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Box-counting multifractal analysis
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Two box-counting algorithms for the determination of generalized fractal dimensions are described.

Results of application of the algorithms to Euclidean curves, quadric islands, Koch symmetric and

asymmetric triadic snowflakes, and split snowflake halls introduced by Mandelbrot [Fractal Geometry of
Nature (Freeman, New York, 1983)] are described. Comparison to analytic results for the model curves

is provided and the e6'ectiveness of the algorithms is discussed.

PACS number(s): 02.70.+d, 05.45.+b

INTRODUCTION

The accomplishments of fractal modeling in materials
to date are impressive. However, characterization of
fractal structure in terms of the "fractal dimension" is in-
complete. The "fractal dimension" tells us how the
length, area, or density of an object varies with scale, but
much more information is required to characterize or
model the more complicated structures that occur in na-
ture. The theory of multifractal objects provides a more
comprehensive description of fractal objects. The major
efforts in multifractal analysis have been directed toward
the understanding of the subset of the more complicated
fractal objects described in Halsey, Jensen, Kadanoff,
Procaccia, and Shraiman [1].

In order to optimally exploit multifractal perspectives,
it is imperative that quantitative techniques for the mea-
surements of fractal properties be developed. Box-
counting techniques for the measurement of generalized
fractal dimensions render the most direct application of
the ideas in Halsey et al. [1].

Block, von Bloh, and Schellnhuber [2] (BBS) have de-
scribed a box-counting algorithm for the measurement of
generalized (fractal) dimensions, which they refer to as
"efficient box counting" (EBC). The present work de-
scribes two other realizations of box-counting procedures
and addresses techniques for evaluating generalized frac-
tal dimensions over wider ranges of the controlling pa-
rameters than that covered in the work of BBS. The mul-
tifractal models employed to test the effectiveness of the
algorithms are subject to simple analysis along the lines
in Halsey et al. [1], so that our "measurements" are
compared directly with analytic results.

THEORY

Fractal measures

Although one can conceive of a more general class of
fractal point sets than that analyzed in the seminal work

The generators of the multifractal models studied here
have identical weights p;, which sum to unity, and have
two length scales. Letting n; be the number of elements
in the generator characterized by the length scale I.;, the
intrinsic values of D (q) are obtained by solving the tran-
scendental equation

p [n&L& r+n2L2 «]=1 (3)

for ~(q) =(q —1)Dz(q). This is a trivial problem, howev-
er, one could avoid dealing with transcendental equations
and solve

q(y)= —logio[n&Li +n2Lz ]/logto[p] (3a)

for q(y). For multifractals having many scales and
weights, solution of a transcendental equation is required.

Box counting

Box-counting methods for the determination of gen-
eralized fractal dimensions are, in principle, well known.
Recently, Tobochnik and Gould [3] presented a valuable
pedagogical review of the underlying concepts of box-
counting methods such as those employed in the present
study. The details of the numerical procedures employed
here are provided below.

of Halsey, Jensen, Kadanoff, Procaccia, and Shraiman
[1], it provides a basis for the analysis of most of the
known fractal point sets, curves, etc. In particular, it
provides the theoretical basis for multifractal analysis of
the Koch constructions studied here. Following Halsey
et al. [1],we define a partition function

pq
P q, y, L)= g where y =(1 q)D&(q) —.

l l

Then, for recursive constructs,

I (q, y, L")=[I'(q,y, L)]" so that I (q, y(q), L)=1 .
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Numerical methods

Two box-counting algorithms have been employed.
The first is a sorting algorithm, which is similar to the
EBC algorithm described by BBS [2]. The second algo-
rithm employs the agglomeration of results for a smallest
set of boxes.

The following definitions are useful in the description
of the box-counting algorithms.

(i) Let S=ts[j], j =1, . . . , N] be a subset of points
on the fractal set, where, in order to simplify the exposi-
tion, the origin is chosen in such a way that all the s&[i]
are positive.

(ii) Let juslfi= l, d] define an (arbitrary) orthogonal
basis for the space containing S.

