude that we must have

ci /=0.
The two boundary conditions, Eq. {35) and Eq. {37),

not explicitly given in Ref. [4], have an obvious math-
ematical significance: they make the reaction operator
(29) self-adjoint for fields of type P and Ap E'H~.

We now return to Eq. (28), the general form of J for

In order to obtain the missing second boundary condition
for P, we use the equation of motion that follows from the
invariance of the generating functional Z(J, J; Ji, Ji}
under a change of the integration variable P, namely,

(2Ap b.p+ p+ 7' j —J(x, t)) J J ~ & I
—0, x g OV
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a Gauss-Markov process with detailed balance. Into this
we must insert

= ApAB„Q, (42f)

6'H
= 'Hp(x, t) + b(z)'H~ (38)

and

= Ap [0„$—LL,'(P, )], (42g)

and the reaction operator (29). In order to avoid di-
vergences, we represent the b function in Eq. (38) by a
sequence of smooth functions, such as

bA(z) = Ae ', A ~ oo. (39)

Upon making appropriate integrations by parts, the re-
sulting action J can be brought in the form (1) so that
the bulk density Li, is given by Eq. (3). The surface
density is found to be

Zi ——Ap (0„$)AP —Ap (A D„P+ 6(t)[L/,'(P) —D„P]

(40)

up to terms of order o(A). The result is in conformity
with Eq. (31). The coupling constants gi and v vanish,
so the associated surface operators P Bsg and psa„p are
missing. Owing to the boundary condition (37), the lat-
ter obviously is a redundant operator. Similarly, Eq. (32)
shows that the former corresponds to a redundant opera-
tor up to operators included in Eq. (40). All other surface
operators included in Eq. (31) also occur in Eq. (40).

We proceed by deriving the boundary conditions cor-
responding to the result (40). As usual [10], these must
follow from the contributions oc b(z) to the field equations
("equations of motion") resulting from the invariance of
the generating functional Z(J, J; Ji, Ji) under a change
of the integration variables p and p. Choosing changes
bg and bg that vanish for t = to and ty, we can write the
implied change of j as

2~4, = &o44 (4211)

Upon addition of the contributions from the source
terms, use of this in the functional integral for
Z(J, J; Ji, Ji) yields the field equations

(~~~ ~1(~ ))(J,J;J,J }

Similiarly, the choice A = P', or A = AP, yields

(~~&)(z,z;z„z,I
—0

(44a)

(44b)

which is Eq. (37). If we substitute this boundary condi-
tion (44b) into the field equations (43) for A = P, and
A = P, , these become

(0„[6&—L~i ((t')] —Ji/&o) (J J J ~ I
= 0 (44c)

and

(([&n —&i'((t')]&(t')~ i/ o)(J z J J I
= ( )

where Jg means the respective bulk or surface source
J, . . . , Jy, or 0 that couples to the operator A.

For A = P, Eq. (43) is precisely the (bulk) equation of
motion (36). Likewise, Eq. (43) with A = P is well-known

from the bulk case. The remaining field equations give us
the boundary conditions. Choosing A = (t', or A = AP,
in Eq. (43), we recover the static boundary condition (27)
in the form

bg I
tp dt (g~ bg + gg bg)

v

+ (2; b4+2;, D.bd
BV

+J~~ Ebg + gy, bg

(41)

in precise agreement with our previous findings, Eqs. (35)
and (32).

Equations (44a)—(44d) are a central result of this pa-
per. They hold for the regularized interacting theory-
i.e. , beyond mean-field theory. Since in their derivation
no use was made of the specific form of the potentials Qy

and M~, they must also be valid for more general choices of
Mp and M&. In particular, they hold if we include magnetic
bulk and surface field terms, making the replacements

with

J- = P+ A, A[A/ —L/,'(P) +2/], (42a)
and

Mb ~Pi, —hot

Mi ~ Lti —hi, o $ .

