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Quantum approximation to regular and chaotic classical motion:
An electron in two periodic potentials
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An electron in a periodic crystal potential, which is subjected to an additional periodic pulsed poten-

tial, is an example of a system which can be modeled by the kicked Harper model. The relative simplici-

ty of this model facilitates a comparison of its quantum and classical dynamics. The model has a clearly
defined semiclassical limit in which wave packets follow the classical motion. A power series in A yields

systematic quantum corrections to the semiclassical limit. Numerical iterations of the quantum equa-

tions agree with the A expansion (for a limited time), provided the corresponding classical motion is not
chaotic. For chaotic motion, the agreement between classical and quantum motion disappears very

quickly. The quantum solutions also show (i) precursors to classical chaos, (ii) a time-dependent analog
of wave-function scarring, and (iii) quantum echoes arising from quantized phase-space orbits.

PACS number(s): 05.45.+b, 03.65.Sq, 73.20.Dx

I. INTRODUCTION

"Chaos" is often regarded as a purely classical effect
[1]. But classical physics is the large-quantum-number
limit of quantum mechanics. When quantum numbers
approach infinity, wave packets follow classical trajec-
tories. The interplay of classical chaos with quantum
effects occurs for large, but finite, quantum numbers.
Specific models which have chaotic classical analogs
show surprising properties [2—4]. These include
suppressed diffusion [5,6], counterintuitive tunneling [7],
"scarred" wave functions [8], and anomalous energy-level
statistics [9].

There are several reasons to choose the kicked Harper
model for a study of the relation between classical chaos
and quantum mechanics. First, the model is related to
real physical systems. For example, it has been used as a
model of an electron in perpendicular magnetic and elec-
tric fields [10]. The magnetic field is time independent,
but the electric field is periodically pulsed. The kicked
Harper model can also be used to describe an electron
hopping through a crystal which is subjected to a pulsed
electric field, and we will use this alternate physical pic-
ture to motivate our quantum version of the model.
Second, the model is relatively simple because it can be
constructed with special symmetries [11,12], and the
quantum version of the model is restricted to a finite-
dimensional state space. This enables us to derive results
using a relatively simple formalism. Finally, both the
classical [13—15] and quantum [16—18] forms of this
model have been carefully studied.

Our investigation of the kicked Harper model is both
formal and numerical. The formal results are based on
an expansion in powers of A' (actually, an inverse-
quantum-number expansion). The lowest-order terms in
this expansion give the semiclassical limit. In this limit,
the centroid of a localized wave packet (called (8) ) fol-
lows the classical motion, and the spread of the wave

packet (called (b8 ) ) is determined by the stability of
the classical motion. Higher-order quantum corrections
to the semiclassical motion are especially large when the
classical motion is chaotic.

Our numerical results are more than a check on these
formal results. They reveal effects not captured by the
leading terms in the A expansion. These include the
time-dependent analog of wave-function scarring, and
"quantum echoes" associated with semiclassical quanti-
zation of the phase-space orbits.

II. KICKED HARPER MODEL

The kicked Harper model can be used to describe an
electron in a one-dimensional crystal which is subjected
to a periodically pulsed sinusoidal potential. In a simple
tight-binding approximation, the crystal environment
yields kinetic energies proportional to cos(pd), where p is
the crystal-momentum wave vector, and d is the lattice
constant. The pulsed potential energy is assumed to be
proportional to cos(2n.x/A, ), where x is the position and
k is the wavelength of the potential. The sum of the ki-
netic and potential energies is periodic in both the
momentum and position coordinates, so it is convenient
to represent the system in terms of angles 8 and P which
are proportional to the position and momentum of the
particle:

A. Classical model

The classical kicked Harper model is described by a
Hamiltonian which is the sum of the kinetic and potential
energies of the form discussed above:

