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We study the number of distinct sites visited by N random walkers after t steps Siv(t) under
the condition that all the walkers are initially at the origin. We derive asymptotic expressions for
the mean number of distinct sites (Siv(t)) in one, two, and three dimensions. We find that (Siv(t))
passes through several growth regimes; at short times (Siv(t)) ~ t" (regime I), for t» & t & t'„we
find that (Siv(t)) ~ (t ln[N Si(t)/t ])" (regime II), and for t & t'„,(Siv(t)) ~ NSi(t) (regime
III). The crossover times are t

„
ln N for all dimensions, and t'„~oo, exp N, and N for one, two,

and three dimensions, respectively. We show that in regimes II and III (Siv(t)) satisfies a scaling
relation of the form (Siv(t)) t f(x), with x:—N(Si(t))/t . We also obtain asymptotic results
for the complete probability distribution of Siv(t) for the one-dimensional case in the limit of large
N and t,.
PACS number(s): 05.40.+j

I. INTRODUCTION

One of the most important properties of a discrete-
time lattice random walk is the number of distinct sites
visited by a t-step walk [1—19]. This importance stems
from the large number of models that are directly related
to the first-passage events of the random walker. These
events enter into the description of phenomena ranging
from relaxation processes [3—6] and diff'usion-limited reac-
tions [3,20, 21 such as defect annealing [2, 7] and exciton
trapping [8, 9, to the spread of populations in ecology
[22-25].

The analyses in the literature to date refer to the calcu-
lation of properties of Si(t), the distinct number of sites
visited by a single random walker. For this case, the
asymptotic forms for the mean number of sites visited

(Si(t)) in any number of dimensions d are well known.
Knowledge of (Si(t)) enables one to find a lowest-order
approximation to the survival probability for the "trap-
ping problem, " in which a random walker moves in the
presence of randomly distributed static traps [3]. This
problem can be regarded as the simplest generalization
of the Smoluchowski model for the rate of chemical re-
actions of the form A + B ~ B, taking into account the

possibility of a concentration of 8 s rather than the sin-

gle B envisaged by Smoluchowski [3, 20, 21]. (Si (t)) also
appears in the solution of the "target" problem [3], in
which a single target is static within a concentration of

diffusing traps. The survival probability in this case i.

given exactly by exp[—k(Si(t))] [3] (where k depends oi
the lattice and the concentration of traps), if the traps
are initially Poisson distributed.

The properties of the number of distinct sites visited
in the more general situation where there are N random
~alkers in the system are not related simply to the single-
walker case. Here we calculate the asymptotic properties
of Siv(t), the number of distinct sites visited by N » 1

independent random walkers.
The quantity Siv(t) has direct application to any sit-

uation that might be conceptualized as a "multiple-
scavenger problem, " in which mobile traps (or scav-
engers) react with stationary particles initially dis-
tributed homogeneously on the lattice, and a particle dis-

appears when any one of the traps reaches it. It can also
be useful for the analysis of the simultaneous survival
of several particles diffusing in the presence of randomly
distributed static traps, which is the generalization of the
trapping problem described above (Fig. 1). The proba-
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bility for the simultaneous survival of I of the initial
N particles will be given by a combinatorial factor times
(exp[—k SM(t)]), where k again depends on the concen-
tration of traps and on the lattice. For short times or
low concentration of traps, this survival probability can
be approximated by exp[—k (SM(t))].

We consider the case for which all N random walkers
are assumed to be initially at the origin; generalizations
are discussed in Sec. VII. The single-step displacements
are characterized by a finite variance, so that the t-step
transition probabilities (in the absence of boundaries)
tend toward the Gaussian form predicted by the central-
limit theorem. The random walkers move independently
of one another with the consequence that multiple occu-
pancy of a single site is allowed.

We find that the mean number of distinct sites (SN(t))
passes through several distinct growth regimes in time.
At very short times, we find the simple expression

(SN(t)) - At', t « t„(regime I)

where A depends on the lattice. Equation (1.1) simply
states that every accessible site is occupied by a walker.

Regime I holds so long as there are many walkers at ev-

tx ln N. (1.2)

To discuss times greater than t„,we will calculate
(SN(t)) using generating function techniques. This anal-
ysis leads to a compact scaling expression for (SN(t)),

where the tilde denotes the fact that (1.3) holds for N
and t both large. The scaled variable z is given by

N (d=1)
z—: N/lnt (d = 2)

N/Qt (d = 3),

and the scaling function f(z) by

(ln z) /, t„«t « t'„(regime II)
z, t » t'„(regime III).

