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I. INTRODUCTION

The investigation of critical phenomena constitutes one
of the most active and exciting areas of scientific en-
deavor. Although most concomitant work is related to
the thermodynamic limit [1], this kind of study can also
be of interest in the case of ground states of finite sys-
tems, offering rewarding insights into the intricacies of
the many-body problem [2, 3]. Indeed, the very concept
of phase transition is both valid and useful even for a
relatively small number of particles, as discussed by Gil-
more, Feng and others [4-8]. The work of Kiimmel [9]
is especially significant in this respect. He recommended
the term “shape transitions” for finite systems.

Without referring specifically to phase transitions, one
would surely be most interested in studying the physics
of a given system in those regions of an (appropriately
defined) space of control parameters where the pertinent
wave function exhibits significant changes. From a prac-
tical point of view, the question then arises as to what
extent it is possible to make predictions, based on a lim-
ited amount of a prior: information, about the location
of those regions.

The aim of the present work is to provide some ten-
tative answers to this question within the context of
pure quantum states by recourse to recent developments
[10-12] based on information theory [13-18]. The possi-
bility of reconstructing the ground state (GS) of a given
system on the basis of a limited amount of information
has been discussed in Refs. [10-12], within the con-
text of a special version of the maximum-entropy princi-
ple (MEP). An appropriately defined pseudoentropy (or
quantal entropy) was seen to constitute a useful tool for
discussing some aspects of the many-body problem. We
shall here discuss the relationship between this pseudoen-
tropy and critical regions. On this basis, we shall show
that the knowledge of a few GS expectation values may
suffice to infer the location of those regions referred to
above where the interesting physics takes place. At the
same time we shall be able to obtain a criterion for defin-
ing critical regions in finite systems.

The paper is organized as follows. The pertinent for-
malism is developed in Sec. IT and is illustrated in Sec. II1
in two exactly solvable many-body models, which exhibit
different critical behavior. Finally, some conclusions are
drawn in Sec. IV.

II. FORMALISM

A. Maximum-entropy scheme

The state of a quantum system is fully determined by
the knowledge of the corresponding statistical operator p.
However, in most practical cases only a set of expectation
values O; of n observables O; is available:

0; = (0;) = Txp0O;. (2.1)

Unless the operators O; constitute a complete set, this
information does not suffice to univocally determine p.
According to the standard prescription of information
theory, the least-biased p compatible with the available
data is that which maximizes the entropy (we set the
Boltzmann constant kg = 1)

S=-TrpInp

subject to the constraints (2.1). This leads to the well-
known result [13, 14)

p = exp (—-/\0 - Z/\ioi> )
i=1

where the A; (i = 1,...,n) are Lagrange parameters to
be determined by satisfying Eq. (2.1), and

Ao = In Trexp <— Z&'Q‘)
i=1

is the normalization constant (which can also be con-
sidered as an additional Lagrange parameter associated
with the identity operator Oy = I, with the constraint
(Oo) = 1), satisfying

o
N ~0i,

The ensuing maximum entropy acquires the form [13, 14]

(2.2)

(2.3)

(2.4)

(2.5)

i=1,...,n.

S=Xo+ Y XO; (2.6)
i=1
and fulfills the relationships
g—;—A,, i=1,...,n (2.7)
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If the state of the system depends upon some control
parameters, a fact which will obviously be reflected in the
available information, we can associate phase transitions
or critical phenomena with those regions of the parameter
space where (2.6) exhibits appreciable changes. This will
be the central idea of this work. Actually, in thermody-
namics (which corresponds, within the previous scheme,
to the case where just the mean values of the Hamiltonian
H and eventually a reduced set of observables commut-
ing with H are available [14]) phase transitions can be
associated, for infinite systems, with those points in the
space of control parameters where the thermodynamic
entropy exhibits indeed a singularity of a certain type
[4]. For finite systems, no such singularities will actually
occur, but remnants of these will survive as regions where
the entropy exhibits a significant variation. We remark
that in all these situations, the entropy which is studied
is that associated with an incomplete description given
by just a few relevant observables.

