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Diagrammatic analysis of atom —squeezed-light interactions
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We study an atomic system interacting with a broadband squeezed vacuum and several applied classi-
cal fields. Exact rate equations are derived from the Gardiner-Collett master equation. A diagrammatic
analysis is presented, which enables one to write down the contributions in a relatively simple manner

and to provide a physical interpretation of the various terms. The method is applied in the following pa-

per [Smart and Swain, Phys. Rev. A 45, 6863 (1992)] to a study of resonance fluorescence.

PACS number(s): 42.50.Dv, 32.80.—t

I. INTRODUCTION

Some time ago we showed how exact equations of
motion for the diagonal elements of the density matrix
may be derived which possess a rate-equation structure
[l]. The treatment concentrated on the interacting
atom —quantized-field system, although the method as
presented applies to any quantized system described by a
time-independent Hamiltonian. Recently, we have ex-
tended the method to deal with the interaction of an
atomic system with a classical electromagnetic field [2].
In this paper we generalize the treatment to include the
interaction with a broadband squeezed vacuum. Our
starting point is the master equation of Gardiner and
Collett [3]. (For some recent reviews of squeezing, see
Ref. [4]). Since the treatment is exact, the higher-order
contributions are complicated, and here we present a di-
agrammatic approach which enables one to write down
the various terms of the solution with much less effort.
The diagrammatic analysis greatly facilitates the physical
interpretation of the contributing terms. In the following
paper [5], the method is applied to obtain some results in
the theory of a two-level atom interacting with an applied
external field and a broadband squeezed vacuum.

II. THE RATE EQUATIONS FOR AN ATOM
IN A SQUEEZED VACUUM

For simplicity, we use a system of units in which %=1.
Our model is that of an atomic system with nondegen-
erate energy levels E;, which are labeled in such a way
that E,. &E. if i &j. We consider its interaction with
classical fields. The corresponding problem with quan-
tized fields may be dealt with analogously. The Hamil-
tonian for the interacting system of atom and fields may
be written as [2]

the product of the dipole matrix element P, . of the atom
with the intensity 6i„of the electromagnetic field mode
described by the index A., whose frequency is co&. In gen-
eral, the mode index A, is a four-dimensional vector con-
sisting of the wave vector and polarization index. As
usual, we have made the rotating-wave approximation.
We have also assumed that a given mode A, can only
cause transitions between one pair of energy levels i and
j. We can then uniquely identify the particular field fre-
quency co& with this pair of levels. Henceforth we use the
notation co&=co;J.. To be definite, we assume i &j: this
implies that co; is positive. Note that co; is not equated
to the Bohr frequency (E; Ej)—the —transition is not
necessarily resonant. We adopt the convention that
N;; =0.

The master equation for the density matrix of a non-
equally spaced atomic system, including the interaction
with squeezed white light, has been given by Gardiner
and Collett [3]. It describes the situation in which a
separate broadband-squeezed source interacts with each
transition. These sources are assumed to be independent
and nonoverlapping. Thus the situation in which two
distinct transition frequencies co; and cokI are equal is ex-
cluded. Assuming the center frequency of the squeezed
mode corresponding to the laser frequency co,b to be
equal to that frequency, the master equation has the form

P,b
— tE, t P,b t —g [ V„—(t)P,b P„Vcb(t)]—

+&.b X r,.P„I.bPob 0—
bPb

where E; :E; E , I,b
——(.I—', +—I'b)/. 2, and I,=g, y„

is the total incoherent transition rate out of level ~a ).
y„ is the incoherent transition rate between levels ~a)
and ~c ). We have

H=yE, (i)(i)+V,

V(t) = g p;, It ) (jl e

where p; =P;.Cz is a coupling constant which is equal to

and

(N, , +I) if i )j
J+ + ~f

M;J-
(3)

(4)
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o,b
—=P,b(z +i cob, ), (6)

we obtain from the Laplace transform of (2) the following
equation for the off-diagonal elements:

where y; is a damping constant and N;. and M;- are
squeezing parameters [3]. We emphasize again that the ij
subscripts here label the ~i )~j~) transition. N is real
whilst M may be complex: they are connected by the in-
equality

~M~~ ~N, (NJ+1) .

Denoting the Laplace transform of p(t) by p(z), and
defining

matrix with its transpose. Squeezing also shows its effects
in the expression for the y,", where the squeezing param-
eter N; plays the role of a photon number, and y,-- de-
scribes emission for i )j and absorption for i (j.

