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ESect of laser linewidths and collisions on resonance Suorescence in a squeezed vacuum

S. Smart and S. Swain
Department ofApplied Mathematics and Theoretical Physics, School ofMathematics and Physics,

The Queen's University ofBelfast, Belfast BT71NN, The United Kingdom
(Received 28 October 1991)

We study the system of a single two-level atom interacting with a braodband squeezed vacuum and a
classical applied field. The atom is subject to collisions, and the applied field may possess a finite
linewidth. The atomic populations, coherences, resonance fluorescence spectrum, and intensity fluctua-
tion spectrum are calculated. Wherever practicable, analytic expressions are obtained that show the
dependence of these quantities on the damping parameters. Numerical plots are presented. Two quali-
tative results that we obtain are the following: (a) we show that the dependence of the populations on
the squeezing phase is increased by increasing the damping parameters, contrary to what might at first
have been expected, and (b) we show that, in the absence of external damping, the squeezing induces
strong asymmetries in the ofF-resonant resonance fluorescence spectra.

PACS number(s): 42.50.Dv, 32.80.—t

I. INTRODUCTION II. ATOMIC POPULATIONS

The interaction of atomic systems with squeezed white
noise has been a topic of some interest since Gardiner
first pointed out that the two quadratures of the polariza-
tion of a two-level atom decay, respectively, faster and
slower than the normal decay rate [1]. The next
phenomenon to be investigated was resonance Quores-
cence [2] where it was shown that the relative heights and
widths of the Mollow spectrum were strongly phase
dependent. In this treatment it was assumed that the
classical applied field was monochromatic, and that col-
lisions were negligible. It was also assumed that the
squeezed input was a broadband squeezed vacuum. Res-
onance Auorescence in a narrow-bandwidth squeezed field
has been considered by several workers [3], who find that
significant narrowing of Rabi peaks and inhibited popula-
tion decay is possible.

In this paper we consider the effects of finite laser
linewidths and collisions on the resonance fluorescence
spectrum of a two-level atom in the presence of a broad-
band squeezed vacuum. We also investigate the atomic
populations and calculate the intensity fluctuation spec-
trum. Two qualitative results that we obtain are (a) that
the dependence of the populations on the squeezing phase
is increased by increasing the damping parameters, con-
trary to what might at first have been expected, and (b)
that, in the absence of external damping, the squeezing
induces strong asymmetries in the off-resonant resonance
fiuorescence spectra.

Our method of calculation is based upon a diagram-
matic analysis of the exact rate equations for the system,
which is described in the preceding paper [4]. The start-
ing point for this method is the Gardiner-Collett master
equation [5] for a nonequally spaced atomic system in-
teracting with a broadband squeezed vacuum.

A. The rate equations for a two-level atom
in a squeezed vacuum

»0 PD(o) =(w—10+710)P1 (wol +rDi—)PD+ ~PD

»1 Pi(o) =(w—oi+roi)Po (wio+r 10—)P1+~P1 (2)

where the tilde indicates the usual Laplace transform.
P;(0) is the initial occupation probability for state ~i )
and hP; is defined in Eqs. (15) and (16). For simplicity,
we have omitted to write in the Laplace argument z in
the P's and w's. w; (z) is the rate of coherent transitions
between atomic levels ~i ) and ~j), and y;J is the in-
coherent transition rate between these levels. If we ig-
nore the b,P; terms, these equations express (in Laplace
space) the fact that the rate of change of the occupation

We consider a two-level atom, with states ~1) and ~0)
and corresponding energies E, and Eo interacting (within
the rotating-wave approximation) with a classical field of
frequency co in the presence of a squeezed vacuum [5].
We assume %=1. At first we neglect collisions and the
laser linewidth, and add in these factors later. In the
rate-equation approach, it is convenient to work with the
Laplace transform of the probabilities. The equations of
motion are found as follows [4]. We consider all possible
transitions between the energy eigenstates of the atomic
system under investigation, and then write down the rate
equations for the atomic populations by inspection. The
rate of transitions between a given pair of levels is the
sum of a coherent rate w due to the applied field and an
incoherent rate y due to the squeezed vacuum. For a
two-level atom, we have the simple situation shown in
Fig. 1. The rate equations are [Eqs. (11) and (12) of Ref.
[4] 1
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FIG. 1. The coherent and incoherent transition rates in the
two-level atom.