B. Application to pure states

The goal of the present work is to apply these ideas to
the study and detection of transitions in ground states of
finite quantum systems. For a pure state [¢), the exact
statistical operator reduces to pex = |¢)(¥|, with zero en-
tropy. However, in the case of an incomplete description
based on a reduced set of observables, the corresponding
entropy (2.6), associated with the inferred density (2.3),
will not vanish in general and measures the missing in-
formation needed to completely specify the state [10-12].
This is the entropy we shall examine for detecting shape
transitions in these systems.

We shall consider, for this purpose, the most simple
and tractable case where the observables O; conform a
mutually commuting set. Let us examine in this case
the relationship between the inferred and exact statistical
operators. For an Abelian set of operators O; there exists
a common basis spanned by vectors |j), j=1,...,L,in
which they possess a diagonal representation

(4'1ol5) = 8555,
(2.8)

pj = exp (—Ao - Z)\iOi(j)) ,
i=1
where 0;(j) = (j]0;]j). The entropy (2.6) becomes thus

S:—ij Inp;. (2.9)
J

In the present Abelian context, the available informa-
tion can be regarded as “complete” if the operators O;
form a complete basis for the expansion of any other com-
muting operator. In this case, the inferred p will pos-
sess eract diagonal elements in order to predict the exact
mean value of any diagonal operator. Therefore, if the
exact state |#) is expanded in the common basis as

[¥) = Zcex(])“)w (2'10)
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then p; = |Cex(j)[?, since the quantities p; and |Cex(4)]
are in this situation univocally determined by the con-
straints (2.1) [10]. The entropy (2.9) coincides in this
case with the quantal entropy of the exact state,

Sex = — Z |Cex(3)1? In[|Cex ()], (2.11)

defined in Ref. [10], relative to the common basis deter-
mined by the operators O;. This quantal entropy mea-
sures the lack of information associated with the proba-
bility distribution of the state |¢) over this basis. For in-
complete diagonal information, the inferred entropy (2.9)
will be an upper bound to the exact quantal entropy
(2.11).

We should remark that in the case of incomplete de-
scriptions, the common basis employed in the previous
expressions is not, however, unique, unless the eigenval-
ues of the operators O; suffice to univocally label the
basis vectors. The states [j) can actually be labeled as
|k, 1), where k stands for a set of K labels, K < n, de-
termined by the eigenvalues of the operators O;, whereas
I stands for the additional set of labels necessary to
uniquely identify the state. We shall define the multi-
plicity dy as the dimension of the subspace characterized
by a given value of k, i.e., 1 < I} < dj, which is obviously
independent of the choice of basis.

Evidently, the inferred probabilities (2.8) do not de-
pend upon li, and can thus be labeled directly as pg.
Therefore, we can rewrite the inferred entropy as

S=="piIn(pi/de), (2.12)
k
where
P = di exp <—,\0 - ino,-(k)) , (2.13)
=1

with O;(k) = (k,lkloilk,lk). The multiplicity di can
thus be interpreted as a measure or prior probability [14]
of the “states” |k), ignoring the label .

C. Determination of critical regions

We are in a position now, within this framework, to
tackle the central point of the present work, i.e., the study
of the behavior of ground states with respect to certain
control parameters, which we shall take as simple param-
eters of the Hamiltonian. In particular, we shall consider
a system described by a Hamiltonian of the form

H = Ho+ Hine(2a), (2.14)

where Hj is the unperturbed part and zo, @ = 1,...,7
are parameters which determine the strength of the dif-
ferent interaction terms.

The quantal entropy (2.11) depends on the choice of
basis. Following our definition of control parameters, we
shall consider for our purpose the set of eigenstates of Hy
(unperturbed basis) as the proper basis for detecting sig-
natures of phase transitions, and shall take as available
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data the expectation values of a set of relevant operators
which commute with the unperturbed Hamiltonian. The
ensuing exact quantal entropy (2.11) in this basis will
vanish for the unperturbed system (assuming a nonde-
generate ground state), but as the interaction is switched
on, it will acquire a finite value, reflecting the evolution
from weak- to strong-coupling regimes.