If we set g; =0 and give the N;, a Bose-Einstein distri-
bution, the master equation (2) describes a system in-
teracting with a thermal heat bath. The essence of our
method is to solve the system of Eqs. (7) for the o.,b in
terms of the B,b, and then to substitute the result into the
equation

(z+1 „)P,= p„(0) i —g P„cr„+i g P„cr„
c (Aa) c (Aa)

SabOab + g PacOcb X PcbOac +Cab+ha ab
c (~b) c (Aa)

+ g y„cr„
c (Xa)

(10)

where

e,b(z) =z +i (E, b a),b )+—1,b
and the quantity

Bab(z) =p,b(0) tp, b[p—bb(z) paa(z)—]

bAa (7)

(9)

for the diagonal matrix elements P, (z)=p„(z—)=cr„.
The result may be written in the form of a rate equation
in Laplace space. We first present and discuss our main
results and then outline the derivation. We find

zP, (z) P, (0)=—g [ W„(z)Pc (z) W„(z)P—,(z) ]
c (Xa)

contains diagonal elements of p. Formally, Eq. (7) differs
from the corresponding equation in the absence of
squeezing only in the last term, which has the interesting
effect of connecting an off-diagonal element of the density

I

+hP, ,

where to third order in the interactions, the transition
rates W(z) are given by

W„(z)=y„+w„(z)

PacPca PcakacPca . a PcaPadP'dc P'caPadP'dc PcaPadPdc+ i-
(ca) (ca, ac) d (da, dc) (ac, dc) (ca, da)

(12)

and

I abPba I abhbaPabi (0) i ~~ (0)
(ba) b (ab, ba)

+' '+ C. C. (13)

The transition rate W„(z) divides into the sum of an in
coherent rate y„and a coherent rate w„(z). The left-
hand side of Eq. (11) is the Laplace transform of P, (t).
The final term on the right-hand side, EP„ is the contri-
bution from initial nonzero values of off-diagonal ele-
ments of the density matrix. In many applications, the
density matrix is assumed to be diagonal at t=O, when
this term is zero. For simplicity, we assume this to be the
case here. We will discuss it in more detail later on. In
any case, it describes transient effects which do not con-
tribute to the steady-state solutions for the atomic occu-
pation probabilities.

The definition of the starred summation g,*. . is that
one sums over all values of i,j, . . . except those values
that would make two terms in the (ab, cd, . . . ) functions
which appear as denominators in the summand equal or
diagonal. That is, terms such as (. . . ,pq, . . . ,pq, . . . )

and (. . . ,pp, . . . ) are excluded. Thus in Eq. (12), the
summation is over all values of d except d =a and d =c.

Equation (11) is the major result of this paper. It may
be considered as a recasting of the master equation of
Gardiner and Collett into rate-equation form. It has a
simple physical interpretation: in Laplace space, it states
that the net rate of change of P, is equal to the difference
between the rate of transitions into level ~a ) from all oth-
er levels ~c ) (the first term on the right-hand side) and
the rate of all transitions out of atomic level ~a ) (second
term on the right-hand side). This simple structure
makes it possible to write down the rate equations for a
multilevel system by inspection.

The bulk of the physics of the problem is now encapsu-
lated in the rates w„(z). Although these quantities are
real, we have not been able to show that they are positive
definite. Indeed, we have found particular examples
where they are zero: this is a manifestation of quantum-
mechanical interference effects.

The quantities (ab), (ab, cd), etc. are fully defined
mathematically in Eqs. (16)—(18). We conclude this sec-
tion by giving a brief account of their physical properties, .
(ab) ' is the Laplace transform of the probability for the
density-matrix element o,b remaining in this state at time
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IPb, I'

z +i (E, ,—co„)+I „+ + ~ ~ ~

(14)

To lowest order the zeros (in iz} of (ab} give the zeroth-
I

t if it was in this state at time t=O. Alternatively, it may
be thought of as a quantity whose poles determine the ex-
act energy differences of the interacting atom-field

system —that is, it may be considered as a kind of "prop-
agator" in the many-body theory sense. We have to re-
gard the energies as complex because Eq. (2) includes
damping effects. For example, we have approximately

(ab)= z+i(E, „—m, b)+I-.,
@ac

z +i (E —co }+Ic

order energy differences of the interacting system

whilst retaining the next set of terms would give the
complex-energy differences of the interacting system to
second order in I@I. In this first-order iteration, the
terms quadratic in IpI would represent Stark shifts in-

duced by the applied fields.
It is apparent that expressions (12}are complicated in

the general case. For this reason, we present diagram-

matic methods for their evaluation. It is convenient first

to outline the derivation of the rate equations (11).

III. OUTLINE DERIVATION
AND DIAGRAMMATIC ANALYSIS

Using the methods previously described [1,2], we may
show that the solution of the set of equations (7) is

B,b
(ab)

~ba Cab a ~ Pac ~cb

(ab, ba), (ab, cb)
~PcbBac

(ab, ac)

~ Cab Abc ~ca ~ Cab ~bcPca ~ Pac kcb ~bc ~~ca 0acPcb

(ca, ba, ab) (bc, ba, ab) (bc, cb, ab) (ca, ac, ab)

+ga
C, d

PacPcdBdb PacPdb Bcd PcbPadBdc Pcbi dcBad+ + + ~ ~ ~

(ab, cb, db) (ab, cb, cd) (ab, ac, dc) (ab, ac, ad)
(15)

The starred summation sign has the same meaning as in
Eq. (12).