(iii) Define the largest scale:

E,„=maxlus (s[i]—s[j])l .
i,j,5

(iv) Map the fractal subset S into the unit hypercube (d

cube) Q, by means of the affine transformation (which

does not change its fractal properties):

E,„+e
where e is a small positive number.

(v) Define the minimum normalized point set spacing

E,„= min ls'[i] —s'[j]l .
i,j (i'�)

The sorting box-counting algorithm

(i) Define a set of hypercubes (boxes), having edges
E, whose logarithms are uniformly spaced:

1E =, , m=01, . . . , M
[R (e') ];„,

where [ ];„,indicates integer part.
The parameter R allows one to select normalized max-

imum box sizes less than unity. R =1 in EBC.
The parameter e' allows one to select minimum box

edge values greater than the minimum normalized point
set spacing E;„. The minimum box edge is (approxi-
inately) E;„in EBC.

(ii) Sort the Is*[i]] according to s*, [i] using
"INDEXED HEAPSORT" [4]. Computation time for this
step goes like N log, o(N).

(iii) For each E compute the "partition function"
Z (q) as follows.

(a) Compute a set of integer-valued coordinates:

Ia&[i]=s& [i]/E l6=1, . . . , d, i =1, . . . , N]

N. b. , the integer-valued coordinates will already be sort-
ed according to a, [i].

(b) Define sublists of the a&[i] corresponding to the
different values of a i [i].

(c) Compute the box-occupation probabilities p„(E )

by sorting [4] the sublists via INDEXED HEAPSORT [4].
When the topological dimension d )2 sorting is accom-
plished by sequentially sorting or by sorting coordinates

combined as in EBC, i.e., the (d —1)N integer coordi-
nates are combined into 1V integers comprising a "linear
list" according to the prescription

d

f[i]If[i]= g a, [i]E''',

N.b., the length of the sublists will be substantially small-
er than X unless E is near unity and when E is near
unity the number of boxes is small and the sorting is
much faster than N log, o(N).

(d) Compute the "partition function" Z (q):

N(E )

Z (q)= g [p„(E )]',
n=1

(10)

Discussion of the sorting algorithm

Sorting algorithms are flexible in the range and distri-
bution of box sizes employed and are efficient in the use
of storage, however, computation time goes like
N log, o(N) and precise coordinate definition is required
for proper box allocation at each L. We discuss the
present sorting algorithm by comparison with EBC.

Most of the features of EBC pertain to efficient use of
computer storage and computation time and do not affect
the reliability of the determined generalized fractal di-
mensions. In particular, although different sorting stra-
tegies may result in different computation times, they
cannot affect the results.

There are five features of the EBC procedure which are
not in accord with the present procedure and/or may not
be routine assumptions in box counting and may
inhuence the results.

(i) Although they do not disclose the essential features
of the technique, BBSemphasize the fact that an essential
feature of the EBC method is "classwise linear regression
with random point selection" for the determination of the
slope. "Classwise linear regression with random point
selection" determines Dii(q) for the subset ("pivotal
values" ) of E (from the original logarithmically spaced
set) for which "best" linear fitting is achieved.

The specific algorithm employed in EBC might make a

where N(E ) is the number of E boxes containing an

element of S.
(iv) Compute the generalized box-counting fractal di-

mension D~(q), which is defined as the slope of the
straight-line fit to log, o[Z (q)]/(q —1) vs log(E ). As

in BBS, the subscript B makes explicit the distinction be-

tween the intrinsic generalized dimension D (q) and that
measured by application of box counting to finite subsets
of the given fractal set. The basis for this analysis is the
generalized fractal dimension defined by Hentschel and

Procaccia [5]:

1 loglol:Z (q)]
D (q) = lim

q
—1 E -o log, o(E )

where the limit is to be taken as E goes to zero for the

perfect fractal. This form is also discussed in Halsey
et al. [1].
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The agglomeration box-counting algorithm

(i) Define a set of nested hypercubes ("boxes") ap-
propriate for the given (or anticipated) point set S, such
that the boxes have edge lengths

E(k, m, . . . )=Eo/(2"X3 . . . ),
Ek[0, 1, . . .,E mje [01,. . . ,M , .j. . , .