As will be shown in subsequent sections, a very accu-
rate prediction of the exact quantal entropy in the un-
perturbed basis can in general be achieved with just a
few expectation values of relevant operators. Therefore,
those intervals in the space of control parameters where
the inferred entropy (2.9) exhibits a strong variation will
indicate regions where the exact distribution over the
common basis undergoes a significant qualitative change.
This can be interpreted as a “transition” between differ-
ent regimes, and we shall associate transitions in finite
systems with those intervals where the greatest variations
take place. As the system approaches a thermodynamic
(or classical) limit, these variations may increase in mag-
nitude, indicating a “real” transition in case they evolve
into discontinuities of a certain kind. However, as far as
finite systems are concerned, the magnitude of this varia-
tion is what determines the “intensity” of the transition,
independent of the behavior in the thermodynamic limit.
This last fact is not taken into account when one employs
the conventional theoretical tools devised to attack this
sort of problem (such as mean-field-based methods), as
they usually reflect, more or less directly, the behavior in
the classical or thermodynamic limit.

Our available information is given thus by the set of
expectation vatues {O;,7 = 1,...,n} which depend upon
the parameters z,. For a particular parameter z,, critical
points can be identified with maxima of |8S5/9z,|, with
[see (2.7)]

820 ;,\ Bza (2.15)

where we have assumed that the operators O; do not
depend explicitly on z, [O; denotes the expectation value
(2.1)]. The location of critical z, in finite systems is thus
obtained from the necessary condition

o%s - 8%0; = 4-1 00; 00;
= —5;2'— = lz:; Ai——azg - ]Z-_—;( )z] 620 )
(2.16)
where A;; denotes the covariance matrix
Aij = gg = (O O ) — 0;0; (2.17)

(the condition for uniqueness of p is that the matrix A be
regular [14]). Thus, transitional regions for the shape of
the distribution of the state |¢)) over the common un-
perturbed basis are associated with the neighborhood
of those values of z, satisfying the necessary condition
(2.16). We remark that we need in principle only the
knowledge of the mean values O; (either from experi-

ment or from approximate or exact calculations) for a
sufficiently large set of values of z, to numerically deter-
mine the corresponding derivative (2.15).

III. APPLICATION

A. Description of the models
1. U(n) model

This model [19, 5] is also known as the extended
Lipkin-Meshkov-Glick (LMG) model [20] and consists
of N fermions distributed within n single particle (SP)
levels denoted 2Q-fold degenerate denoted by |p, i),
p=1,...,2Q, ¢ = 1,...,n, which interact through a
monopole interaction. The corresponding Hamiltonian
reads

H = Z&iéii + % ZV’J (Gi]2 + Gj?)y

i=1 i<j

(3.1)

where the first term will be taken as the unperturbed
Hamiltonian, with ¢; < ¢; for ¢ < j. The collective

operators
20
o -
Gij = CpiCpj> (3.2)
p=1
where cp< and cp; denote the usual fermion creation and

annihilation operators, satisfy a U(n) algebra under com-
mutation.

The ground state of the Hamiltonian (3.1) belongs
to the completely symmetric representation of U(n),
(N,0,...,0) [11], and is an eigenstate of the n parities
P, = exp(iﬂ'éii), with eigenvalue +1.
expanded as

o) = > Clna,...

n,even

It can thus be

(3.3)

,Mn) N2, ..., ng),

where the states [11]

Ing,...,na) = (/N2 T (ns) =263y 10),

i>2

0<> ni <N (34)

i>2

constitute the complete orthonormal unperturbed basis
of dimension d = (V}"7!) within the symmetric repre-
sentation (in other irreducible representations, additional
labels are required to completely identify a state). The
quantities n; denote the number of particles in the ith
level, and |0) the unperturbed ground state.

Within the Hartree-Fock (HF) picture, this model ex-
hibits second-order ground-state shape transitions [5] as
the coupling parameters vary. The HF solutions depend

just on the scaled coupling parameters
v = Vi (N = 1), (3.5)

being independent of N for fixed v;;, in which case the
intensive energy is finite in the thermodynamic limit. In
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the particular case v;j = —v(1—6;;), v > 0, this approach
predicts n — 1 transitions at the critical values (21, 22]

o =g =S ey, i=2,...,n. (3.6)
ji=1

For v > vg'), the i¢th level begins to be occupied. HF
yields the exact intensive expectation values of the col-
lective operators in the thermodynamic limit (N — o0)
[4, 5], which represents the classical limit in this con-
text. Accordingly, the HF phase transitions represent
real transitions of the system only in this limit.