(45a)

(45b)

A = —0+ &o[& —&l'(&)]&&

J~ ——A p 0„[AQ —Lt,'(P) + 2P],

(42b)

(42c)

[Following Refs. [10] and [18],one might even want to in-

corporate a cubic term (ipp/3!) qP in Qi.] Note that the
surface magnetic field h& o might equivalently be intro-
duced via the source term

~~. = &o( P- &i'(&)]&&-
—[A &i'(&) + &l'(&)] &-&).

Z~, ——Ap A [0„&—LI,'(P, )],

(42d)

(42e)

Ap hi p (AO„Q+ EP) .
BV

(46)

This is in conformity with the above expressions (42e)
and (42g) for g&, and J&&, respectively, and the corre-

sponding field equations (43).
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C. The free response and correlation propagators

[D, —ApA(rp —6)] G(x, t; x, t) = b(x —x) b(t —t) (47)

that satisfies the boundary conditions

(c)„—cp)G(x„t;x, t) = 0, (48a)

I

Our final result for the action J is given by Eqs. (1),
(3), and (40). This may be compared with the action
used in Ref. [4]. An integration by parts shows that the
former agrees with the model-B result given in Eq. (II.5)
of Ref. [4] up to terms proportional to the redundant

surface operator B„g. While the model-B analysis of
Ref. [4] is based on a correct expression for the action,
the boundary conditions derived in the previous section
have not properly been implemented. As a consequence,
some of the results of Ref. [4] for the free response prop-

agator G = (P P)p and the free correlation propagator
C = (P P)p are incorrect, as we will show now.

The response propagator G may be determined as the
solution to the equation

(b. —rp) B„G(x„t; x, t) = 0,

c)„G(x,t;x„t) = 0,

(48b)

(48c)

(8„—cp) 6, G(x, t; x„t) = 0 (48d)

for x„x, g DV and x, x f' BV. Upon taking Fourier
transforms,

G(x, t;x, t) = G(p;z, z;~)e ' (' ')+'i'(" ")~~ (49)
~iP

with f:—f d(u/2x) and f—:f d~ i(p/2n), Eq. (47)
becomes an ordinary differential equation for G, which
can be solved by standard means. At z = z, G and its
first two derivatives with respect to z must be continu-
ous; its third derivative must have a jump discontinuity
—Ap t)(z —z) in order that the term oc c)4G on the left-
hand side of Eq. (47) produces the b-function singularity
on the right-hand side. Using these conditions together
with the fact that G must decay as z ~ oo at fixed z (or
as z ~ oo at fixed z), one finds that G can be written in
the form

G(z, z) =
2 2 A+(z) e "+' —A (z) e " '+ e

Ap (~2+ —~2 )

1 -~+)z-S)e
2K'

where the variables p and ~ have been suppressed. The complex momenta zy are the roots with real part ReKy & 0

of

= p + (rp/2) + [(rp/2)" + i(u/Ap)] (51)

The contributions from the last two terms of Eq. (50) are the usual bulk response propagator G&(p; z —z) (cf. Ref. [4]).
Upon inserting Eq. (50) into the boundary conditions (48a) and (48b), we can determine the functions Ay. The

result is

1
Ay(z) = (fy e "+' + g~ e "+')

2K'

with

and

~g~~(~~q —~2~) —cp[~p(~' —~~) + a~(~~ —lc2~)]

rcp(~' —K~~)(cp + ~q) —~q(~' —lc~~)(cp + ~g)

2cp K p (~' —lc2~ )
gp = g(~g, ~q., cp, Ic) =

2 2 2 2 )
~g(~ —~q)(cp + ~~) —~~(lc —~~)(cp + Icy)

(53a)

(53b)

where

K =+gp + rp (54)

Our result for 0 thus becomes

(r2
G(p z z 4))

i + 7 (c K l E z l y c K (8 +I ) g c (K I+a +s ))(4 Apf (21c

'e ~+I~ ~l ~ ~+-(~+~) --(~+~+~-~))—g+ e
2K+

The result given in Appendix B of Ref. [4] differs from
ours through the replacements fy ~ (cp —xy)/(cp+ ~y)
and gy ~ 0. In the special case cp —0 (corresponding
to the special transition), both results agree since

and

f(K+, ~,0, ~) = —1

g(~+, ~ .
, 0, ~) = 0 .