Here the second crossover time t'„is

(1.4)

ery accessible site, i.e. , so long as NP;„(t)» 1, where
P~;„is the smallest nonzero occupation probability on
the lattice at time t T. hen P;„(t)= z ', where z is the
number of nearest neighbors of a site, so regime I must
terminate at a crossover time tx which scales logarithmi-
cally with N,

oo (d = 1)t'„- eN (d = 2)
N2 (d=3)

(1.6)
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FIG. 1. Schematic illustration of the trapping problem in
which the number of distinct sites enters explicitly into the
expression for the survival probability P,„,„.(a) A single
walker, starting in the center of an infinite square lattice,
can be trapped by fixed traps distributed randomly in the
plane. (b) N walkers starting at the origin in the presence
of the same set of randomly distributed traps. In both cases,
Psurv exp( (&N)) ~

The appearance of regime III (for d & 2) can be under-
stood from the following heuristic argument. In regime
II, all but an exponentially small fraction of the walk-
ers are contained within a d-dimensional sphere of radius
( t~/2. Hence (SN(t)) must be bounded from above by
the volume of this sphere V(t) t"/2. A second upper
bound on (SN(t)) is N(Sq(t)), where

( tl/2 (d 1)
(S&(t)) - & t/lnt (d=2)

, t (d= 3)

is the number of distinct sites visited by one random
walker. A crossover in (SN(t)) will occur if the system
passes from one constraint to the other. For d = 1,
V(t) & N(Sq(t)) for all t, so no crossover occurs —regime
II holds for arbitrarily large t, confirming the result (1.6a)
above. For d = 2 and 3, we find V(t) & N(Sq(t)) initially,
but for sufficiently large t, V(t) & N(S&(t)). Thus t'„is
obtained from the condition

(1.8)

For d = 2, (1.7) and (1.8) lead to t'„Nt'„/ ln t'„,so that
e; this confirms the result (1.6b) above. Similarly,

for d = 3, (t'„)s/2 Nt'„ implies t'„N2,confirming
the result (1.6c). One can interpret t'„asthe time up to
which the walkers visit the same places very frequently.
For times longer than t'x, the walkers "almost" do not
see each other, and can be treated independently. Thus
one would expect the form SN(t) NSq(t) under these
conditions.
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Following the same kind of reasoning, we can generalize
the above argument to any spatial dimension d. The
crossover time to the final regime will be given by

t'„-N'i~ '& (d & 2). (1.9)

This result is a consequence of the fact that (Si(t))
for any dimension larger than 2. Equation (1.9) shows
the effect of the space dimension on t'„;it shows that
when the dimension increases, the walkers become "in-
dependent" at shorter times t'„.

The above results will be derived in detail in this pa-
per. The remarkable feature is the appearance of regime
II. The behavior in regime I corresponds to the limit
[N ~ oo, t fixed]; the interface of the set of visited sites is
smooth and S~(t) is easy to understand (Siv t"). The
behavior in regime III corresponds to the opposite limit
[t ~ oo, N fixed]; the interface of the set of visited sites
is extremely rough and the form of S~ is also easy to
understand (Siv —NSi). In regime II, the function Siv
takes on an unexpected and nontrivial form. The walkers
are largely confined to a sphere of radius Qt (in contrast
to regime I, where they populate a sphere of radius t); the
interface of the set of visited sites undergoes a progressive
roughening which is readily apparent on visual inspection
of the set of visited sites (Fig. 2).

We also carried out numerical calculations for (S~(t))
using both the methods of Monte Carlo and exact enu-
meration. In particular, we confirmed the scaling form
(13) [26].

The organization of this paper is as follows. In Sec. II
we present the general formalism that we use to calculate
the expressions for the mean number of sites visited by
N random walkers and discuss regime I which is present
for all dimensions. Sections III, IV, and V deal with
the explicit calculations for the one-, two-, and three-

dimensional cases, respectively. In Sec. VI we calculate
the probability distribution for the number of distinct
sites visited by N walkers in a one-dimensional system.
The discussion and conclusions are in Sec. VII. We note
that in this work, asymptotic results can mean one of
two possibilities: (a) the step number tending to infinity
with the number of random walkers held fixed, or (b) the
number of random walkers tending to infinity while the
step number is held fixed.

II. GENERAL FORMALISM AND REGIME I,
ALL DIMENSIONS d

I', (r) = 1 —) fi (r). (2.1)

The probability that r has been visited by at least one of
the N random walkers in the course of t steps is 1 I', (r—)
Thus, the expect, ed number of distinct sites visited by the
N random walkers by the tth step is (SN(t)), where

(s (t)) =) [I-r, (.)], (2 2)

where the sum is over all sites of the lattice.
The analysis for regimes II and III requires the in-

troduction of a generating function S(u;t) defined with
respect to the number of random walkers N as

(2 3)

First we introduce some notation. The probability that
a site r will be first visited at step t by a single random
walker initially at the origin will be denoted by fi(r) We.
denote by I'i(r) the probability that the site r has not
been visited by a single random walker by step t. This
function is related to the fi (r) by

Since N occurs as a power in Eq. (2.2) we can immedi-
ately find an expression for S(u; t) in the form

. ( 1 1

1 .-I .r, (,))~
(2.4)

FIG. 2. Contours of the surface obtained from snapshots
at successive times of the territory covered by N random walk-

ers for the case N = 500 for a sequence of times in regime II.
Note the roughening of the disc surface as time increases.