(12)

We refer to the smallest boxes in the set, i.e., those having
an edge length E (K,M, . . . ), as elementary hypercubes or

substantive difference for q & 0, where plots of
logio[Z (q)]/(q —1) against log, o(E ) tend to be exten-

sively scattered. [BBSdid not report Ds (q) for q & 0.]
One expects that conventional linear regression is ap-

plied in most box-counting analyses. We have applied
conventional linear regression based on minimization of
least squares and absolute deviations in the present study.

(ii} EBC chooses the minimum box side in [E j as the
minimum magnitude of the vectorial distance between
elements of the point set S. This prescription has the ad-
vantage of defining e' simply and uniquely in terms of
the points in S. This assumption yielded unsatisfactory
results when applied to the analysis of the multifractal
point sets studied here.

(iii) EBC chooses the largest box size such that (within
a small positive number e) it just covers the point set in
the arbitrarily selected orientation of the boxes. We have
run calculations employing smaller "largest" E (i.e., we
have run tests with R & 1.). Although there are observ-
able changes in Dz(q) with R, the effects were small for
R G [0.1,1] in the present work.

(iv) Uniform spacing of log(E ) is prescribed in EBC.
This amounts to a choice of weighting factors for
different levels of scaling. We have investigated other
sets of [E j, which seem to work just as well. However,
logarithmically spaced [E j is a natural choice in the
sense that each order of scales is equally represented, and
so it is adopted for the present work.

(v) The use of QUICKSORT [4] in EBC cannot lead to
erroneous results and is usually the fastest sorting algo-
rithm; however, it is dangerous in the sense that it can re-
quire computation times that go like N (see Ref. [5]}.
Thus, we employ HEAPSORT [4], for which computation
time always goes like N log, o(N).

Although sorting of the derived "linear list" as in EBC
is conceptually simple, it seems to be a bad strategy (in
terms of computation time) for large lists and e' near
E;„.For example, applying the present algorithm to a
point set in K, after the presort of the original (possibly
floating point) list of coordinates, only searching of or-
dered lists of integers for changes is required, i.e., no fur-
ther sorting is required in K . Similar efficiencies associ-
ated with sorting shorter sublists can be expected for
d & 1. At some value of e*, sufficiently larger than E
and/or for a small enough number of values of E, it be-
comes more efficient to avoid presorting the entire list
even in K', and one expects that no penalty in computa-
tion time should be associated with the use of the derived
"linear list. "

elementary boxes.
(ii) Determine the occupation numbers (n; ) for each

of the elementary hypercubes. If the boxes do not in-
clude all members of S, redefine N:

elementary boxes

(n, ) .

(iii) For all combinations of k, m, . . . , the following
must occur.

(a) Compute the occupation numbers n, for .each of the
(2"X 3 . . . ) hypercubes by summing the occupation
numbers of the constituent subsets of contained elementa-
ry hypercubes. We refer to this step as "agglomeration. "

(b) Determine the p; =n; IN for each box and compute
the "partition function" Z(k, m, . . .;q) for the set of q for
which Ds(q) is to be determined as in Eq. (10). Empty
boxes are not included.

(iv} Compute the generalized box-counting fractal di-
mension D~(q), which is defined as the slope of the
straight-line fit to log[Z(k, m, . . .;q) ]l(q —1) vs
logio[E(k, m, . . . ) ].

Discussion of the agglomeration algorithm

The agglomeration algorithm may be inefficient in its
use of storage, since information about empty boxes is
maintained. However, the method has definite advan-
tages. It is well suited to application to "large" point
sets, since computation time is essentially independent of
N. Furthermore, the initial allocation of occupation
values to the smallest boxes may be the natural way to
treat the data obtained from automated image acquisition
systems.