H, &

= ——cos(P)+r+5(t —lr)cos(8)g
'T

I
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Here we have used the dimensionless variables 8 and P
instead of the physical momentum and position coordi-
nates. The sum of 5 functions in Eq. (2) causes the puls-
ing of the potential-energy term. For simplicity and sym-
metry, the width of the energy band and the strength of
the time-averaged potential energy are characterized by
the same coupling constant, g. Hamilton's equations

d8 dH dP dH
dt BP

'
dt d8

(3)

give a description of the classical motion in terms of the
recursion relations

P„+,=P„—g sin(8„), 8„+,=8„+gsin(P„+, ), (4a)

where 8„and P„are the coordinates just before the nth
pulse. These coupled equations [Eq. (4a)] are the essence
of the classical kicked Harper model. They lead to com-
plex "webs" of stochastic behavior when the parameter g
is sufficiently large [13,15].

B. Quantum model

The quantum version of the kicked Harper model is
obtained by returning to the physical example of a parti-
cle moving on a lattice. The degree of "quantumness" of
the model is determined by a parameter N, which is the
ratio of the wavelength of the periodic potential, A, , to the
lattice constant d. Large N corresponds to the classical
limit, while the small-N model is clearly quantum
mechanical. For simplicity, we take N to be an integer,
so the Hamiltonian has a period of N lattice sites. We ap-
ply periodic boundary conditions to this ¹itesystem, so
the model describes a particle hopping along an ¹ite
ring which is subjected to a periodically pulsed sinusoidal
potential. Wave functions are linear combinations of or-
bitals

~
n & localized at lattice sites, with

N /2 ( n & N—/2, and the quantum Hamiltonian is
determined by its action on these localized states:

Substituting the Bloch states ~k] into the Hamiltonian
gives

Hik] = ——cos k ik]
N

+—v+5(t —lr)1

2 I

x(1k+1]+Ik —1] ) (5b)

Thus the first term of the quantum Hamiltonian operat-
ing on the Bloch states gives the kinetic energy of the
classical Hamiltonian [Eq. (2)] through the correspon-
dence

277

N
(6b)

—a(n —no) /2] ~n &, (8a)

where JV= [2 Re(a)/N]'~ .
The large-N limit is analogous to a vanishing Planck s

constant. The relation between N and fi can be obtained
through an uncertainty principle. The width of the
Gaussian wave packet is

Of course the difference between the classical and
quantum versions of this model lies in the impossibility of
finding simultaneous quantum eigenstates of both the
kinetic- and potential-energy terms. However, in the
large-N limit, Gaussian wave packets come close to hav-
ing well-defined kinetic and potential energies. A Gauss-
ian wave packet characterized by a "width parameter" a
centered at site no with a mean wave vector ko is

T

2'
~a, no, ko & =—JV+exp [iko(n —no)

n

H~n &= ———
( n+1&+~n —1&)g 1

7 2
&a, no, ko~(n no) ~a, no,—ko &

=
4m Rea

(9a)

+ v+5(t le) cos n—n &

I

The similarity of this Hamiltonian to the classical
Harper model can be seen by examining the potential-
and kinetic-energy terms separately. The potential of the
above Hamiltonian gives the classical potential energy
when operating on the localized state, ~n &, provided one
associates the angle 0 with the lattice sites through

N Rea
(9b)

Similarly, transforming to the Bloch states gives the
momentum-space width of the wave packet.

2

NRe(1/a)
(9c)

Scaling n by 2m/N to express this width in terms of the
angle 8 gives

2"0= n. (6a)

The correspondence with the classical kinetic energy is
obtained through a Fourier transform from the localized
states to Bloch states, defined for integers—N /2 & k & N/2 as

~k] = —+exp t' kn ~n & .1 .2~
v'N „N

Taking the product of these widths yields a Heisenberg-
like uncertainty principle.

( & &8'& & &y'& )'"
N

with equality obtained only when a is real. One tradi-
tionally expects the minimum uncertainty to be A/2, so
we define an effective Planck's constant as
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This A is dimensionless because it expresses the uncer-
tainty in the dimensionless position and momentum an-
gles (8 and P).