From Eq. (2.2), we are in a position to derive a general
result for the limit defined by t fixed and N ~ oo, in the
case that the transition probabilities of the random walk
have compact support, e.g. , when the walker is allowed t,o
make steps to nearest neighbors only. After t steps, the
set of all accessible sites for a single random walker O~

consists of a finite number of elements N(Q, ). Further-
more, I'i(r) ( 1 whenever r g 0, or limN I', (r) = 0.
It therefore follows that lim~ (Siv(t)) = N(Oi). That
is to say, when there are N independent random walkers
they will tend to visit all possible visitable sites when
the limit N ~ oo is taken. For example, in the case
of a nearest-neighbor random walk in d dimensions, the
maximum number of sites that can be visited in t steps
is t" which leads to the result [27]
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lim (S~(f)) t (regime I).
1V~oo

(2.5) grand of Eq. (3.5) we can rewrite (3.5) as a Laplace trans-
form

For finite but large N, this initial growth regime, regime
I, holds as long as N » z', where z is the coordination
number of the lattice [26].

III. ONE DIMENSION, REGIME II

hz)
fz'2 l

&( )- (3 1)

for t )) 1.
To be consistent in the use of a continuum approx-

imation, we replace the summation in Eq. (2.4) by an
integral. For this purpose we need the approximate form
for I'&(z) which is derived from Eq. (3.1). This is

I'i(z) fi (z)&t' = erf
~

t
(3.2)

On substituting Eq. (3.2) into (2.4), we find that the
generating function S(u;t) can be approximated by

2o'+t u 1 —erf(v)
dv

1 —u 0 1 —u erf(v)

(3.3)

Next we are interested in finding, for d = 1, the form
of (S~(t)) in the limit of a large number of steps (regime
II). We use the expression for fi(z), where the position
z is now a continuous variable, based on the use of a
continuum approximation for the probability distribution
p&(z), the probability that a walker initially at the origin
will be at position z at time t. The result is [28]

e ~~~"1dv = e ~ f(p)dp,
0 0

(3.7b)

where f(p) = 1/P'(v), it being understood that the value
of v to be substituted into this expression is to be written
in terms of p.

The right-hand side of Eq. (3.7a) is a Laplace trans-
form, and in order to approximate its value for small

( we must estimate the behavior of f(p) for large p.
An approximate solution to the transcendental equation
P(v) = p, in the region p » 1, or v » 1, is obtained by
taking logarithms of both sides of the equation, and re-
taining only the lowest order term. This procedure yields

1 IfV

(1/)+4( )

exp
~

——
~
df exp[—(P(v)]dv. (3.7a)

1 f
P ( &) 0

Since we are interested in the evaluation of this inte-
gral in the limit c —+ 0 we use a combination of Abelian
and Tauberian theorems to find an approximation to the
value of I(u) at the singular point. The crucial contri-
bution to the Laplace transform in ( space results from
the region ( 0; hence it is in this limit that we must
evaluate the integral with respect to V. However, because
of the restriction to small (, we need only consider con-
tributions to the integral from the region in which $(v) is
large, which we can identify as v )) l. We may estimate
this contribution by converting the v integral to a Laplace
transform by introducing a new variable of integration,
p:—$(v). With this substitution we have

v y in(p), (3.8)

e
1 —erf(v)

V 'Il'
(3 4)

It then follows that

(3 5)

On defining the small parameter

as well as a function

P(v)—:v e"

(3.6a)

(3.6b)

and introducing an integral representation of the inte-

Equation (3.3) defines the integral I(u). Using stan-
dard Tauberian methods for power series [29] we relate
the behavior of S(u;t) in the limit u = 1 to the large-N
limit of (SIv(t)). If we simply set u = 1 in the integrand
of I(u), we see that the integrand is identically equal to
1, with the result that the value of the integral must be
infinite due to the behavior of the integrand at large v.
Hence, in determining the singular behavior of I(u) in
the limit u ~ 1, we can replace erf(v) by its value at
large v,

or

1f(~)- ) p~ 00.
2p gin(p)

(3.9)

As mentioned, the lower limit in the integral on the right-
hand side of this equation is not important since its effect

Our approximation to f(p) is only valid in the limit of
large p. Hence we may change the lower limit on the
p integral in Eq. (3.7b) to some value that, is O(1) in
order to get around any difBculties due to the logarithm
going negative (we will see later that the precise value is
irrelevant), thereby limiting the validity of our results to
the region of small (. We find that the transformation in
Eq. (3.7b) can be approximated by

f
OO oo —gpe

e "f(u)4 -
& 8p

0 ~v»(~)
e

dA
A gin(A/()