2. AFP model

This model consists of N interacting fermions dis-
tributed over two 2Q-fold-degenerate SP levels (n = 2
in the above given model), which are described by a
monopolar Lipkin-type Hamiltonian with the addition of
a one-body interaction term

H=cl, +vis— %jz, (3.7)
where, using the notation of Sec. IITA 1,
J: =1(Ga = G11), Jo=3(J4 +J2), (3.8)

with J, = Go1 = J!, are the usual quasispin operators
satisfying an SU(2) algebra. Expression (3.7) is a slightly
modified version of the Abecasis-Faessler-Plastino (AFP)
Hamiltonian [23] which has been proposed by Gilmore
and Feng in Ref. [24]). The original AFP Hamiltonian

Harp = €J, + 3v(J? = J2 + J,) (3.9)
can be seen to be a special case of (3.7) by dropping
the term 1vJ2, which simply adds a constant energy to
all states in the ground-state manifold. The factor 1/N
in the coupling term has been introduced for thermody-
namical reasons [24] in order to obtain a finite intensive
energy in the classical limit.

The original AFP model was considered to exhibit a
ground-state shape instability [25] associated with an ab-
solute minimum of the second derivative of the ground-
state energy E. It was however demonstrated later [24]
that the Hamiltonian (3.7) does not undergo any phase
transition in the thermodynamic limit, the rapid vari-
ation in 82E/0v? being entirely attributed to the non-
thermodynamic scaling. Accordingly, the HF solution of
this model (being, as in the previous case, exact in the
thermodynamic limit) exhibits no transition.

Expressions (3.3) and (3.4) of the previous subsection,
for n = 2, are valid for the ground state of the present
model, except that the sum over ns runs now over both
even and odd values, since the Hamiltonian (3.7) does
not commute now with the (two-level) parity operator
P = exp(inJ,).

B. Maximum-entropy approach

We are particularly interested in the behavior of the
ground state for finite values of N as a function of the
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interaction parameters V;;, which are now taken to be the
control parameters z,. According to Sec. IIC, we shall
investigate the entropy associated with an incomplete set
of expectation values of operators commuting with Hy,
which we shall choose here as functions of the collective
operators (3.2).

We shall consider two different sets of accessible states:
(a) the full space of dimension n”, which includes all
pertinent irreducible representations (we exclude paired
states characterized by n, > 1, withn, = 3; c;)icp,-), and
(b) the completely symmetric representation spanned by
the states (3.4). Case (a) corresponds to no a priori in-
formation, whereas in (b) one assumes that the observer
knows with certainty that the state to be inferred lies
within the symmetric subspace. In addition to this, we
shall suppose in both cases that in the U(n) model the
parity of the state is known, so that traces will be re-
stricted to the corresponding eigenspace.

In the case of the U(n) model, we shall consider the
description constructed on the basis of the information
given by expectation values of one-body operators G;; as
well as two-body operators G;;Gj; representing the in-
formation about the diagonal elements of the SP density
matrix and the corresponding fluctuation or covariance
matrix A;; = (G,‘.‘ij) — (Gii)(Gjj). Since Z?=1(G,-,-) =
N, there are only n—1 one-body and n(n—1)/2 two-body
independent mean values.

The eigenvalues of any set of operators of this kind will
just be functions of the labels n;, and hence they com-
pletely identify a many-body state within the symmetric
representation. However, this does not hold within the
full accessible space. In this case, the multiplicity factor
dk is

N!

dng,“.,n,. = n1!.._—. Tln!’ (310)

which counts the total number of states with n; particles
in the ith level. For symmetric space calculations, we
should set d,,, ., = 1.

The corresponding statistical operator is

p=exp | =do— D> XNGi— Y NjGuGj; |, (3.11)
i22 12522
where
Ao =1In Z dn;,,u,n,,
n2,...,Np
X exp —Z/\,-n; - Z Aijnin;
i>2 i>j>2
(3.12)

and the Lagrange parameters are determined from the
available data by
I
O\

. oA .
=—(Gii), - =—(GuGy;).

o (3.13)

The inferred entropy is
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S =X+ Zz\;(G’u) + Z 2ij (GiiGyj).

i>2 i>j>2

(3.14)

In the one-body case (A;; = 0) in the full space, (3.14) can
be explicitly expressed as S = — Zi(GAii)ln((GAi,‘)/N),
after analytically solving (3.13) for A;.