Even when a is not real, Gaussian wave packets are
maximally localized. The phase-space distribution
(Wigner function) associated with these Gaussian wave
packets is largely confined to an ellipse with area =M
which is centered about the mean position (80,go). When
a is real, the major and minor axes of this ellipse are
along the 8 and P directions. A complex a means the el-
lipse is not aligned with the 8 and P axes. This leads to a
larger uncertainty, ( ( 68 ) ( b,P ) )', even though the
occupied area of phase space remains =M.

CX

~j
—6j+

2(4)6
(12b)

where the series terminates with state ~lj or state ~0j.
The inverse transformation (from

~j j to
~j ) ) is obtained

by multiplying both types of states by exp( ihk—n).
Then it is apparent that the relations are inverted by re-
placing i by i —and a by 1/a.

B. Time-evolution operator

Replacing ~0) by ~0j, and carrying out the differentiation
gives

2

Ij j
——lj —2j+ ~J

—4j
2 2(4)

III. QUANTUM TIME EVOLUTION
The time evolution is obtained from the operator

[19,20]

The correspondence between the classical and quantum
motion of this model is obtained using wave packets. The
action of the quantum time-evolution operator shows
that the wave-packet centroid follows the classical
motion for times which become large as fi vanishes.
Differences between the classical and quantum motion
are seen in the broadening and distortion of the wave
packets, and this leads to a difference between the posi-
tion of the wave-packet centroid and the classical trajec-
tory.

I

U(t', t)=T exp ——f H(t}dt (14)

where T denotes time ordering. Because the potential en-
ergy is pulsed, the time evolution for one period ~, start-
ing with a pulse of the potential and ending just before
the next pulse, is U(r, 0 )=UxUi„where Ui, and Ux
represent the time evolution generated by the potential-
and kinetic-energy terms in H(t). The operator Ui mul-
tiplies the localized states

~
n ) by a phase factor.

A. Wave packets Ui, ~n ) =exp[i(g/A')cos(ln }]~n ), (15a)

In order to describe the distortion of wave packets, it is
not sufficient to consider only Gaussian ones. The wave-
packet space must be expanded to include Gaussian func-
tions multiplied by powers, defined as

~'/2
~a, n, k,j ) —=JV . Qexp[iA'klm —n) —airi(m —n) /2]

m

X(m n}j~m )—, (8b)

an, k,j j = — +exp[ iRpn ——iit'(p —k) /(2a)]a

x(p —k)'Ip j (8c)

When the indices (a, n, k ) are clear, we use the shorthand
notation ~a, n, k,j ) =

~j ), and ~a, n, k,j j
=

~jj.
The localized-basis and Bloch-basis wave packets are

simply related. In particular, Fourier transformation of
the localized j =0 states gives

(12a)

Differentiating ~0) with respect to k gives

fi'~'j! Bk'
(13)

where JV is defined as before, and the case j =0 co«e-
sponds to the ordinary Gaussian wave packets of Eq. (8a).
A related set of wave packets, which is defined in terms
of the Bloch-basis set, is

where g is the same parameter which appears in the clas-
sical version of this model. Similarly, in the time interval
up to the next pulse, the time evolution changes the
phases of the Bloch states.

Ux ~
k j

=exp [i (g /R }cos(lk ) ] ~
k j . (15b)

—giricos(iiino)(n no) /2 . — (15c)

By retaining only these terms in the exponential, one ob-
tains a new wave packet with modified k and a. Higher-
order terms in the expansion of the cosine are not left in
the exponential, but are expanded in a power series to
generate wave packets with differing values ofj.

The symmetry of the wave packets and the Hamiltoni-
an means one can repeat essentially the same expansion
to obtain the operation of Uz. Of course, in order to ex-

Just as for the classical case, the potential pulse Uz
changes the particle's momentum, and the time evolution
of the system up to the next pulse Uz keeps the momen-
turn constant but changes the position.

Recursion relations for the time evolution of this mod-
el, to a given order in R are obtained from the time evolu-
tion of the generalized wave packets defined in Eqs. (8b)
and (8c) above. The action of Ui, is obtained by expand-
ing the cosine function [see Eq. (15a)] about the center of
the wave packet on which it acts. That is, for Uv operat-
ing on !Iao,n 0, ko,j ),
(g/iri)cos(fin ) —= (g i/)cirs(oA' n)

—og sin(irino)(n no)—
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ploit this symmetry, one must transform the wave packet
to the Bloch states [see Eq. (7)].