1 oo

2 gin(1/()
(3.10)
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shows up only as a logarithmic term, which does not
contribute to the lowest-order term in the limit ( ~ 0.
Finally, we may evaluate the integral with respect to (
in Eq. (3.7a),

( g)
I(u) - — exp

~

——
~
gin(1/()d(

2e o 4 &)

-
~ Qln(1/a), (3.11)

which, when combined with Eq. (3.3), implies that as
u -+ 1 the singular behavior of S(u;t) is

(3.12)

It therefore follows, by a Tauberian theorem for power
series, that for long times the mean number of distinct
sites visited by N random walkers in one dimension is

tx ln(N). (3.14)

IV. TWO DIMENSIONS, REGIMES II AND III

To derive an approximation to (S~(t)) for long times
in two dimensions it is necessary to use the asymptotic
form of I'q(r) in the limit of large rz and large t,

(S~(t)) does not depend explicitly on N
We emphasize that the expression in Eq. (3.13) is only

true for N » 1 and t ~ oo. If t is fixed and N is
increased so t « ln N, we have shown at the end of Sec. I
that (SN(t)) is proportional to t rather than /t. The
step number tx at which the crossover between the two
growth regimes takes place is

(SN(t)) o v't ln N (regime II). (3.13)

2o't ( r' l
I'g(r) 1—

r~ln(t) q 4~st) 'exp
I (4.1)

Thus the y t dependence on the number of steps re-
mains unchanged from the single-walker result, and the
entire effect of having multiple random walkers appears
in the factor gin(N). The logarithmic dependence on N
can be interpreted as a result of a "screening effect" ac-
counting for the overlap of the contributions of different
walkers, albeit not as pronounced as in regime I where

in order to evaluate the sum in Eq. (2.4), in the limit
r ~ oo (see Appendix A).

This approximate form for I'g(r) allows us to derive
a corresponding approximation for the function S(u;t),
defined in Eq. (2.4). Then, after a replacement of the
sum over r by an integral with respect to r, we find the
integral representation, valid in the limit u ~ 1,

2' p 4xo t 1
u;t 2

dr= dv)
(1 —u) o [r~ln(t)/2o t](1 —u) exp(r /4o t)+ 1 1 —u o eve" + 1

(4.2)

in which the parameter c is now defined bye:—2(1 —u) ln(t). This form of the integrand is quite
different from that required for the analysis in one dimen-
sion, since in the present case the parameter c contains
both 1 —u and ln(t), rather than just 1 —u. This leads to
the appearance of an additional regime in the behavior
of (S~(t)) regarded as a function of the two variables N
and t.

Accordingly, we will consider the behavior of S(u;t)
in the two limits e —+ co and c ~ 0, which corresponds,
respectively, to t ~ oo for fixed N, and N ~ oo for fixed
but large t. In the first case we can neglect the factor
of 1 in comparison to eve". This appears to introduce a
singularity into the integral because of the term 1/v, but
the singularity is apparent rather than real, as can be
seen from the rigorously correct version of S(u;t) given
in Eq. (2.4), and the consideration that I'q(0) = 0. It
therefore follows that S(u; t) has the scaling form

(4.3a)

(S~(t)) Nt/ln(t). (4.3b)

4 2t oo

(1 —u)c o ve" + (I/c)

4~~'t
exp

(1 —u)e o ( e)

x exp(-fve" )dv.
0

(4.4)

Thus, for times such that t )) t'„,where t'„e,the
expected number of distinct sites visited by N random
walkers is proportional to N times the expected number
of distinct sites visited by a single random walker [14, 15].

Let us now consider the limit c ~ 0, for which the
neighborhood of v = 0 gives the most significant contri-
bution to the integral in Eq. (4.2). When the term ~ is
factored out of the denominator of the integral in Eq.
(4.2) we find

where C is a constant that appears difficult to calculate
accurately. The singularity in u in (4.3a) leads to

We see that the integral with respect to ( can be regarded
as a Laplace transform of the function
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F(() = exp( —(ve")dv.
0

(4.5)

pii) f pi (p) g f gp
1 p (' P

(4.6)

which, it is to be understood, is valid only in the limit

( ~ 0. Thus we see that F(() is an exponential integral,
and from the properties of such integrals we find that

Because of our assumption that u is close to 1 the
only values of ( that give a significant contribution to the
transform are those for which ( 0. But because of the
form of the function F((), we infer that this contribution
is controlled by the behavior of the integrand for very
large V. To ascertain the nature of this behavior let us set

p = ve". At large v one has the approximation v ln p
and dv = dp/p. If we were to substitute these formulas
into Eq. (4.5), then we would find an infinity that arises
from the behavior of the integrand at p = 0. However, it
is also evident from the original form of the integral that
no such infinity exists. To eliminate this artificial infinity
we introduce a cutoff in the lower limit of the integral at
p = 1, in which case we have

walkers in two dimensions is

(Siv(t)) 4mo t ln
~ ~

(regime II).(N )
(I nt ) (4 9)