RESULTS

The present box-counting algorithms were applied to
Euclidean point sets and point sets generated by simple
Koch recursions [6] in K' and K . Applications of the
sorting strategy in K were for sets having
1,000 & N & 50 000. The agglomeration technique was
applied for 100&N & 10";sorting is not a practical alter-
native for the larger point sets.

Monofractals in E2

Integer dimensions; Euclidean point sets in E

Euclidean point sets are thought of as degenerate ex-
amples of monofractals in the present investigation.

Random points on lines and on the unit square. Figure 1
shows fractal dimension values obtained by applying the
agglomeration algorithm for E=8 and M = 1 to a range
of numbers of random points on a straight-line segment
at two orientations in K with respect to the box axes.
D~(q) converges at all q, but at negative q, Ds(q) does
not always converge to 1.0. Figure 2 shows fractal di-
mension values obtained by applying the agglomeration
algorithm for E =8 and M = 1 to a range of numbers of
random points on the unit square. Convergence of Dz(q)
within 1% to 2.0 is obtained at q = —5, 0, 5, and 25;
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TABLE I. Normalized agglomeration box-counting [K =8, M= I] fractal dimension Ds(q)/D(q)
vs level for (symmetric) Koch triadic snowflakes in K . (N =3 X4""").

Level

2
4
6
8

10
12
14

q= —25

0.1187
0.4072
0.6511
1.0017
1.3632
1.7321
2.1031

q= —5

0.1601
0.4993
0.7107
0.9581
1.2259
1.5283
1.8391

q=0

0.2435
0.7523
1.0070
1.0158
1.0161
1.0162
1.0162

q=5

0.2894
0.8004
0.9955
0.9985
0.9984
0.9983
0.9983

q =25

0.3191
0.8028
0.9688
0.9835
0.9834
0.9834
0.9834

are obtained when log, o(N)=5. 5. The minimal box edge
E(8,1)=E,„/(2 X3)=E,„/768 corresponds to the
minimum spacing at

log, o(N) = log, o(3)+D log, o(768) =4. 1 .

Thus, for q &0 the best values were obtained for the
minimal box edge about ten times larger than the
minimal spacing in the point set. The Da( —5) and
De( —25) curves cross near log&o(N) =4. 1. Table I gives
values of normalized Dz(q) [=De(q) logto(3)/logto(4)]
vs level (N= 3 X4""") and q for the Koch triadic
snowflakes.

For q(0, Ds(q) curves obtained by sorting were
strongly dependent on e* and tended to more closely
resemble the intrinsic (constant) D(q) for e' =2E;„For.
e* ~E;„,Ds(q) are monotonic increasing at negative q.
Similar results are obtained for Koch quadric islands [6].

Multifractals in E'

The sorting box-counting algorithm was applied to the
logistic equation mapping employing one-dimensional hy-
percubes. The f—a spectra deduced from Ds(q) were in
accord with those shown in Tobochnik and Gould [3].

Multifractals in E

The box-counting algorithms were applied to asym-
metric Koch triadic snowflakes and Koch split snowflake

halls. The asymmetric Koch triadic snowflakes were pro-
duced by modifying the symmetric Koch triadic
snowflake generator such that the angles are unchanged
but the outer segments are twice as large as the central
segments, i.e., the inner and outer segments of the gen-
erator have relative lengths 0.2 and 0.4, respectively.

Mandelbrot [6] defines split snowflake halls as the
level-4 form of the construction, which at level 3, he
defines as the monkey tree. Here we refer to all levels of
the construction as split snowflake halls.

Asymmetric Koch snowjfakes

Sorting results Figure .5 shows De(q) obtained by sort-
ing box-counting for level-7 (N =49, 152), asymmetric
[0.4,0.2] Koch snowflakes. The dashed curve is the in-
trinsic D (q). The following attributes may be observed.