probability P; of level li ) (left-hand side) is equal to the
difference between the rates of transitions into and out of
that level. For the incoherent transition rates, we have
explicitly (cf. Eq. (3) of Ref. [4]),

y,.=y(N+1}, yot=yN,

where N and Me'+ are the squeezing parameters utilized
by Collett and Gardiner [5]. (N, M, and y are real. N
and M are zero in the absence of squeezing. } They obey
the inequality

FIG. 2. (a) The diagrams which contribute to the coherent
transition rate w&0. one lists all the processes that can take one
from the density-matrix element p» to the element poo by means
of the dipole l p, ) and squeezing (g) interactions. The upper line

represents the first index of the density matrix and the lower
line the second index. (b) The diagrams which contribute to
(10). These are the diagrams for remaining in the "state" p&0.

There are two diagrams in this case: the zeroth-order one (not
shown) where the system simply remains in this state without
any interactions, and the second-order one (illustrated). (c) The
diagrams contributing to LP&. one writes down the diagrams
which start from any o6'-diagonal p;, and which finish at p».
We show the diagrams which start from p&0', the diagrams start-
ing from po& are the mirror images of these.

M'&N(N+1) . (4)

For the coherent rates, squeezing enters through the pa-
rameter gtp=yMe'&. We also need the quantities

l IPL
p&p—= Igle ", ~=Et o ~t, 0 =2yl —qr, (5}

p, o being the dipole matrix element between levels I 1 )
and IO), yL the laser phase, and b the detuning. The im-
portant phase is 4, the difference between twice the laser
phase and the squeezing phase.

We have described in Sec. 111of Ref. [4] a diagrammat-
ic method of calculating the rates w; . The dipole in-
teraction causes a transition from state I 1) to state IO),
measured by the dipole matrix element p&0 and the
squeezing interaction causes the of-diagonal density-
matrix element p&0 to switch to its transpose po&, with an
amplitude measured by the quantity g,o. In the dia-
grams, the dipole interaction is indicated by a cross in the
line and the squeezing interaction by an intersection of
two lines. For the particular case of a two-level atom, it
turns out that the two coherent rates are equal:
w]p =wpt: w(z ). The diagrams for w are obtained by
listing all the ways one can proceed from "state" p» to
state poo by means of the two kinds of coherent interac-
tion, dipole and squeezing, as shown in Fig. 2(a}. These
diagrams correspond to the first and last diagrams of Fig.
4 of Ref. [4]: the other three diagrams in the latter figure
do not contribute in the two-level case. For example, if
we take a to be the state 1 and b the state 0 in Fig. 2 of
[4], we must have c =1 in the two-level case. This would
give rise to the "diagonal" propagator (11), which is now
allowed. Returning now to Fig. 2(a) of this paper, we

note that the contribution of the second diagram depends
upon the phase 4. Rules for writing down the contribu-
tions of the diagrams are given before Eq. (19}of Ref. [4].
Following this prescription, we obtain

Ipiol ptokotp&ow(z)=2 Re + (6)

The propagators (10) and (01 }tp are obtained from the di-

agram of Fig. 2(b) as (in Fig. 2 of Ref. [4] are shown the
diagrams for a general propagator (ab ); only the third di-
agram contributes in the two-level situation)

kotCto
(10)=E,o—,(01),p sp]

(01)(p
'

where

and

e&p=z+t(E&p —ot) +I &p Ept

I, =I'—(yio+yot)I2=y(N+1/2) . (9)

2lgl [z+y(N+ ,'+M cos4)]-
w(z) =

[z+y(N+ ,')) yM +6——(10)

I is associated with the decay of the coherences, whereas

y &o and yp] are associated with the decay of the popula-
tions. The relationship between the diagonal and of-
diagonal decay-rate quantities given in Eq. (9) holds only
in the absence of collisions and finite laser linewidths.

These expressions give for w (z ),
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The quantity which determines the steady-state popula-
tions is w(z =0}=w. In the absence of squeezing
(M=N=O}, the rate equations are unchanged in form
but w reduces to

shown in Fig. 3 of Ref. [4] for the general case, but only
the first two diagrams, shown here in Fig. 2(c), survive in
the two-level case. These diagrams give the contribution

r

'PiaPoi 0 CoiPiaPio 0

(11) ' (01) (10 01)
(15)

w ~')V=
y /4+6,

(16)EPp(0)= —b,Pi(0) .