C. Semiclassical approximation

Semiclassical results are obtained if the expansion of
the cosines in the time-evolution operators U~ and Uz
are terminated at the quadratic term. Then the recursion
relations involve only simple (j =0) Gaussian wave pack-
ets, and

P, =f(P, )=f(f(Pp)) . (18)

The character of the motion generated by these recur-
sion relations ("stable or unstable, " "regular or chaotic")
is revealed by infinitesimal variation of the initial point
Pp. Differentiating P, =f(Pp) with respect to Pp gives
the matrix equation

1 —g cos(8p)

g cos(P, } 1 —[g cos(P&)][g cos(8p)]

Uv~ap np kp 0) —=e'"~a, np, k„0)
where the phase g is not important for our derivations.
The changes in k and a caused by U~ give the first half of
the semiclassical recursion relations. In terms of the an-
gle variables,

50p
X $g e

Using the more compact notation,

5P, =M(Pp)5Pp,

(19a)

(19b)

a=ap+ig cos(8p), P& =Pp —g sin(8p) . (4b)

The second half of the recursion relation comes from the
equivalent treatment of Uz.

where Eq. (19a) defines the "classical stability matrix"
M (Pp ). Differentiating P2 =f(f(Pp ) ) gives the variation
of the second point in terms of the variation of the first
point,

(a, ) '=(a) '+ig cos(P, ), 8, =8p+g sin(P&) . (4c} 5P =M' '5P (20)

2 Rea
(9b)

IV. STABILITY

There is a close relationship between the stability of
the classical motion (described in Sec. IVA below) and
the dispersion of the corresponding Gaussian wave pack-
et (described in Sec. IV B). For example, in the semiclas-
sical approximation, stable classical periodic orbits imply
the existence of nondispersive wave packets. At the other
extreme, unstable classical motion corresponds to wave
packets which rapidly disperse.

A. Classical stability

The classical recursion relations for P and 8 can be
written

Pp
—g sin(8p)

8& 8p+g sin[Pp —g sin(8p)] (4d)

A more compact notation is useful. Let the two-
dimensional vector P correspond to the phase-space posi-
tion, with the initial position

0
P0=

0
(17)

Denote the recursion relation by the function f( ), so
after two iterations,

In this semiclassical approximation, 8 and P do not de-
pend on a, and the recursion relations for 8 and P are
identical to the classical recursion relations [Eq. (4a)].
Furthermore, the relative broadening of the wave pack-
ets, obtained from the recursion relations for a, is also a
semiclassical result which does not depend on A'. Of
course the absolute wave packet width vanishes with A

because, for example,

where

M' '=M(P )M(P )

The generalization to M" for s iterations is clear.

(21)

B. Quantum stability

ap+ig cos(8p)

1+[ap+ ig cos(8p }][ig cos(P, ) ]
(22a)

This can be written in terms of the classical stability ma-
trix as

Mlla0 —iMl2al-
iM2l a0+ Mp2

(22b)

where M;. are the matrix elements of M(Pp) [see Eq.
(19)]. Iterating the above to find a, in terms of ap, one
finds that the above expression is just the s =1 case of the
more general equation

M' a —iM'll 0 12
s ~ (s)M2l a0+M (s)

(22c)

The close correspondence between wave-packet
spreading and the classical stability is clear from the
above equation. For example, take a0 to be unity so the

The stability of the wave packet is determined by
changes in the width parameter a. One generally expects
the wave packets to become broader with time as the real
part of a shrinks, while its imaginary part grows. This
causes both Rea and Re(1/a) to become small, so the
phase-space "dimensions" of the wave packet become
large, even though the total area in phase space remains
=M in this semiclassical approximation.