In regime II, S)v(t) increases only logarithmically with
the number of walkers, in contrast to regime III discussed
earlier for which Siv(t) increased linearly with N. The
form of (Siv(t)) in Eq. (4.9) suggests the same screening
effect that we found in one dimension, i.e. , the parameter
N, which would appear if the contribution from each ran-
dom walker were to be counted separately, is essentially
replaced by ln(N). The degree of overlap ("screening")
is thus much less in two dimensions than in one, as one

might guess. Notice that there are now two crossovers
to be taken into account. The first is that from the be-
havior (S)v(t)) t appropriate at short times, to the
form given in Eq. (4.9). The second crossover occurs
from the "screened" value of (S)v(t)) to the unscreened
value, which occurs for t'„exp(N); that is, when the
logarithm in Eq. (4.9) becomes O(1). Because of the ex-
ponential dependence of t'„onN, the effect of screening
will generally persist for a very large number of steps.

F(&) - »
I

—
I

.
1

&() The calculation of the asymptotic behavior of (Siv(t))
in three dimensions is quite similar to that for two di-
mensions. The appropriate expression for I', (r) is (see
Appendix B)

Thus

Gal'0'
S(u; t)

(1 —u)s ln(t)
(»

x exp/ ~ /ln/ —
/i( — )'l (t))

4~o"-t,
(1 —u) ( (I —u) 2 ln(t) ) '

1 r
I'i(r) 1 —

2
erfc

~2so2p(0; 1)i. (5.1)

(4.8)
With this formula we can convert the sum in Eq. (2.4)
into an integral, taking the spherical symmetry into ac-
count. In this way we find

which implies that there is a time regime ln N « t «
e for which the number of distinct sites visited by N

V. THREE DIMENSIONS, REGIMES II AND III
(4.7)

2(u;t)-
o 2p(0; 1)(1—u)

r erfc(r jo~2t) 4n o s(2t)s)'2 vserfc(v)dr= dv)
r(1 —u) + [I/2mo 2p(0; 1)jerfc(r/o ~2t) 1 —u p catv + erfc(v)

(5 2)

in which the parameter ~ is defined by
2s~'vcr'p(0; 1)(1 —u).

Again, the result of setting u = 1 is an integral diver-
gent due to its behavior at the upper limit. Hence we
can introduce the asymptotic form of erfc(v) to capture
the divergent behavior of the integral as u ~ 1. Using
this type of approximation we find that the integral in
Eq. (5.2) can be transformed into one that is very simi-
lar to that given in Eq. (4.2), and whose properties can
also be found by using essentially the same analysis. The
starting point —as for d = 2—is the representation

S(u;t)- 47ro (2t) i v
dv

(1 —u) fp r/tQ(v) + 1

4mo.s(2t) s~'
I(u, t), (5 3)

in which the function g(v) is

@(v) = ~xv e" . (5.4)

As was the case in two dimensions, the coefficient of Q(v)
in the denominator of Eq. (5.3) contains both 1 —u and a
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t-dependent factor, which again leads to the appearance
of two regimes in the behavior of (S~(t)).

Since the function g(v) in the denominator is propor-
tional to c+t, we expect that results in the two limits
e/t « 1 and c+t» 1 differ from each other just as we

found in d = 2. The first of these cases corresponds to
keeping the time fixed and allowing N to increase indef-

initely, and the second to reversing the order in which
these limits are taken.

We first consider the case cQt « 1 (regime II), and
apply the transformation in Eqs. (3.7a) and (4.5). In
analogy with Eqs. (3.7b)—(3.10) we conclude that

(S (I)) -«"'f
t

(5.11)

Here C is a constant and the function f(z) has the prop-
erties

y( )
ln (z)& z )) 1

z, z g( l. (5.12)

A combination of the results in Eqs. (5.8) and (5.10)
suggests that the function (S~(t)) can be written in scal-
ing form

1 1

~V& 0 (I/~)+ &(v)

exp
/

—
/

d(
(

t s ( e t)
x v exp[—gQ(v)]dv.

0
(5.5)

The scaling form of Eq. (5.11) can also be deduced
from the integral representation in Eq. (5.3). To see this
divide out a factor of (1 —z) ~ from the denominator of
Eq. (5.3). This allows us to express S(u; t) as

4na (2t) ~ V2
S(u;t)- dv)

p(v) «+ [I/(I —u)l

As a matter of detail in analyzing the integral over v for
small (, we can make the transformation suggested in Eq.
(3.?a), remembering that there is now an extra v in the
integrand in Eq. (5.5). On taking this into account in the
calculation, one finds that the analog of Eq. (3.11) is

I(u, t) ~ ln ~

((1—u) t) (5 6)

On substituting this approximation into the represen-
tation of S(u;t) in Eq. (5.3) we find

2 o (2t)
1 —u &(I —u)yt)

(5.7)