The hP; are needed for the calculation of such quantities
as the resonance fluorescence spectrum.

The solutions of Eqs. (1) and (2) are
(12)

In the limit of y~0, we recover the Fermi golden rule
expression

[N(N+ I )]'/2=N+ —' —1/(8N) (13)

Before calculating the populations, we examine the
properties of the steady-state coherent rate w. Squeezing
drastically alters the value of w. If M is maximal and N is
large,

ZP p + io +y ip

z(z+2w +2I'}
zPi +w+ yoi

z(z+2w+21'} '

(17)

(18)

and then

io =2)V[(N+ —,')(1+ cos4) —cos4/8N)] . (14)

For 4=0, w is strongly enhanced by the squeezing:
w=4NSV, whereas for 4=m, w is greatly reduced:
w=')V/4N. These features are illustrated in Fig. 3,
where we have plotted 1n(w }. We consider the resonant
case, 6=0, and take y =1, ~g ~

=2.5 (which gives
')V=10). This shows the increase of w with N for 4-0
and the decrease for 4-n., for N in the range from 0 to
5. Note that w is much more sensitive to small changes
in 4 for 4-~ than 4-0.

The quantities b,P; (which in general depend upon z)
contain all the dependence on the initial values of the
off-diagonal density-matrix elements p; (0). In the gen-
eral case, it is given by Eq. (13) of Ref. [4]. Such terms
give rise to transient efFects which do not affect the steady
state. The diagrams describing these quantities are ob-
tained [4] by considering how one can arrive at the state

p» by means of the two types of interactions starting
from all possible initial coherences p,j (i' }. They are

where P; =P;(0)+—hP; and I is defined in Eq. (9). For
the steady-state solution we obtain

P, ( 00 }=limzP, (z)=—1 yN+w
z~0 2 yN+w+y 2 ' (19)

which agrees (after a change of notation) with the expres-
sion obtained in Ref. [2]. From this formula, we see that
P, ( 00 ) will approach its asymptotic value of —,', no matter
what the value of 4, if yN+ io »y/2. That is, if either
N »1 or ~g~ &&Ny /8 (the latter expression assuming
that N & 1). These two inequalities correspond to satura-
tion by the squeezing field or the dipole field, respectively.

The important quantity is yN+ w. For phase-
dependent effects to be noticeable we must have w & yN;
that is, the coherent rate must dominate the incoherent
rates due to squeezing. We must also be well away from
saturation.

These features are clearly seen in Fig. 4, where we plot
P„again taking 5=0, y=1, and ~g~ =2.5. It can be
seen that the P& graphs have the same qualitative features
as the w graphs, with the difFerence that the P& curves
saturate to a constant value with N. (For 4-m, this
occurs at much larger values of N than those shown in
Fig. 4.) In the absence of squeezing, the applied classical
field would produce a steady-state value of P& of about
0.476. The particularly interesting feature is that for
4 & 3m /4, P, ( 00 ) decreases at first from this value as the
squeezing is increased. This is due to the decrease in the
value of w, which in turn may be considered due to the
interference between the two diagrams in Fig. 2(a) being
destructive for y-m. . However, for N suSciently large,
the incoherent rates yN begin to dominate the coherent
rate w, and Pi( 00 }begins to increase. Thus the behavior
of Pi( 00 )—its rapid increase with N for small values of
4, and for 4-~, its fall to a minimum followed by a
steady rise —may be understood in terms of the behavior
of the coherent and incoherent transition rates.

B. Inclusion of collisions and laser linewidths

FIG. 3. The natural logarithm of the coherent transition rate
w ~o(0)=w as a function of the squeezing phase 4 and the am-
plitude N.

Since this rate-equation approach is based on the mas-
ter equation, it is a relatively easy matter to include other
damping mechanisms, such as collisions [6]. In the pro-
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FIG. 6. The excited-state population P&( tx) ) as a function of N for 4=0, m/4, n. /2, 3m/4 and ~, for different values of the laser
linewidth and collision parameters.