The semiclassical time evolution of a is determined by
the dispersion relations apnea, and a~a, [see Eqs. (4b}
and (4c)]. Combining these gives
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initial wave packet is optimally localized in the {()-8phase
space. Then after s iterations, the 0 spread of the wave
packet, A'/(2 Rea), simplifies to

( g82) [(M(s) )2+(M(s) )2]
2

(23)

The semiclassical basis of this result is clear. The (M2, )
and (M22) terms are identical to the squares of the clas-
sical separation (along 8) of two points which are initially
separated by &fi/2 in the 8 and {() directions, respective-
ly. An analogous relation holds for ( hP ) . This
confirms our intuitive view that, to lowest order, one can
understand wave-packet spreading by simply following a
"swarm" of classical trajectories [2], which are initially
confined to phase-space ellipse of area =M. In this
semiclassical approximation, time evolution deforms this
ellipse, but keeps its area constant. For chaotic motion,
the ellipse is stretched until it is very long and thin, and is
no longer confined to a small region of phase space. Of
course, these results are modified by quantum corrections
to the semiclassical limit.

V. QUANTUM CORRECTIONS

Quantum corrections describe changes in the wave-
packet shape and position as a power series in A, where
the semiclassical results are the zero-order terms. The
quantum corrections which are 1inear in A will be de-
scribed here. The more complicated A terms can be ob-
tained from the authors.

The semiclassical results were based on the simple
Gaussian wave packets of Eq. (8a). Since quantum
corrections describe wave-packet distortion, we must
now consider the generalized Gaussian wave-packets
defined in Eqs. (8b) and (8c). To order A', states of the
form

I g& = I0&+x~&11 &+y&&13 & (24)

ix g sin8 iy

a a a
(26a)

iy g sin(8)y= — + (26b)

with a given by Eq. (4b). The second half of the recur-
sion relations for x and y is obtained from the analogous

are closed upon iteration of the time-evolution operator.
Here we have used the compact notation

lj ) = la, n, k,j ). The "distortion parameters" of lf), x
and y, describe the change in wave-packet shape from a
simple Gaussian one.

Recursion relations for x and y are obtained from
U) lP) by carrying out the expansion of cos(nA') to one
higher power than was needed for the semiclassical result
[Eq. (15c)]. Then converting the lj) states to the lj }
states gives

U, (lo&+x&il »+y&kl3 &)

=—e'"(l0}+xv fil 1

}+yves'l3}

), (25}

where

expansion of Uxlg}. The map (x,y)~(x', y') is the
same as (x,y)~(x,y), except (i ~ —i ), (1/a~a'), and
[sin(8)~ —sin(P')]. To this order, a, 8, and ()I) are not
affected by x and y.

The first-order quantum corrections to the position and
momentum of the wave packet (obtained from (gl8lg)
and (g l P l lt ) ) depend only on x andy, and

(8)—8„—= Rex+
Rea 4 Rea

(27a)

( ) —„—= ~ R + Rey
Re(1/a) 4Re(1/a)

(27b)

where 8„and P„are obtained from the classical recursion
relations. The size of the first quantum correction de-
pends sensitively on the character of the corresponding
classical motion. It grows exponentially in time for
chaotic motion because it is proportional to the semiclas-
sical wave-packet widths, (58 ) =Pi/(2Rea) and
( hP ) =A'/[2 Re(1/a) ], and these widths grow exponen-
tially for unstable motion. Higher-order quantum correc-
tions to ( 8 ) and ( P ) include higher powers of A/Rea
and fi/Re(1/a), so the series quickly diverge for chaotic
motion. We have found that the quantum corrections are
quantitatively useful only when the motion is stable.
Quantum corrections mean the system is not classically
deterministic, since knowledge of the initial coordinates
(( 80 ) and ( $0 ) ) does not predict future values of ( 8 ) or

VI. NUMERICAL RESULTS

Our numerical calculations have generally confirmed
our formal results. For example, we have calculated ( 8)
by iterating the exact quantum time-evolution equations.
If the corresponding classical motion is stable, we find
that (8) follows the classical motion for many iterations,
especially for large X Furthermore, the first-order quan-
tum correction gives a significantly better agreement with
the numerical results. On the other hand, the quantum
results quickly depart from the corresponding classical
motion when that motion is unstable.