For the ground state, the available information will
obviously saturate (i.e., become complete in the sense of
Sec. II B) when (Vt7~ 1) independent expectation values
of commuting collectlve operators are given. In this sit-
uation the inferred entropy will coincide with the exact
quantal entropy of the ground state (2.11), which can be
written, using the expansion (3.3) as

Sex = - Z ]C(nZy"'vnn)lz

n;even

x In(|C(na, ..., nn)lz/dnm__,,n").
Thus, the exact coefficients represent the limit of the ef-
fective probabilities (2.13). It should be stressed that as
N — oo, the entropy (3.15) becomes of order N in the
full space, and is therefore suitable for thermodynamic
scaling. On the other hand, in the symmetric represen-
tation the entropy is of order In(NV).

In order to compare the derivative of the inferred en-
tropy (3.14) with the exact result, it is necessary to com-
pute 3Sez/0z4. This step can be done by adding as many
expectaction values as necessary for saturation in (3.14)
or, otherwise, by calculating the quantities

0C(ny,...,nq) _ 0
_—5za——__ <n2,...,nn 5—0 ‘(I)o>, (316)

which can be obtained by deriving the exact eigenvalue
equation, resulting in
0> ld)k)a

—11/)0) = (Eo—E)™! <1/)k
(3.17)

(3.15)

9H |,
0z,

k#0

where H|¢k) = Ei|Yr). Expression (3.17) is generally
valid for a nondegenerate ground state (we have omitted
an arbitrary component ivy|¢g), v real, in (3.17), which
does not influence the derivative of |C(ns,...,n,)|).

As in the previous case, for the AFP Hamiltonian we
shall consider the description based on the information of
commuting one- and two-body mean values, represented
here by (J,) and (J2). The ensuing density is

p=exp(—=Ao — A J, — AaJ2). (3.18)

Remaining details are similar to those of the previous
model for the case n = 2, without parity projection.

C. Results
1. U(n) model
Numerical calculations have been performed for the

two- and three-level versions of this model (n = 2 and 3),
assuming ¢; = (¢ — 1)e and a common coupling constant

FIG. 1. Exact and inferred values of the entropy deriva-
tive S’ = 85/8v (in units of kp/e in all figures), for the ground
state of the Lipkin U(2) model as a function of the (dimen-
sionless) scaled coupling parameter. Curve (a) corresponds
to exact results together with the inferred value employing
expectation values of one- and two-body operators ((j,) and
(jf) in the present model), undistinguishable in the scale of
the figure, whereas curve (b) to the one-body inference (em-
ploying (J.)). Results correspond to calculations in the com-
pletely symmetric representation. N denotes the number of
particles present.

Vij = —v(l = é;;)/(N — 1). In this case, within the HF
picture, the ground state undergoes a single transition
for n = 2 at v./e = 1, and for n = 3, two transitions

at v 2)/6 =1and v 3)/6 = 3. Accordingly, as control
parameters we shall choose the scaled coupling parameter
v. Figures 1 and 2 depict the derivative of the inferred
entropy [expression (2.15)] together with the exact one,
for fixed N, within the symmetric representation (results
in the full space are similar).

It can be seen that the inference with one-body mean
values gives a good qualitative description of the entropy,
whereas that including two-body information overlaps
with the exact results within the scale of the figures.
In both cases, the derivative of the entropy clearly ex-
hibits maxima located in the vicinity of the HF critical
points, indicating transitional regions of finite width. As
N increases, the locations of all maxima approach the HF
values, evolving into singularities [actually, if the entropy
is constructed with one-body HF mean values, which are
exact in the thermodynamic limit, the entropy derivative

@ )+)]

becomes infinite at both critical points (for v — v

AR 610

|II|J

FIG. 2.
U(3) model.

Same details of Fig. 1 for the ground state of the
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HII|IIII|JIH|IIII

FIG. 3. The exact intensive entropy derivative s’ =
N~105/8v, calculated in the full space, for the ground state
of the U(2) model and for different values of N. Curve (a)
corresponds to N = 20, (b) to N =60, and (c) to N = 200.