III. RESONANCE FLUORESCENCE

A. Of-diagonal density-matrix elements

Bio Boiko
(10} (10,01)

(24)

In order to discuss resonance fluorescence we need the
steady-state off-diagonal elements of the density matrix.
They may be calculated in the present approach by sub-
stituting in Eq. (15) of Ref. [4] the diagonal matrix ele-
ments (populations} obtained from a solution of the rate
equations. For a two-level system, this equation reduces
to

B. The resonance fluorescence spectrum

The spectrum in resonance fluorescence is usually cal-
culated by means of the quantum regression theorem,
which effectively makes use of the solutions for the ofF-

diagonal elements of the density matrix. %e largely fol-
low the approach presented in Ref. [6], which includes
the effect of collisions and laser linewidths, and where the
details may be found.

The quantum regression theorem requires us to Snd the
quantity A, p(z }, where A is defined to satisfy the same
equation of motion as the density matrix p but with the
different initial conditions [6]

Bio =Pip(o}—iPio[PO(z) —Pi(z }]

Boi =poi(0)+ ipoi [Po(z ) —P 1 (z ) ] .

(25a)

(25b)

where o,o(t ) =p,p(t ) exp(its, ot ) and the B; depend upon
the diagonal elements Aii(0}=Api(0) =0

Alo(0) =Pi i( ~ }

App(0)=api(oo) .

(28)

Hence for the steady state we obtain

ipo, y[(y+ib, )+yMe' ]aoi(~)=
2 z[yoi+yip+2Q;+2w](y +b, —y M )

The quantities p»(oo ) and op, (oo ) are the steady-state
solutions of the density-matrix equations, given in Eqs.
(18}and (26}. From Eq. (24) we have

with w given by Eq. (22).
If we neglect collisions and laser linewidth, set the am-

plitude of the external field, 6 and p to zero, and assume
pip(0) =a+i p, we find from Eq. (24} that where now

Bio Boiko
(10) (10,01) ' (29)

a(z+ r —yM )+iP(z+ r+yM)
cr ip(z )= (z+r —yM}(z+r+yM)

Bip=P11(~) 'Pio[Apo(z) —Aii(z)],

Bpi = t ppi [App(z ) Ai 1(z ) ]

(30}

(31)
from which we recover Gardiner's result that the real and
imaginary parts of the coherence decay at the rates
I +yM, respectively [1].

The A,.;(z) may be found from Eqs. (17) and (18},where
the "initial values, " A; =A;t(0)+hA;J, obtained using
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Eq. (15), are given by

A))=
'&0lP11( ~ ) 'PlofolP11( ~ )

(10)
+

(10,01)

Aoo=o'o, ( ~ ) A~~(0)

(32) We find

(33)

(z+L )[0 /2+(z+L+2I +2Q; )Eo&]p&&( oo ) —ip& o(z+y+L )(Eo&+yMe '@)o
o&( oo )

A,o(z)=
(z+L)[Q (z+y+L+yM cos4)+(z+21 +2Q;+L)(e, oeo&

—y M )]
(34)

where now e& o=z+i(E&o co)+—y L —and
eo&=z —i(E&o co)+—y+3L in order to take into account
collisions and laser linewidths, and 0=2~g

~
is the Rabi

frequency.
The resonance fiuorescence spectrum g(co) is obtained

from the relationship [6]

coherent contribution to the spectrum. In consists of
three I.orentzian peaks, centered on co=0 and +Q. The
heights and widths of these peaks depend strongly on the
squeezing, prouided the laser width and collisional damp-
ing is small.

g(co) =2 ReA&o[z = —i(co —
co&o)] . (35)

C. Numerical results for the resonance Suorescence spectrum

f'/4

(co —0) +f' (36)

with

a =y(N+ ,'+M )+Q+�-
L~ (N+ ,'+M ), —

f'= [y[3(N+ —,') WM]+3L+Q+2Q;]/2

~y [3(N+ —,
' )+ M]/2,

(37)

(38)

A = [L(2I +2Q, +L )(2I +2Q+8L)+y(y+L )(a+3L )

Lf'(f'+ +aL—)]/(20 a)

~y /2Q (39)