(i) Results for 5) q )0. For e* values ranging be-
tween about 0.001 ( =75E;„) and about 0.010
(=750E;„), D~(q) closely approximates the intrinsic
D(q). De(0) values are weakly e* dependent over the
specified range of e and are within 1% of their intrinsic
values. D~(3) values are weakly e" dependent over the
specified range of e* and are generally within 2%%uo of their
intrinsic values. The discrepancy is larger at larger q.
The discrepancy between De(q) and D(q) is quite large
for e*=E

The requirement that e* & 75E;„can be understood
as follows. E;„is determined by the most dense regions
of the point set. The snowflake considered has the least

1.5- 3.5

2.5—

2-
D

1.5—
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0.5—10 —5 0

q
10
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0 I I

4 6
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FIG. 5. Sorting box-counting fractal dimension D&(q) vs q
for various e* for asymmetric [0.4, 0.2] Koch snowflakes in K .

N =49 152. The dashed curve is the analytic result.

FIG. 6. Agglomeration box-counting [K=8, M=1] fractal
dimension D&(q) vs the logarithm of the number of points for
asymmetric [0.4, 0.2] Koch snowflakes in K .
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TABLE II. Normalized agglomeration box-counting [K =8, M =1] fractal dimension Ds(q)/D(q)
vs level for asymmetric [0.4, 0.2] Koch triadic snowflakes in K'. (N= 3 X4'"').

Leve

2
4
6
8

10
12
14

q = —25

0.1029
0.3862
0.7162
1.0580
1.4027
1.7496
2.0992

q= —5

0.1548
0.4917
0.7859
1.0588
1.3428
1.6372
1.9445

q=0

0.2986
0.8062
1.0053
1.0210
1.0220
1.0221
1.0221

0.4298
0.9193
0.9577
0.9581
0.9580
0.9580
0.9580

q =25

0.5075
0.8707
0.9113
0.9115
0.9115
0.9115
0.9115

dense regions, which are (0.4/0. 2) = 128 times less
dense. Therefore, e*= 128E;„are minimal spacings in
the least dense regions of the level-7 construct. Hence,
e*=75E;„ is a reasonable value to characterize the en-

tire point set and it is clear that the EBC choice
e' =E,„ is too small.

(ii) Results at q & 0. Dtt(q) curves were strongly depen-
dent on e'. Curves that approximate D(q) reasonably
well over the entire range of q are obtained for e* be-
tween 0.001 and 0.004. The curve obtained for e'
0.0025 is closest to D(q) while that for 0.001 is smoother
near q =0 but is slightly farther from D(q) One m.ay ob-
serve the beginning of the formation of a slight belly near

q =0, as e* increases through 0.0025.
Agglomeration results. Figure 6 shows Dtt(q) curves

for q =
[
—25, —5,0, 5, 25 j and various N for the [0.4,0.2]

asymmetric triadic snowQakes measured via I( =80,
M= 1 boxes; Table II gives values of normalized Djt(q)
[=D~(q)/D(q)] vs level (N=3X4""") and q. Con-

verged values for q &0 are obtained as 0.4'"" passes
through the box edge length E(8, 1) of the elemental
boxes. "Best" values at negative q occur for these transi-
tional cases, which falls at log&o (N) slightly beyond that
for which the De( —5) and Dtt( —25) curves cross.

Figure 7 shows similar results for E=3, M = 1, P = 1

[E(3,1,1)=E,„/(2 X3X5)=E,„/120]; Table III
gives values of normalized Dtt(q) vs level and q. Note, in

particular, that convergence is obtained for values of N
about —,

' th as large as in the E=8, M= 1 case.

Split snowflake halls

Sorting results Figu. re 8 shows Ds(q) obtained by sort-
ing box-counting for level-4 (N= 1+11 ) split snowflake
halls. The dashed curve is the intrinsic D(q). The fol-
lowing features may be observed:

(i) Results for q) 3. For e' values ranging between
about 7E;„and 30E;„,Dtt(q) closely approximates the
intrinsic D(q). Ds(3) values are weakly e' dependent
over the specified range of e*, but are generally within
2%%uo of their intrinsic values and are closer at larger q.
The discrepancy between De(q) and D(q) is large for

min'

(ii) Results for 3)q ) —1. For e' values ranging be-
tween about 7E;„and 0.07, De(q) are weakly e' depen-
dent, but lie substantially below the intrinsic D(q).
Dtt(0) values are about 12% low.

