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Stability of dark solitary waves trapped in media with gain and loss

Yijiang Chen
Optical Sciences Centre, Australian National University, Canberra, Australia

(Received 4 November 1991)

The stability of dark solitary waves trapped in self-defocusing media that include gain and two-photon

absorption is investigated. The stationary propagation of the dark solitary waves is found to be stable to
a symmetric perturbation but unstable to an asymmetric perturbation. This contrasts with their bright

counterparts, which are unstable to all perturbations.

PACS number(s): 42.65.Jx

Currently, there is an upsurge of research interest in
optical solitons owing to their potential applications in
optical signal processing and transmission [1]. Optical
solitons as a whole consist of two species, referred to as
bright and dark solitons. Analogous to their bright coun-
terpart, dark solitons come further in two varieties: tem-
poral and spatial [1]. The temporal dark soliton denotes
the stable distortionless dark pulse traveling in the
positive-group-velocity-dispersion region with the disper-
sion balanced by nonlinear phase modulation, while the
spatial dark soliton means the stable self-guided dark
beam propagating in a uniform self-defocusing nonlinear
medium. Different as the physical origins are, the behav-
ior of the two varieties is governed by the same
mathematical equation, the nonlinear Schrodinger equa-
tion, in their corresponding normalized quantities [2].
These soliton solutions are, however, limited to the non-
linear media that are passive and lossless [2]. In reality,
material loss may be inevitable, especially when non-
linearity is associated with two-photon absorption, which
in fact often appears as a by-product of enhanced non-
linearity [3,4]. Its presence consequently leads to at-
tenuation of a propagating pulse or light wave [5—8]. On
the other hand, self-trapping may occur at Raman-Stokes
frequencies [9—11] (or in an active nonlinear medium); an
optical pulse or a self-guided beam then experiences a
constant gain under conditions of strong Raman pump-

ing with negligible depletion. Obviously, in the presence
of either two-photon absorption or gain alone, the soliton
solution or stationary propagation of a light wave in a
medium is no longer possible. Naturally, an immediate
question is whether the intensity-dependent two-photon
absorption can be counteracted by constant gain to lead
to the stationary propagation of a pulse or light beam
when both two-photon absorption and constant gain are
present. In a previous study [8], it was shown that this is
indeed the case, i.e., two-photon absorption can be com-
pensated by gain to yield the stationary solution. But a
question remains as to whether such a stationary evolu-
tion of the dark solitary wave is stable to a perturbation
since the stability characteristic of a solitary wave is cru-
cial for its potential application [7]. The purpose of this
Brief Report is to address the very question of stability of
the dark solitary wave trapped in a nonlinear medium
that includes two-photon absorption and gain.

The evolution of a light wave in a medium is governed
by Maxwell's equations, which reduces to the
Schrodinger equation under the assumption of the slowly
varying approximation. Incorporated with two-photon
absorption and gain effects, the modi6ed nonlinear
Schrodinger equation for a self-defocusing nonlinearity
reads
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of an arbitrary value. But for a%0 and a2%0, the ampli-
tude, the guide index, and the width are uniquely deter-
mined by the parameters a and a2 and are related by
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This expression compared with Eq. (3a) indicates that for
a given amplitude A, the dark solitary wave trapped in
the self-defocusing medium with gain and loss is more
contracted (W(1/A see Fig. 1) and its guide index is
greater than the corresponding one trapped in the pas-
sive, lossless self-defocusing medium. Recall the relation
[8] between the guide index I and the wave effective in-
dex n,e =P/k for a spatial dark solitary wave

F=np jef/no

with P the wave propagation constant, k the wave num-

where the term involving a2 accounts for the intensity-
dependant two-photon absorption and that containing a
represents the constant gain contribution. In the pres-
ence of a2 or a alone, Eq. (1) does not admit any station-
ary solution. However when both aAO and a2%0, Eq.
(1) yields [8]

e(x,z) = 2 tanh(vx) exp I i [I'z—+y ln sech(vx)]], (2)

where the solitary wave amplitude A =+a/az, the
width W=1/v=&3y/2a, the guide index I =2a/3y,
and y =+9/4az+2 —l. 5/a2. In the limit of a~0 and

a2~0, Eq. (2) reduces to the well-known dark-soliton
solution with
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This expression, substituted into Eq. (1), yields an evolu-

tion equation governing a:

dQ =aa(1 —a /A ) .
dz
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At a = A =+a/a2, the stationary solution is recovered.