Classical motion is either stable or unstable, with
essentially no middle ground. However, both our numer-
ical and formal results show that as the quantum system
approaches a point of classical instability, it becomes
"less stable. " The quantum corrections become large
after relatively few iterations, and the similarities be-
tween classical and quantum motion quickly vanish.

A periodic-orbit example illustrates our results. The
sixth-order classical periodic orbit, generated from the in-
itial point go=0, and g sin(80) =80 is classically stable for
Op (2.03. Values of t9 generated by the recursion rela-
tions endlessly repeat the sequence (80,0, —

8O,
—80,0, 8O).

For Op) 2.03, the periodic orbit is unstable, and the
smallest variations in initial conditions cause deviations
from the periodic sequence to increase exponentially.

To compare quantum and classical results for this
periodic orbit, we have numerically iterated the quantum
dynamics, starting with the Gaussian wave packet
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A. Scarring

Scarring has been seen in solutions of the time-
independent Schrodinger equation [8]. Typically, the
scars appear as especially large values of ( f~ g) which lie

250

200—

150—

100—

50
I j I I

100
(

150

FIG. 1. The number of iterations for which the quantum and
classical system agree, l„as a function of N. For the full curve
Op=1. 85, and Op=1. 95 for the dashed curve. Both curves cor-
respond to stable classical motion, but the marginal stability for
Op = 1.95 means reasonable agreement between classical and

quantum results is obtained only for N & 300. (For
100~N + 150, only every tenth point was calculated, and the
curves connect these points. )

~a=1, 8o, /=0, 0) which is centered at the periodic point.
We characterize the ability of the quantum system to fol-
low the classical motion by the iteration number /„
defined as the first iteration for which the peak in the
quantum probability density differs by more than 0o/2
from the classical result. One would expect I, to general-
ly increase with N as the quantum system becomes "more
classical. " The N dependence of l, for 4~N ~ 150 is
shown in Fig. 1 for 0o=1.85 and 1.95. Both values of 0O

correspond to stable classical motion, but the increase of
l, with N is much more apparent for 0p=1.85 than it is
for 8o=1.95. (Note: for N between 100 and 150, only
every tenth point was calculated, and the points were
connected by straight lines. )

The apparent failure of the quantum system to follow
the classical motion for 0O=1.95, as suggested by Fig. 1,
is not really surprising. We feel it occurs because the
Gaussian wave packet spreads into regions of classical in-
stability. Formally, quantum corrections to the classical
motion are large when the classical motion is barely
stable, so the two systems quickly exhibit differing behav-
ior. For the clsasical limit (N~~), both examples in
Fig. 1 must follow the regular classical motion. Indeed,
we find that the 0O=1.95 example does become classical,
but only when N exceeds =300.

Our numerical investigations also reveal anomalies of
the kicked Harper model which are not apparent in the
semiclassical approximation or in the low-order quantum
corrections. Two of these anomalies, "scarring" and
"quantum echoes, "will be described here.

I I
[

I I I

f

I I I
/

I I I
/

I I

X X X
X '7

xg xP~~ x~ x~ )cc P ~ )its( x )P . x Px
&& R ~~ x ~ ~x&&x

0
CD

X X X )K X

X X ~ X ~ X X X &( X X X K
X X

*v' w'e ~~4"4 "4"~ "+s'4m+ k~ a
X X X X

X
X X X-X X X X X X X X

200 400 600 800 1000

FIG. 2. The maximum in the probability density, O,„, as a
function of the iteration number I, for initial conditions which
correspond to classical chaos. The persistence of peaks near

O,„=O and +Op is analogous to wave-function scarring. Al-

though points lie near the classical-orbit points, they do not fol-
low the classical sequence, so classical dynamics cannot be used

to predict the most probable position of the particle.

B. Quantum echoes

Numerical investigations of the kicked Harper model
reveal quantum echoes. An echo in the position of the
centroid (8) at iteration I =—450 is shown in Fig. 3. This

close to periodic orbits. Our model allows us to see
time-dependent scarring, where maxima in ( P~ P) change
with time (iteration number), and the position of these
maxima corresponds to the position of the corresponding
classical motion.