(iii) Results at q & —1. De(q) curves were strongly
dependent on e*. Curves that most closely approximated
D(q) for this range of q, in the sense of rms deviation,
behaved badly near q=0 and had e* values outside the
range and larger than those for which "best" approxima-
tion in the q & —1 region obtains. No value of e' pro-
duced a monotonic decreasing De(q).

TABLE III. Normalized agglomeration box-counting [K=3, M=1, P=1] fractal dimension
Ds(q) /D (q) vs level for asymmetric [04., 0.2] Koch triadic snowflakes in K'. (N —3 X4""").

Leve

1

2
3
4
5

6
7
8

9
10
11
12
13
14

q= —25

0.0543
0.1834
0.3949
0.6178
0.8437
1.0930
1.3419
1.5448
1.7295
1 ~ 8953
2.0597
2.2287
2.3981
2.5674

q= —5

0.0824
0.2667
0.5077
0.7079
0.8819
1.0836
1.2949
1.4492
1.6108
1.7611
1.9090
2.0656
2.2227
2.3795

q=0

0.1438
0.5045
0.8244
0.9773
1.0177
1.0246
1.0258
1.0261
1.0263
1.0263
1.0263
1.0263
1.0263
1.0263

q=5

0.2630
0.6941
0.9155
0.9646
0.9737
0.9750
0.9753
0.9751
0.9751
0.9751
0.9751
0.9751
0.9751
0.9751

q =25

0.3497
0.7652
0.8637
0.9083
0.9177
0.9198
0.9201
0.9199
0.9199
0.9199
0.9199
0.9199
0.9199
0.9199
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FIG. 7. Agglomeration box-counting [IC =3, M =1, P =1]
fractal dimension D&(q) vs the logarithm of the number of
points for asymmetric [0.4, 0.2] Koch snowflakes in K .

FIG. 9. Agglomeration box-counting [E= 8, M =1] fractal
dimension D&(q) vs the logarithm of the number of points for
split snowflake halls in K .

Agglomeration results Fig.ure 9 shows Dtt(q) curves
for q=I —25, —5,0, 5, 25I and various N for split
snowflake halls measured via K=8, M=1 boxes; Table
IV gives values of normalized Ds(q) [=De(q)lD(q)] vs
level (N =1+11""")and q. "Best" values at negative q
occur for log&o(N) slightly larger than that for which the
Dtt( —5) and Dtt( —25) curves cross.

Figure 10 shows similar results for EC =3, M=1, I' =1;
Table V gives values of normalized Dtt(q) vs level and q.
Note, in particular, that convergence is obtained for
values of N about —,'th as large as in the I( =8. M = 1 case.

CONCLUSIONS

The sorting and agglomeration box-counting algo-
rithms are effective for the determination of Ds(q) for
q ~0. However, the present implementations yield un-
reliable results for q &0.

Dtt(q) values converged from below for q ~0 and
overshot and converged from above at q (0 for random
points on Euclidean objects. Therefore, convergence to
D(q) for Euclidean point sets is not a sufficient condition
for demonstrating the effectiveness of an algorithm.

Sorting box-counting algorithms require storage of
d XN double-precision (eight-byte) floating-point num-
bers in E and CPU time varies as N log&o(N). The input
data to the algorithm are the coordinates of the points.
In order to achieve best results, the particle coordinates
must be known precisely so that box occupancies for the
various box edge lengths in the set can be determined;
this constraint is relatively easy to satisfy for mappings or
other recursively defined point sets, but may be exacting
for experimentally acquired point set coordinates.

The agglomeration box-counting algorithm requires
storage of (2 X 3 ) integers and CPU time is pro-
portional to (2+X 3 ) . Although we used four-byte
integers in the present work, two-byte integers are prob-
ably sufficient in practice. CPU time and storage require-
ments are independent of X and therefore agglomeration
algorithms may be the only practical technique for appli-
cation to cases where N is "large. " The input data to the
algorithm are elementary box occupation numbers rather
than precise coordinates. This could be an important dis-
tinction for image acquisition systems, which provide
data in this form. Thus, the agglomeration technique
works equally well for mappings or other recursively
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FIG. 8. Sorting box-counting fractal dimension D~(q) vs q
for various e for level-4 (N =14642) split snowflake halls in
K . The dashed curve is the analytic result.