(56a)

(56b)
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But for general values of c0, they diR'er.
The free correlation propagator may be expressed in

terms of the free response propagator; in the pz~ repre-
sentation one has

and

0, (O, o —ro) ),-p ——0

(O, o + I —co) i, p
—0 .

(62b)

(62c)

III. DYNAMICS OF SURFACE ENRICHMENT

In this section we shall investigate, within the frame-
work of our model, the problem studied by BF: the
relaxation of the order-parameter profile rn(z, I)
(P(x~~, z, I)) from a homogeneous nonequilibrium profile

m(z, 0):—ms (58)

into thermal equilibrium, where m~ is the equilibrium
value of the bulk order parameter. For simplicity, we

will content ourselves with a zero-loop analysis. Since in
such an approach a distinction of bare and renormalized
quantities is unnecessary, the subscript 0 will be dropped
on bare quantities such as rp, cp, etc Our .model is de-
fined by Eqs. (1), (3), and (40), where bulk and surface
magnet, ic fields h and hq have been included in the poten-
tials Mi, and Lli given in Eqs. (2c) and (18), as indicated
in Eqs. (45a) and (45b).

The equation of motion that governs the time evolution
of the profile is given by Eq. (2a), with the identification

P ~ m and the noise term ( set to zero. Solutions must
be sought which satisfy the boundary conditions (27) and
(35). We write

m(z, t) = my+ cr(z, t) (59)

C(p; z, z';u) = 2Ap dz G(p; z, z;u)
0

x (p —0;)G(—p; z', z; —~) .

(57)

Since the boundary conditions obeyed by the free prop-
agators G and C are different, except in the special case
c0 ——0, their representation in terms of eigenfunctions
that satisfy these boundary conditions seems to be of lim-
ited practical use in perturbative renormalization-group
calculations. Rather it seems preferable to work in a pzt
or pz~ representation.

(64)

is the reciprocal of the bulk correlation length (. [Note
that this definition of K is consistent with our previous
one in that Eq. (54) for p = 0 yields the same value of
~ as Eq. (64) for r & 0 and h = 0. Hence no confusion
should arise from the fact that we use the same symbol. ]
Upon making a Laplace transformation,

o(z, s) = dse "o(z,t),
0

we find

l s
o(z, s) =

(K+ —K )(c + ~+ + ic )
X K+e + —z e

Here Ky are the roots

K+ = ((r/2) + [r'/4 —(s/A)]'")"'

(66)

(67)

with positive real part. [Just as in the above-mentioned
case of z, this definition of ~y agrees with the previous
one given in Eq. (51) if p = 0, r & 0, and h = 0.]

One can easily verify that the singularities resulting
from the branch points of the roots at s = A(r/2)z cancel
in o.. Hence o is analytic in the complex s plane except
for a branch cut from 0 to —oo along the negative real
axis (see Fig. 1). It follows that the standard integration
path C for Laplace inversion may be deformed in the
manner illustrated in Fig. 1 into the path C + around
the negative real s axis. Thus

In the sequel we will assume that c & 0, restricting our-
selves to the case of subcritical surface enhancement.

The equilibrium profile m = m(z, oo) to which the
profile relaxes corresponds to a deviation cr of the form

1 -gz
c+]c

where

and expand 9& and D& about my, the minimum of My.