Now allow a perturbation to deviate a from its equilibri-

um value A, Eq. (5) indicates da/dz &0 for a ) A and

do/dz) 0 for a & A. This means that a beam (or pulse)
will radiate energy to adjust itself to the equilibrium with

an expansion in the width when a & A, whereas it will ab-

sorb energy from the medium to expand toward the sta-

tionary solution with a narrowing in the width when

a & A, i.e., the stationary solution of Eq. (1) is stable to a
change in a or to a symmetric perturbation. This is cor-
roborated by numerical stimulations. As examples, con-
sider the initial excitations

FIG. 1. Schematic illustration of the intensity profiles in (a)

and the induced refractive-index profiles plus the effective wave

indices n,ff in (b) of a spatial dark soliton (portrayed by the

dashed curves for a=0 and a2=0) and a spatial dark solitary

wave (depicted by the solid curves for a@0and a2%0).

ber in free space, and n0 the linear refractive index of the
medium. By applying the relation to the spatial dark sol-
iton (a =az =0), it was shown that the maximum induced
refractive-index change is n0 —n;„=n0 —n, ff for any I
[12], i.e., the minimum refractive index n;„of the in-

duced index profile for a dark soliton is equal to n,l for
any I' (indicating its operation just at the cutoff) as shown
in Fig. 1(b) (the dashed line). However, here the max-
imum induced refractive-index change for the dark soli-
tary wave trapped in the medium with gain and loss is
n0 —n;„=n0A less than n0 —n,z=n0I, i.e., the dark
solitary wave is trapped below the cutoff [see the solid
line in Fig. 1(b) showing n, s & nm;„] This d.ifference be-
tween n;„and n, ff is equal to

2
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augmenting with increasing a and reaching the max-
imum value —,'a2an0 as A ~ Do. The distinctions between
the dark solitary wave in the medium with gain and loss
(the solid curves) and that in the medium without gain
and loss (the dashed curves) are outlined in Fig. l.

The dark soliton (or the dark solitary wave trapped in
a passive lossless self-defocusing medium) is a stable enti-
ty. Then what about the dark solitary wave trapped in a
self-defocusing medium with gain and two-photon ab-
sorption? Can it evolve stably as in the case of the dark
soliton? This question is to be addressed by numerical in-
vestigation on Eq. (1) using the beam propagation
method. But first let us consider an analytical prediction
by resorting to adiabatic approximation [8]. When gain
and loss are small, it is legitimate to assume A =1/8,
which leads to

with the second term on the right-hand side standing for
an asymmetric perturbation. As illustrated in Fig. 3, the
dark hole experiences dissipation from the onset and at
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FIG. 2. Demonstration of the stability of the dark solitary
wave of Eq. (1) to symmetric perturbations for a=0. 1 and

a&=0.2. The initial excitation in (a) and (b) corresponds to the

upper and lower signs in Eq. (6), respectively.

e (x,O) = A [ tanh(vx)+[ sech(x —2)—sech(x +2)]]

X exp[ i sec—h(vx) ]

with the second and third terms on the right-hand side

accounting for symmetric perturbations. Figure 2 illus-

trates the evolution of the beams (or pulses). After a
period of adaptation up to z =50, the beams evolve to the
stationary solution and propagate stably thereafter. The
greater the deviation of initial beams from the stationary
solution, the longer the distance required to adjust to the
steady state. Unfortunately, this stable evolution cannot
last infinitely since the dark solitary wave of Eq. (2) is un-

stable to an asymmetric perturbation. This can be
demonstrated by an initial asymmetric perturbation to
the medium of Fig. 2

e(x, O}=A [ tanh(vx)+O. 1 sech(x 2)]

X exp[ i sech(vx)]—
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FIG. 3. Demonstration of the instability of the dark solitary
waves of Eq. (1) to an asymmetric perturbation for a=0. 1 and
a&=0.2 with the initial excitation of Eq. (7).

z=110 it is completely absorbed into the background.
This is because Eq. (1) also admits the plane-wave solu-
tions

e (x,z) =++a/a2 exp[ i (a/—az)z ] (8)

which are stable to any perturbations. Thus any numeri-
cal noise of asymmetric nature may eventually lead the
stationary evolution in Fig. 2 to the plane-wave solution
of Eq. (8).

Recall that the bright solitary wave trapped in a self-
focusing medium is unstable to any perturbations [13] in
contrast to the dark solitary wave examined here. This is
due to the fact that a noise in the tail part (where hei =0)
of the intensity profile of a bright solitary wave is readily
amplified locally to the plane-wave solutions
e(x,z)=++a/azexp[i(a/az)z] as gain there predom-
inates and thus spoils the stationary evolution. On the
other hand, for the dark solitary wave, a noise in the tail
or background of the intensity profile (where
hei =+a/a2) once appearing is immediately suppressed
since ie(x, z)i ) ie,q„;lb„„(x,z)

~
=a/a2 resulting

from the noise leads to exaggeration of attenuation,
driving ie(x, z)i back to its equilibrium and
ie(x, z)i(ie,q„,„b„;„(x,z)i gives the preference for gain,
amplifying ie(x, z)I to the stationary value. Note that the
arguments here are based on the fact that loss is linearly
proportional to the intensity as indicated in Eq. (1).

In conclusion, the dark solitary wave trapped in a self-
defocusing medium that includes two-photon absorption
and gain is investigated. The beam effective index of the
spatial dark solitary wave is shown to be smaller than the
minimum value of the induced refractive index profile,
i.e., the beam propagates below the cutoff, in contrast to
the spatial dark soliton (in the passive lossless medium)
whose wave effective index is equal to the minimum value
of the induced refractive-index profile (operating just at
the cutoff). Most interestingly, it is found that the dark
solitary wave is stable to a symmetric perturbation but
unstable to an asymmetric perturbation. This contrasts
with its bright counterpart, which is unstable to any per-
turb ations.
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