FIG. 10. Agglomeration box-counting [lt. =3, M =1, P =1]
fractal dimension Dz(q) vs the logarithm of the number of
points for split snowflake halls in K .



L. V. MEISEL, MARK JOHNSON, AND P. J. COTE

TABLE IV. Normalized agglomeration box-counting K =8, M = 1] fractal dimension Ds(q)/D(q)
vs level for split snowflake halls in IE . (Ã = 1+11""").

Level

2
3
4
5

6
7
8
9

10

q= —25

0.1203
0.2464
0.3764
0.6045
0.8599
1.0927
1.3575
1.6121
1.8223

q= —5

0.1628
0.3226
0.4559
0.6526
0.8533
1.0349
1.2493
1.4718
1.6595

0.2747
0.5576
0.7908
0.9022
0.9303
0.9352
0.9366
0.9370
0.9372

q=5

0.4068
0.7343
0.9319
0.9748
0.9772
0.9771
0.9771
0.9771
0.9771

q =25

0.4678
0.7767
0.9135
0.9609
0.9688
0.9689
0.9689
0.9689
0.9688

TABLE V. Normalized agglomeration box-counting K =3, M = 1, P = 1] fractal dimension
D&(q)/D (q) vs level for split snowflake halls in K . (N = 1+11""").

Level q = —25

0.0091
0.2064
0.4098
0.6772
1.0265
1.2935
1.5803
1.7172
1.8404

q= —5

0.0401
0.2742
0.4846
0.7033
0.9744
1.1909
1.4236
1.5409
1.6545

q=0

0.1128
0.4645
0.7682
0.8799
0.9016
0.9061
0.9070
0.9073
0.9075

q=5

0.1931
0.6393
0.9003
0.9531
0.9579
0.9571
0.9572
0.9573
0.9573

q =25

0.2338
0.6693
0.8818
0.9378
0.9490
0.9478
0.9479
0.9480
0.9480

defined point sets and for experimentally acquired point
sets.

The values of N required for convergence of D at q ~ 0
were approximately the same for the sorting and ag-
glomeration box-counting algorithms in the present in-
vestigation.

For example, for at =2 and D(0) &1.5, our experience
indicates that N=10 is required for convergence. In
this case, storage requirements for (K =3, M =1, P =1)
agglomeration (four-byte integers) is approximately 60
kbytes while sorting requires 200 kbytes. Larger N and
number of elementary boxes are required for larger D (0),
but the relative advantage of the agglomeration technique
with regard to storage is maintained.

We have not tested convergence of box-counting tech-
niques for d )2, however we anticipate that substantially
larger N will be required for convergence. One might
speculate that for d =3, N =(10 )' = 10~, agglomeration
(l~ =3, L =1, M =1) uses 7 Mbytes. Sorting would re-
quire 25 Mbytes. Of course, if convergence is obtained

for N = 10 for d =3, then sorting would require only
0.25 Mbytes while agglomeration would sti11 require 7
Mbytes.

Sorting box-counting algorithms might be the best
choice for relatively small sets of precisely defined points.
If "classwise linear regression with random point selec-
tion" implicitly yields sets of E which give good values

for Dtt(q) at q &0, then EBC is probably best for the
cases to which it may be applied. However, if this is the
case, the principle can probably be applied to refine the
agglomeration technique as well.

Agglomeration box counting resulted in values for
Dtt(q) at least as good as those determined by sorting for
all cases studied here. For the large point sets employed
in our convergence studies, sorting would have been (for
the present) impractical. Computation times for the
moderately sized point sets (required for convergence)
would be competitive; agglomeration, of course, becomes
relatively more efficient as N increases.
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