A Tauberian theorem then allows us to conclude that

, , /NI
(SN (t)) 2xo (2t) ln

~
~

(regime II),

which is valid when N )) +t. Again we see that there
exists a "screening" growth regime of (S~(t)) after the
initial regime for which (S~(t))

The elaborate analysis leading to Eq. (5.8 is again un-

necessary in the opposite limit in which c t &) 1, since,
as in two dimensions, we can simply omit the factor 1

that appears in the denominator of Eq. (5.3) and evalu-
ate the resulting integral. In this way we find

2ot

~up(0; 1)(1 —u)' '

which implies that in regime III
2'

(S~(t)) Nt (regime III).
xp 0;1

(5.9)

(5.10)

Equation (5.10) is valid in the limit N « t ~, corre-
sponding to the "unscreened" regime in which the over-

lap of the contributions of each walker becomes negligi-
ble. The crossover from screened to unscreened behavior
occurs at a step number t'„N . The order of magni-
tude of t'„differs considerably from the result found in
two dimensions, for large numbers of random walkers.

(5.13)

where the form of the function p(v) is determined from
Eq. (5.3). One can now verify that the integral in Eq.
(5.13) is a slowly varying function [30] when regarded as
a function of (1—u) ~. To demonstrate this, let the value
of the integrand be denoted by J[(1 —u) ~;v, t]. This
function is slowly varying in the limit u ~ 1 provided
that

J[c(1 —u) ', v, t,]hm-i J[(1—u)-', v, t]
(5.14)

for any positive value of c. That this property holds is

easily verified from the explicit form of the function J,
that is shown in Eq. (5.13). A Tauberian theorem for
power series then allows us to conclude that

(S~(t)) - 4xo (2t) i' v'i, i
dv.

& [p(v)(+~/N) + Il')
(5.15)

Our contention is now proved since the integral is man-

ifestly equal to a function of y t/N, which is equivalent
to the scaling form found in Eq. (5.11). As mentioned
in Sec. II, we performed tests of (5.11) using exact enu-

meration procedures, and found good agreement with the
scaling form.

VI. DISTRIBUTION OF Siv(r)
FOR ONE DIMENSION

In addition to the mean number of distinct sites

(Sq(f)), asymptotic results for the distribution of Sq are
known for the case of a single random walker for d = 1

and for d & 3 [13]. For the N walker case, in d = 1, we

can derive the probability density of the overall span of
the N diffusing particles, that is, the distribution of end-
to-end distances between the rightmost and the leftmost
positions reached by any of the walkers in the continuum
limit. The span, in one dimension, can be regarded as the
continuous analog of the number of distinct sites visited
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by a discrete random walk. The span for this system can
be decomposed into the sum of the furthest displacement
in the positive z direction, and the corresponding furthest
displacement in the direction of negative z. Hence, the
first problem to be considered is that of calculating at
time t the probability density for the maximum displace-
ment of a diffusing particle, initially at z = 0. Let D
be the diffusion constant and let Bi(t) be the maximum
displacement in the positive z direction for a single par-
ticle at time t. The probability that Bi(t) & b is easily
calculated to be

( g l exp( —p /4Dt) 2Dt

(4Dt) ( p

(6.7)

a~ y 4Dt ln(N), c~ QDt/ ln(N), (6.8)

so that, according to Eq. (6.5),

from which one can verify that Eq. (6.4) is indeed satis-
fied. The constants a~ and c~ that appear in Eq. (6.5)
can be found from Eq. (6.6) to be

P(b, t) =erf
~

4Dt)
(6.1)

P(b, t) 1 — exp i-/2Dt f b2 )
(6 2)

We next make use of the following result from the theory
of extreme-value statistics [30]:

Dejine a function R(g) by

lt [1 —P(b, t)]db
(() 1 P(~, t)

and assume that as ( ~ oo

1 —P(g+ zR((), t)
1 —P((, t)

(6.3)

(6.4)

then there exist sequences, a~ and c~ & 0, N = 1, 2, . . . ,
such that as N —+ oo

We are interested in the distribution of the maximum
displacement of the largest of the N values of Bi(t), and
from this we wish to calculate the probability density
of the global maximum displacement, a random variable
which we denote by 8~(t). In a formal sense, this is an
easy problem since the probability that none of the N
particles has ever moved beyond b is just [P(b, t)]+, and
the probability density is found by differentiating this for-
mula. Following this route would require the evaluation
of very complicated functions, and we therefore use the
theory of extreme-value statistics [31], which will yield
results for N )& 1 and t —+ oo, but in which the results
can be expressed in terms of universal functions that are
rather simple.