Where there are double signs, the upper refers to the case
4=0 and the lower to 4=m. . The limits are those that
are obtained when squeezing is the only source of damp-
ing (no collusion or linewdiths). Since A —1/Q, it is
consistent with our approximations to replace it by zero.
However, we have retained it here to show the presence
of the "coherent" contribution to the spectrum, which is
centered on the applied field frequency co,o [the first term
in Eq. (36)]. The width of this contribution is equal to the
linewidth of the applied field, and is independent of the
squeezing. Its intensity is but weakly dependent on the
squeezing. In the opposite limit to that considered here,
the weak-field limit [2], it is found by contrast that its in-

tensity does depend strongly on the squeezing.
The remaining terms in Eq. (36) represent the in-

In general, we have to evaluate this expression numerical-
ly. However, if ~g ~

greatly exceeds the damping parame-
ters, we may obtain approximate analytic expressions.
Assuming zero detuning for simplicity, and restricting
ourselves to the two extreme values of the phase (4=0 or
m ), we find

~ )(a+L ) f'/4
g( )=,+ +

co +L co +(a+L) (co+0) +f'

In Fig. 7 we put the collisional and linewidth parame-
ters equal to zero and consider numerically the effects of
detuning on the resonance fluorescence spectrum. All
quantities are measured in units of y, and we assume a
Rabi frequency of 10 throughout. In this figure we have
omitted the coherent contributions. Figure 7(a) shows
the situation where the detuning 5—=E, 0

—co=1, a mod-
est value. For N=O the spectrum is, as is well known,
symmetric, irrespective of the value of the detuning.
However, as N increases, the high-frequency side peak
grows in amplitude at first whilst the low-frequency side
peak decreases. The result is that for N=0. 2, for exam-
ple, the spectrum is markedly asymmetric. Eventually,
the high-frequency side peak also begins to decline, but a
significant asymmetry remains. Another feature is that
the central peak rapidly declines in amplitude as N in-
creases. These effects are accentuated for larger detun-
ings, as shown in Fig. 7(b) where b, =10. For the case
4=m. , we also find similar asymmetries. However, these
features are rather obscured in Figs. 7(c) and 7(d) by the
influence of the central peak, which for 6=1 grows very
rapidly with N at first, and then undergoes a slow decline.
For 6=10, the central peak is not so dominant as in the
4=1 case. It is always more important in the 4=+ situ-
ation than the 4=0 case.

The effect of introducing laser linewidths and collisions
is qualitatively similar to the zero detuning case which we
discuss in the next paragraph. Here we point out that
these factors too can introduce asymmetries in the off-
resonant resonance fluorescence spectrum. These asym-
metries, however, are present when N is zero, and so can
be distinguished from those induced by the squeezing.

In the next two figures we present the incoherent reso-
nance fluorescence spectrum for resonant excitation
(4=0) and consider the eff'ect of introducing collisions
and linewidths. We first consider the case 4=0. For
comparison, Fig. 8(a) shows the spectrum when the laser
linewidth is zero and there are no collisions. We take
0=10, and N varies from 0 to 0.30 in steps of 0.06. As
before, all quantities are measured in units of y(y=l),
and throughout we assume ~M~=(N(N+1)]' . » Fig.
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(a): 0 = 0, Detuning = 1
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(o): L=Q, =Q, =0. (b): L: 1, Qj: Q~: 0.
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(c): Q; = 1, L = Qe = 0. (d): Qe = 1, L = Q; = 0.
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CP

O

WO
CP

O

CP

.)II .
nd collision e ec s.' nwi a

' '
nd

' '
ff t. Thesqueezing

'
n with laser linewidth andf r resonant excitation wi aFIG. 9. e reTh sonance fluoresce pnce s ectrum or r

phase 4=~.

D.

' '(r) has been cal-rrelation function g
culated recently for the caaseof ra ia ive

same arameter values a g.s Fi . 8 ex-Figure 9 has the same pa
cept that now we take 4=~. e

h fact that the centra 1

h
'

N f h
n these figures is t e a

peak increases strong y in e
4=m. case, particu ar y

in is similar, indepen-genera e ec o1 ff t f the external damping is si
dent of the value of the phase.