This gives
1

o(z, t) =
27ri

dscr(z, s) e" . (68)

LI~(m) = ro + O(o )

and

LI,'(m) = —I + co + O(o ),
with

(60a)

(60b)

The path C + is composed of a path C with s = w-
i0, —oo ( u (0, a circular piece around the origin, and
a path C+ with s = ~+i0, 0 ) cu ) —oo. Let y(z, I) be
the response function describing the response of m(z, I)
to the surface field l. Then we have in Laplace space

l = hg —cmg . (61)
l

o.(z, s) = y(z, s) —.
s

(69)

In terms of these quantities the equation to be solved
becomes

From the integration over the circular piece we recover
the static contribution (63) in the form

A '8 a(z,iI) = 0, o.(z, I) + r—cI, o (z, I,)

with the boundary conditions

(62a) a' (z) = y(z, 0) I,
where

(70)
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Irn s 0
0.00

4 8 12 20
0.00

s = 0.01

—0.02 —0.02

x -oo4 —0.04

Re s

—0.06 —0.06

—0.08
0 12 16 20

—0.08

FIG. 1. Deformation of the integration path C for Laplace
inversion into the path C + around the branch cut (solid line).

FIG. 2. Scaling function X(z, s, c) for s = 0.01 and c = 1.
The solid curve is the exact zero-loop result; the dashed curve

is the asymptotic form given in Eq. (78).

1
X(z, 0) = X (z) = ec+~

is the static response function. Noting further that
o (z, s)' = o (z, s') under complex conjugation, and in-
troducing the imaginary part

X"(z,cu) = Imp(z, ~+ i0),
one finally concludes that the Laplace inversion may be
written as

l d4)
o(z, t) = o (z)+ — X"(z, —~) e '. (73)

7l 0+ 4)

Let us first discuss the behavior of X for ( s ~(( Ass.
To this end we write the normalized deviation of y from
its equilibrium value in the scaling form

[X(z, s) —X (z)]/X (0) = X(~z, sA 'r ', ca ') (74)

and expand a~ in powers of the scaled variable

s—= s(Ass) '.
This gives

a+ —
i'd[1

—-'s + O(s')]

and

= as't [1+ 2s+0(s )] .

(75)

(76a)

(76b)

The inverse of these momenta are the decay lengths

$~F(s) = I/ag(s) (77)

discussed by BF.
On substituting the above expansions into Eq. (71),

one finds that the scaling function X(z, s, c) behaves as

in the limit s ~ 0, with z = icz and c fixed. Directly at
the surface, X is negative,

X(0, s, c) —(1+c) ' s'~ + O(s) . (79)

As z increases from z = 0, X decreases until it reaches
its minimum at

(80)

Finally, on the scale z z s ~ we have exponential
decay,

X z = (Ar/s)'/ = —s' ' exp ( —s' z) .

K+(s = —id + i 0, r = 0) = (id/A)' t

(-~ + i 0, 0)/i . (82)

Inserting this into Eq. (66) and using Eq. (69), we obtain

These results are illustrated in Fig. 2, in which we have
plotted the quantity X as a function of z for 8 = 0.01
and c = 1. The behavior of X can be easily under-
stood on physical grounds. Compared to the equilibrium
profile, there is originally a deficiency of order near the
surface. This deficiency corresponds to the fact that X
is negative near the surface. Since the order parame-
ter is conserved, relaxation towards thermal equilibrium
requires that order be transported towards the surface.
This takes time. The maximum depth from which order
can be transported to the surface within time t is roughly
given by z~a„1/a (t i) = (rAt)i)'~ for long times. At
distances large compared to this depth X must therefore
vanish.

Next we turn to the critical case r = O. On the inte-
gration path C+ chosen in Eq. (73) we have

x(z, s, c) = -Is (e
'* — e *) [I + 0(v s)]1+c

1 1
X (z ~)=

2c (1+w)2+ w2
:"(w,cz), (83a)

(78) where the function = and the variable w are defined by
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and

:-(iD, z) = sin wz + (1+ 2iu) cos wz —e (83b)

w —= c '(cu/A)'l

respectively. Our result for cr(z, t) thus becomes

(83c)

All results given above are in accordance with the scaling
behavior one expects on phenomenological grounds, with
the critical exponents taking their familar mean-field val-

ues.