One result required for the following calculations is the
limiting form of P(b, t) as b increases indefinitely. This
is found from Eq. (6.1) to be

8~ t — 4Dt ln(N)
lim Prob & z =exp( —e ).N~oo /Dt/ ln(N) j

(6.9)

This explicit expression for the cumulative probability
allows us to calculate all of the moments of the random
variable Biv(t). For example, the first moment and the
variance of 8~(t) in the limit of large N are

(BN(t)) = /4Dt ln(N) + pgln(N)/Dt,
(6.10)

(~' & Dt
&'[BN (t)] =

I 6
+ V l

1(6 ) lnN'
where y is Euler's constant equal to 0.577. . . .

These expressions show that the maximum displace-
ment is proportional to the value i)4Dt ln(N) with a
variance that vanishes as N ~ oo, i.e., the probabil-
ity density for 8~(t) tends towards a b function in that
limit. Since the underlying diffusion processes are sym-
metric, we may expect the same dependence on the pa-
rameters t and N for the furthest displacement in the
z direction. The results in Eq. (6.10) indicate that to
a very good approximation the span is proportional to
QDt ln(N), which exhibits the same dependence on time
and the number of random walkers as that given in Eq.
(3.13). Because the N-dependent term in the expression
for a [8~(t)] is inversely proportional to ln(N) we expect
the b-function approximation to the probability density
of Biv(t) to be accurate only for enormously large values
of ¹ Otherwise, the distribution is rather wide.

A complete solution in the same sense as is implied
in Eq. (6.9) is not available for random walks for d ) 1

because the number of distinct sites visited cannot be
identified in terms of the span.

lim Prob(8~(t) & a~+ c~z) = exp( —e ).N~oo (6.5) VII. DISCUSSION AND EXTENSIONS

1
ajv —inf b; 1 —P(b, t) & —,cN = R(aN). (6.6)

Making use of the asymptotic form of P(b, t) in Eq.
(6.2), we find the asymptotic form of R(() to be

The constants aN and c~ can be chosen as the solutions
to

We have restricted our analysis to the case of random
walkers, all starting from the same initial position; this
is responsible for the the "screening efI'ects" that appear
in the first and second growth regimes. Yet, depending
on the degree of initial localization of the walkers, one
may reduce the overlap of the difI'erent contributions thus
reducing the time in which the expressions for (S~(t))
for the first and second regime are valid. If the initial
localization of the walkers is sparse enough, one might
skip the initial-growth regimes altogether.
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TABLE I. Summary of the expressions for the number of distinct sites (Siv(t)) (denoted S for compactness) for the different
growth regimes, as well as the crossover times separating these regimes. The expressions for general dimension d ) 3 in regimes
II and III are conjectured from the results in one, two, and three dimensions.

Regime I

S
S
S
S td,

&x

ln N
lnE
ln N
ln N

Regime II

S vtlnN
S t ln(N/ ln t)

S [t lii(N/+t)]
S - [t 1 (Nt'-"i')]"i'

N

N
~2/(d —2)

Regime III

S Nt/ln t
S-E&
S Nt

The effects of the initial localization can be estimated
by considering that the walkers are initially distributed
within a region of linear size t, and comparing l with
the characteristic width ((t) t'/ of the distribution
of positions of the N walkers that are initially at the
origin. Then we can distinguish three types of behavior
for Siv(t):

(i) If I « f(t„) V/ln(N), we expect to observe all
three growth regimes of Stv(t).

(ii) If ((tx) « I « ((t'„),then the system would still
pass through regime II and regime III.

(iii) If I &) f(t„),then regime III will hold for all times.
La .mma~y, em BRA 4' the cumber af 4~4a"4 sit

visited by N random walkers passes through several
growth regimes, depending on the degree of overlap of
the contributions of each walker. We also obtain the
asymptotic expressions for (SN(t)) in each regime in
d = 1,2, 3, as well as the crossover times. The distinct
growth regimes of (S~(t)) and the crossover times are
summarized in Table I. Making use of the theory of ex-
treme order statistics [30], we also found the asymptotic
form of the distribution of the Siv(t) for d = 1.

There is considerable recent interest in the modifica-
tions in basic physical laws that are required when the
underlying substrate is a fractal object instead of a Eu-
clidean space [32, 33]. An analysis of the generalization
requiring us to find the expected number of distinct sites
visited on a fractal relies much more heavily on com-
puter simulations and will be investigated in a work to
follow, as well as the addition of a biasing field, which
will also fundamentally modify the interference effects
and the properties of the number of distinct sites.
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APPENDIX A: DERIVATION OF EQ. (4.1)

The generating function for f((r) as a function of t
is readily calculated in terms of that for the probability
that a walker initially at the origin will be at position
r at time t, p, (r). Let these two generating functions
be denoted by f(r; z) and p(r; z), respectively. Then it
is well known that when r g 0, f(r; z) and p(r; z) are

related by f(r; z) = p(r; z)/p(0; z). This relation will

be exploited in the analysis to follow. Since one can
always express p(r; z) in terms of a d-dimensional integral
containing the characteristic function for a single step for
random walks in which the steps are independent random
variables P(r), the function f(r; z) can be represented by
a ratio of d-dimensional integrals for these walks.