The intensity Suctuation spectrum 11„(0)=11„(0)= II (0)=0, II (0)=p„ (40)

For resonant excitation we find

d Lawande [8]. Here we use a strnt-
f Sec. III C, re erring

e of zero detuning, i idetails. n the c se o z

p
the uantity II obeys the same equ

asp isp (ifL=0) but wit t eini '

g' '(r) = [p~( ~ )]'
—{2I +2Q,.+y% yM)t/2

e
2 20'[(yN+ Q, )(y+ yM ) +0 l2]

' 2 o n't +—[n'(2r+2Q, +q+yM)]X II'[(yN+Q;)(y+M)+0 /2] cos 0't +—

+ M —2I —2Q, )
—2Q ]] sin(A' t+2 j ( yN+ Q; )[(g+yM )(y+ yM— (41}

where

2 4' =0 —(2r+2Q; —y+yM) /4 (42)0
refe —, r torefers to t eh @=0case, the lowerpp g

p

there is a value of the squ
if we take thethe efFective Rabi frequencyc 0' disappear, i

(42}. This occurs atupper sign in

N=(b —1/2) /2b, (43)

g"'(r) =
[p&&( ~ ) ]'(1—e

—(21 +2Q,. +r yM)ti2—
(44)

ic increase to its stea y--state value.showing a monotonic incr

(7) 1s= 2Q —2, +Q+L)/y. Then g
governed by a simple exponentia e av
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FIG. 10. The inten
'

citation
sity fluctuation spectrum for resona t

tion in the absence of laser linewidth and collision effects
=Q =0). The squeezing phase 4 is zero.

FIG. 11.The in
'

tensity fluctuation spectrum for resonant exci-
ation in the absence of laser linewidth and coll' '

i an co fusion effects

E. Numerical results for the intensity fluctuation spectrum

In general, the exponential term cause the Rabi oscilla-

even for small values of N. This is illustrated in Figs. 10
and 11. In these figures we have taken Q=10y as before.
Here we have set L =Q =Q =0 Th ff fe e ect o choosing
nonzero values for these parameters is to wash out the

abi oscillations in a qualitatively predictable way.

IV. CONCLUSIONS

tern wi
We have investigated the interaction of a two-1 1a wo-eve sys-

em with a broadband squeezed vacuum in the rin e presence
an ex ernal classical field. We have introd d dd'-o uce a
a damping processes, namely those due to the ap-

plied field possessing a finite linewidth, and the atom be-
ing subject to elastic or inelastic collisions. Anal tic ex-

coherences, resonance fluorescence tspec rum, an intensi-
ty fluctuation spectrum, showing explicitly the effects of
laser linewidths and collisions. Results that we have ob-
tained include the following: (i) the fact that the sensi-
tivity o the atomic populations to the squeezing phase
can be increased greatly by introducing these damping
processes, and (ii) in the absence of th d
ceases, strong asymmetries may be introduced into the
o resonant -resonance fluorescence spectrum b the
squeezing process. (In the absence of squeezing and addi-
tional dam in the rp' g, esonance fluorescence spectrum is
always symmetric, whatever the value of the detuning. )

ACKNOWLEDGMENTS

This work was supported by the United Kingdom Sci-
ence and Engineering Research Council. In addition, S.
Smart wishes to thank the Department of Education for
Northern Ireland for financial support.

[1]C. W. Gardiner, Phys. Rev. Lett. 56, 1917 (1986).
armichael, A. S. Lane, and D. F. Walls, J. Mod.~2~H. J. C ', , a s

pt. 34, 821 (1987);Phys. Rev. Lett. 58, 2539 (1987).
[3] A. S. Parkins and

(1988)' H. R'
and C. W. Gardiner, Phys. Rev. A 37 3867

. Ritsch and P. Zoller, ibid. 38, 4657 (1990);A. S.
Parkins, ibid. 42, 4352 (1990).

[4] S. Smart and S.d S. Swain, the preceding paper, Phys. Rev. A

44, 6857 (1992).
[51 C. W. Gardinerdiner and M. J. Collett, Phys. Rev. A 31 3761

(1985)
[6] S. Swain, Adv. At. Mol. Phys. 16, 159 (1980).

K. I. Osman and S. Swain, J. Phys. B 13, 2375 (1980).7 K. I.0
a, A. S. Jayarao, and S. V. Lawande, Phys. Rev.l81 R. D'Souz

A 41, 4083 (1990).