The time-dependent scarring shown in Fig. 2 is associ-
ated with the same sixth-order periodic orbit described
above. We consider the unstable case 8o=2.05, where
the smallest deviation of the classical system from its
periodic orbit will cause rapid wandering to distant re-
gions of phase space. However, the corresponding quan-
tum motion, as represented by the maximum in the prob-
ability density, appears remarkably faithful to this unsta-
ble classical orbit. The position of the maximum quan-
turn probability density, 0,„, hovers about the unstable
periodic points 0o, 0, and —0O. In Fig. 2 0,„is displayed
as a function of iteration number, I for N=301 and
0O= 2.05.

Although the scar shown in Fig. 2 "remembers" the
periodic orbit, one should not interpret time-dependent
scarring as a quantum effect which allows wave functions
to follow unstable classical motion. A careful examina-
tion of the points in Fig. 2 shows a crucial difference be-
tween the time dependence of 8,„and the (unstable)

classical periodic motion. The points in Fig. 2 follow the
classical sequence (8o,0, —8o, —8&&, 0, 8o) only for the first
sixteen iterations (I, = 17). For I ~ 17, 8,„hops nearly

randomly between points near 0O, 0, and —0O. The scar
implies only the weakest remnant of classical motion,
since classical predictability is lost.
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1.0 VII. CONCLUSIONS

0.5—

CD 0.0

—0.5

—1.0
0 200

I

400 600 800 1000

FIG. 3. An example of an echo in the motion of (8), plotted
as a function of iteration number, with $0=0, 80= 2, g = 2, and

N =301. The "echo" observed near 1-=450 can be explained in
terms of Bohr-Sommerfeld quantization of the orbit generated
from iterations of the classical dynamics.

where n is an integer and y is a small constant. Requir-
ing a particle's coordinates to lie on one of these phase-
space orbits gives a discrete separation between allowed
values of the initial coordinates. For go=0, the allowed
initial values of 8 form a discrete set, 8(n). We have nu-
merically followed the classical phase-space motion of
this system for two initial conditions, one starting at 8(n)
and the other starting at 8(n+1). These two initial
points move about phase space with slightly different tra-
jectories, so they slowly move apart from each other.
Eventually, one point "catches" the other, and the two
points again lie close to each other. For the initial condi-
tions described in Fig. 3, we find that the number of itera-
tions needed to produce this reconvergence of phase-
space points (1=-450) coincides almost exactly with the
time to the first echo shown in Fig. 3.

The echo illustrated in Fig. 3 corresponds to stable
motion. We have observed weaker quantum echoes even
when the corresponding classical motion is chaotic, but
for this more complex case, where closed classical orbits
do not exist, we have no simple explanation of the under-
lying physics.

echo was obtained from the exact (except for numerical
limitations) quantum dynamics using /&=0, 80= —,', g =—'„
and N=301. The initial disperion of the wave packet
(roughly linear in time) causes the initial damping of the
oscillations in (8). The oscillations shown in Fig. 3 are
accurately described by the semiclassical approximation,
and the initial damping is accurately described by the
first-order quantum correction. For this example, the
semiclassical approximation with the first-order quantum
correction fails for l greater than about 100. No sign of a
quantum echo is seen in our formal expansion.

An intuitive explanation of the echo can be obtained by
imposing the Bohr-Sommerfeld quantization condition
on the phase-space orbit generated by the classical system

f/ d8=(n+y)(2+4),

The kicked Harper model is particularly appealing be-
cause basic results can be obtained simply and physically.
Stated briefiy, our formal results are (1) the center of a
wave packet obeys classical dynamics until the wave-
packet dispersion becomes important; (2) chaos leads to
exponential wave-packet explosion instead of ordinary
wave-packet dispersion, and stable periodic orbits
suppress the wave-packet dispersion; (3) corrections to
the classical motion are given as a power series in A,

where the coefficients in the series are given by relatively
simple recursion relations.