Nevertheless, we remark that for finite N, the critical re-
gions may be slightly displaced from the HF values (see
the second maximum in Fig. 2) and may become much
less noticeable. In the three-level case, as the number of
particles decreases, the second maximum may even dis-
appear, being absorbed into a single wide transitional
region. This is due to the fact that for a small number
of particles the third SP level begins to be occupied al-
most simultaneously with the second one (see Ref. [11]
for more details), so that it is no longer possible to clearly
distinguish two transitions.

The features of the behavior of the intensive derivative
of the exact quantal entropy N ~18Sey/0v for different
particle numbers can be seen in Fig. 3 for the case n = 2.
The entropy has been evaluated now in the full space.
For all N, we are able to clearly distinguish two differ-
ent regimes characterized by negligible variations of the
quantal entropy, separated by the critical region located
around v/e = 1. As N increases, the critical region be-
comes narrower and approaches the HF value v/e = 1,
whereas the maximum increases in magnitude, thus de-
scribing the most abrupt changes of the ground-state dis-
tribution. Results in the symmetric space are qualita-
tively similar.

We would like to remark that the amount and type of

20 T TT T

L

FIG. 4. Exact and inferred values of S’ = 9.5/9v for the
ground state of the AFP model. Remaining details as in Fig.
1.

information required for an accurate inference depends
on the regions separated by the maxima of the entropy
derivative. For instance, in the U(2) situation, it can
be seen that for v/e < 1, two-body information is actu-
ally irrelevant for the entropy evaluation. The fluctua-
tion matrix A;; becomes important in the critical region,
whereas for high values of v/e, one-body information is
no longer relevant, and the inference with just two-body
mean values yields accurate results.

2. AFP model

Results of numerical calculations for the ground state
of the AFP model are shown in Figs. 4 and 5, assuming
€ =1 and v > 0, which we shall take as the control pa-
rameter. The derivatives of the inferred and exact quan-
tal entropies are depicted in Fig. 4 for fixed N within
the symmetric representation. Similar results hold in full
space calculations. A clear maximum can be appreci-
ated both in the exact and inferred treatments, indicating
a transition between weak- and strong-coupled regimes,
similar to that of the previous U(2) model.

The intensive entropy derivative is depicted in Fig. 5.
It is seen that even though both models exhibit very sim-
ilar features for small particle numbers, they behave in
a strikingly different way as N increases, as the entropy
remains smooth for all values of N and no transitional
point is expected to be found in the thermodynamic limit.

IV. CONCLUSIONS

Our goal was to establish a criterion to predefine crit-
ical regions in ground states of finite systems within the
framework of information theory. The scheme is based
on the variation experienced by the inferred entropy as-
sociated with a reduced set of commuting observables
upon changes of the corresponding control parameters.
These variations reflect the qualitative changes occurring
in the ground-state distribution over the common basis
defined by the commuting observables and, accordingly,
transitional regions are associated with those regions of
maximum variation.

In the examples considered, it is seen that just with

E!¥I|IIIIT¥I1_[ FTTT A
3 p—
—_ c :
5’2 =
a —

1 ]

C 7

0 1JII]I|IIJL11111111 |

0.1 02 0.3 04

v/€

FIG. 5. The exact intensive entropy derivative for the
ground state of the AFP model, for N = 20 (a), N = 60
(b), and N = 200 (c), calculated in the full space.
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the expectation values of a few relevant observables com-
muting with the unperturbed Hamiltonian, the critical
regions can be clearly determined with the present pre-
scription. Within this context, the ensuing exact critical
regions can be identified with those regions where the en-
tropy associated with a complete set of abelian operators
exhibits the most significant variations. This entropy,
equal to the quantal entropy of Refs. [10-12], measures
the exact lack of information related with the distribu-
tion of the pertinent quantum state over the common
basis, and differs from the usual thermodynamical en-
tropy. When the size of the system increases, the critical
regions determined by our method become narrower and
approach critical points in case the system possesses a
real transition in the thermodynamic limit. Otherwise,

no discontinuities ensue.

Thus, we conclude that by means of a suitable exten-
sion of thermodynamic concepts within the generalized
statistical framework of information theory, it is possible
both to consistently define transitions in ground states
of finite systems and, at the same time, to infer the lo-
cation of these critical regions with a reduced amount of
information.
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