To derive expression (4.1), we start by defining the
generating function of the I', (r) with respect to t will be
denoted by I'(r; z), where [14, 15]

(A1)

in which p(r; z) is the generating function of the

step transition probabilities. The two-dimensional form

of p(r; z) can be expressed in terms of the generating
function for the characteristic function P(r), p(8)
Q„p(r)exp(ir 8) as

p(r;z) =
x e -ir 8

d H., 1 —zp(8)
(A2)

We are only interested in the large-t behavior of I'i(r),
which by an argument familiar in the literature of random
walks [28] is found from the asymptotic dependence of
p(r; z) on z in the neighborhood of z = 1. For simplicity
we restrict ourselves to the case in which steps along the
z and y coordinates are uncorrelated and the variance of
step length is a constant o . When the limit u ~ 1 is

taken, it is known that p(0; u) has the singular behavior

[14, 15]

1
p(0; z) In (A3)

1
p(r; z)—

4+~

OO eir 8

1 —z y (o'/2)8'
(P8 (A4).

By exponentiating the denominator using the formula
u = Jo exp( —ut)dt, we transform this last equation
into

When z is set equal to 1 in Eq. (A2) the double integral
is singular because the denominator vanishes at 0 = 0.
Because of this we can find the asymptotic behavior as
z ~ 1 by approximating to p(0) in the neighborhood of
the origin, and extending the limits of integration to +oo.
This leads to the approximation
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OO

p(r; z)-, e-i'-'l'dt
4' 2 o

OO OO

s —( s t /2)d2g —(1— )t- /2o t It
~ +2(I )

27I C7 0 t so2 (o j '

(A5)

where rz = r r, and where I&o(z) is a Bessel function.
Hence it follows that in the limit u ~ 1 the form of
1 (r; u) is approximately equal to

2o't
I', (r) 1 — exp ~—

in the limit r ~ oo.

(A10)

1 2 r
I'(r; u) 1— Ko — 2 1 —u

1 —u in[1/(1 —u)] o

(.~2sI'(s)—:l', t(I' t(s)} = Kpsln1 s 0
(A7)

where l'.t denotes a Laplace transform. The desired result
need only be valid in the limit t ~ oo, which is equivalent
to s ~ 0 in the Laplace transform domain. In this limit
ln(1/s) is a slowly varying function [29] and contributes
a term I/ln(t) to the inverse. The inverse transform of
the remaining terms is

Idp r 2s p
g

r
s 4%2t j (A8)

where Ei(z) is the exponential integral [19].The impor-
tant regime in this calculation is r~ &) 4+2t, in which we
can make the approximation

(A6)

From this formula we will deduce the form of I', (r) for
large r, which, by Eq. (2.4) governs the behavior of S(u; t)
for large t.

To do so we must essentially determine the inverse from
the second term in Eq. (A6). For this purpose we regard
the generating function as a Laplace transform by setting
u = exp( —s). The limit u ~ 1 is then equivalent to s ~
O. Notice that the Bessel function that appears in Eq.
(A6) is singular at r = 0. This singularity is an artificial
one since I' t(0) = 0 in the original lattice model, which
allows us to finesse any difBculties due to it in our later
evaluations. The inverse of the term (1 —u) i is equal
to 1. We therefore seek to find the inverse transform of
the function

APPENDIX B:DERIVATION OF EQ. (5.1)

Following the analysis of Appendix A, we first observe
that in three dimensions p(0; 1) is finite. If we again re-
strict ourselves to completely symmetric random walks
with uncorrelated displacements along the three coordi-
nate axes as well as equal variances, then a calculation
similar to that given in Eq. (A5) yields the approximation

1 r
p(r; z) exp ——/2(1 —z)

~

.
2xcT r 0' )

This, in turn, implies that I'(r; z) behaves as

(B1)

1
I'(r; z)

1 —z

11—
2sa2p(0; 1)r

r
xexp —— 2 1 —z

0' ) (B2)

A 1 r
I'(r; s) — 1— exp —— 2s

s 27ro2p(0; 1)r o

While it is possible to calculate an asymptotic approx-
imation to I't(r) by expanding the exponential in Eq.
(B2) and using a Tauberian theorem for power series
[28] to find the contribution from each individual term,
it is somewhat simpler to use the fact that t is large,
and replace the power series that defines I'(r;z) by a
Laplace transform. This is equivalent to replacing u by
e ', where for present purposes s 0. In this regime
I'(r; z) is to be regarded as a Laplace transform which

we denote by I'(r;s). This function is given, in the re-
gion s 0, by

(r2 l o2t (
1 exp

$4o2t j r~ g 4o~t j
with the result that I't(r) behaves as

(A9)
1 (

I't r 1 —
2

erfc
~2so2p(0; 1)r (o~2t j (B4)

Since the inverse transforms of the functions appearing
in this equation are known, we can write
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