The Gaussian wave packets used to obtain these results
provide physical insight. For example, the lowest-order
spreading of these wave packets can be described in terms
of classical motion and the Heisenberg uncertainty prin-
ciple. This intuitive approach also shows how quantum
corrections are related to distortions of the Gaussian
wave packets.

Many of our results are closely related to those ob-
tained for other systems. Our derivation of the
correspondence between classical and quantum motion in
the small-A' limit is not a surprise. This is essentially
Ehrenfest's theorem, and it has been derived for a variety
of models in a variety of ways. Some results similar to
ours have also been noted for wave-packet dispersion in
the quantum version of the kicked rotor (Chirikov-Taylor
map). Berry et al. [20] noted both slow and exponential
rates of wave-packet spreading, and Berman and Zaslav-
sky [21] were apparently the first to associate the spread-
ing rate with the classical stability. Fishman, Grempel,
and Prange [6] used the classical correspondence to ob-
tain scaling exponents for the wave-packet dispersion.
Wave-packet delocalization was numerically traced by
Skodje and Spina [22]. Fox and Lan [23] and Jensen and
Niu [24] have generated power-series expansions in fi
which are similar in spirit to ours, although an exact
correspondence is not clear. Work on the baker's map by
O' Connor and Tomsovic [25] and by Ozorio de Almeida
and Saraceno [26] showed the wave-packet spreading
time is of order lnfi because the corresponding classical
system is chaotic.

After the Gaussian wave packets disperse, our formal
results based on wave-packet dynamics lose relevance.
For longer times, we have used numerical simulations.
We observed quantum echoes which could be explained
in terms of a Bohr-Sommerfeld quantization condition
for the regular phase-space orbits, and a time analog of
scarring for chaotic motion. The Bohr-Sommerfeld
quantization, and associated quantum echoes, suggest a
uniform spacing of the quasienergy levels of the eigen-
states of the time-evolution operator. The echo time is
then essentiaBy the inverse of the frequency interval
separating these levels. On the other hand, the time-
dependent scarring suggests a degree of localization of
the eigenstates, but with nonuniform energy-level spac-
ing. These results are not inconsistent with observations
that regular motion leads to a nearly random distribution
of energy levels because orbits with differing symmetries
[27] or in differing regions of phase space can be random-
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ly superposed and do not repel each other. The wave
packets which exhibit quantum echoes are composed of a
particular subset of eigenstates which have nearly uni-
form spacing.

There are many dificult problems associated with the
relation between quantum mechanics and chaos which we
have not addressed. In particular, it is not clear if chaos
should be described only as an R~O limit for quantum
systems, or if there is a purely quantum-mechanical char-
acterization of systems which could be taken as "quan-
tum chaos. " For example, Fox [28] has described a spin
in an electromagnetic field where the standard classical
treatment (rotating wave) yields regular motion, but a
semiclassical approach yields equations which can exhibit
chaos. A rather artificial quantum system described by
Chirikov et al. [29] is clearly chaotic. There have been a
number of comments suggesting that additional insight
could be obtained by examining the limits of large sys-

tems and long times, where the wave-packet picture does
not apply. There have been studies [30—33] of possible
chaos in infinite (open) systems, where discrete, absolute-

ly continuous, and singular continuous spectra are clearly
defined. Suggestions in these papers that the nature of
the spectrum could be used to characterize quantum
chaos are reasonable because one can relate the general
characteristics of diffusion to the spectral properties of a
system [34].

Finally, Ford, Manteca, and Ristow [35] have con-
sidered a quantum version of the map associated with the
Arnol'd cat, and they claim a failure of the correspon-
dence principle (in an appropriate limit). Does this mean
that the fi +0 (N—~~) limit of the quantum kicked
Harper model is in some sense different from the classical
version of this system described by Eqs. (2) —(4a)? As
Eckhardt notes [4], taking limits can be diificult, and we
do not have an answer to this intriguing question.

'Permanent address: Physics Department, Indian Institute
of Technology Kanpur, Kanpur, U.P. 208 016, India.
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