IV. SUMMARY AND CONCLUSIONS

The present paper had a twofold aim: We wanted to
construct a semi-infinite model B that is, first, capable
of modeling the dynamical process of surface enrichment
near bulk criticality and, second, minimal in the sense
that irrelevant and redundant interactions are discarded
in order to make the model as simple as possible. The so-
lution to this problem is contained in the dynamic action
defined by Eqs. (1), (3), and (40). The second part of
our aim was to clarify which boundary conditions should
be imposed on the order-parameter field P and the asso-
ciated response field (t( in such a model with a conserved
order parameter, a question that is, of course, intimately

l l du( 2:-(w, cz)
(T Z) tIr: 0)C

—c u) At

c e o xto (1+ to)2+ to2

(84)

The asymptotic long-time behavior can be determined
as follows. The integrand in Eq. (84) is exponentially
small unless to ( (c4At) il4. If we let t ~ oo at fixed c
and z, the conditions At )& z and At &) |" will both be
satisfied at late stages. These conditions imply that for
those values of m for which the integrand is not exponen-
tially small we have u (( 1 and mcz (( 1. Accordingly
the function = and the m-dependent factor multiplying
the exponential may be expanded in powers of m and
wcz. Upon keeping the leading order and performing the
integration, one obtains

z(z, )) —
~

1 — ()+zz)(A)) & +O(MA)))
I ( I'l4
c ( 7rc

(85)

connected with the first part of our aim. Our results for
the boundary conditions are given in Eqs. (44a)—(44d).

Owing to the requested minimality property, the
boundary conditions have no explicit time dependence
and are as simple as in the static case. Their physical
meaning is clear: One of the boundary conditions for the
order-parameter field 4) is just the usual static bound-
ary condition (27); the second one corresponds to the re-
quirement that the current through the surface must be
zero. The response field P was found to satisfy Neumann
boundary conditions. As a second boundary condition for
P, the one given in Ref. [4] was recovered —namely, the
requirement that the field Aob, g satisfy the static bound-
ary condition. This may be understood as a direct conse-
quence of the fact that the operator Aohg(x, t) describes
the response with respect to a magnetic field h(x, t).

The greater simplicity of our model makes it more ac-
cessible to analytic calculations than BF's lattice and
continuum models, which should be in the same dynamic
(bulk and surface) universality class. In the preceding
section we have explicitly verified that the universal prop-
erties found in BF's mean-field analysis of the dynam-
ics of surface enrichment are correctly reproduced. Our
zero-loop investigation of the behavior near bulk critical-
ity may be improved by a renormalization-group analysis
based on the e = 4 —d expansion. Since the conclu-
sions of Dietrich and Diehl [4] concerning the structure
of the ultraviolet singularities remain valid, the required
surface counterterms and the resulting renormalization-
group equations may be gleaned from there. On the other
hand, the computational technique used in the two-loop
calculations of Ref. [4] for model A —the expansion of
the free response and correlation propagators in terms
of static eigenfunctions —requires modifications in the
present, model-B, case. The obvious reason is the follow-

ing. In the case of model A, the fields P and P satisfied
the same (static) boundary condition. Thus the static
eigenfunctions were an appropriate basis for both the free
response and the free correlation propagator. In the case
of model B, P and P satisfy in general distinct boundary
conditions. Furthermore, the static eigenfunctions do not
in general satisfy the second boundary condition required
for P. While eigenfunctions satisfying both boundary
conditions for either P or P could be determined, the ad-

vantage of working in a given eigenfunction basis is lost.
Utilizing a pz representation seems more appropriate.
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