We now define the (ab), (ab, cd), . . . functions. We
shall call these quantities propagator denominators
(PD's). In general, (ab)A(ba), but in those functions
with multiple arguments, the order of the arguments in
the brackets is unimportant —that is, (ab, cd, ef)
=(cd, ab, ef)=(ef, cd, ab), etc. The single-argument PD
is defined as

PacPca PbcPcb
ab = e,b+

(cb),b (ac).b
Cab kba

(ba)

c,d

~PacPcdPda

(cb, db), b

~P'bcPcdPdb + (16)
(ac, ad)ab

(ab, cd) = (ab)(cd), b (17)

[or equivalently, as (cd)(ab),d ], which splits it up into the

The subscripts on the propagators on the right-hand side
impose additional constraints on the variables under the
starred summation sign: when the starred summation is
carried out, those terms are excluded which would make
any of the arguments of the PD's under the summation
sign equal to a subscript. Consider, for example, the sum
over c in Eq. (16). The restrictions imposed on the al-
lowed values of c by the subscripts are that cuba in the
first term and cWb in the second term. We emphasize
that these constraints are additional to those imposed by
the exclusion of diagonal or repeated arguments.

The PD with two arguments is defined by the relation

I

product of two single argument PD's. The quantity
(ab),J is defined analogously to Eq. (16)

PacPca PbcPcb

(Cb)ab, ij (aC)ab, ij

~PacPcdPda

(cb, db),b,j

iPbcPcd Pdb

(ac,ad), b;

Cab 4ba

(ba);,

(18)

That is, in the definition of (ab);J the subscripts ij appears
in every PD. Higher-order members are similarly
defined. For example, (ab, cd, ef) =(ab)(cd), b(ef),b,d.
For a finite system of equations (i.e., a finite number of
atomic levels), the restrictions on the sums cause the
series to terminate, and the exact solution is obtained.

The terms in Eq. (15) may be interpreted as follows.
We have argued that the quantities (ab) ' may be loosely
thought of as propagators —that is, (ab) ' is (the Laplace
transform of) the conditional probability that the
density-matrix remains O.,b at time t if it was o.,b at time
zero. More briefly, we may say that it is the probability
that the system remains in the state ab at time t if it was
in state ab at time zero. To interpret Eq. (15) we regard
B,b as the absolute probability that the system is in the
state ab at time zero. Thus the first term in Eq. (15) may
be regarded as the probability that the system is in state
ab initially times the probability that it remains there.
The four factors in the second term [writing (ab, ba) as
(ab)(ba), b ] are interpreted as the probability that the sys-
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Zeroth order: B,b

(ab)

—lPac

a
. B~b

b ( ab)

Second order:

(cb)

—IP ac
~a c~ca
(cb) b

B 1P, bc:: b(ac): (ah)

b
Bb~ X-'

(ba): (ab)

First order: B,b
b b(cb): (ab)

ac cb
—IP B
(cb, ab)

lB,P b

(ac, ab)

b

(ba, ab)

c
(ac)

X-'

( ]) 1 bc~eh

(ac),b

a

~ X'",
(ba)

})~b 4
(ba),„

FIG. 1. The diagrams for the off-diagonal elements

ab Bba gab a ~Paa ab gab aa'

(ab} (ab, ba), (ab, cb) (ab, ac)

up to and including first-order terms, together with their contri-
butions.

Third order:

tern begins in the state ba, propagates in this state for a
time, then is switched to the state ab by the squeezing in-
teraction, and finally propagates in the state ab. The
third term has a similar interpretation, but here the
switching from state cb or state ac is brought about by
the dipole interaction.

Expression (15), whilst exact, is not simple. However,
the various terms in the series and their contributions can
be written down relatively easily by making use of a di-
agrammatic interpretation, which we present in Fig. 1 for
the case of O.,b. For a particular diagram, we draw two
lines, labeling the right-hand ends with a and b to
represent the final "state" O.,b, and labeling the left-hand
ends to represent the initial state —say with c and d if the
initial state is 0.,&. We obtain a diagram for each possible
initial state. The amplitude for the system starting in the
initial state is 8,&. Time is assumed to run from left to
right. For the zeroth-order contribution, Fig. 1(a), the
situation is trivial: the system begins in the state O.,b and
remains in that state. The contribution is thus B,&l(ab)
[(ab) ' represents the probability for the system to
remain in the state o,& ]. In the first of the first-order dia-

grams shown in Fig. 1(b), the system begins in the state
o.,b, but the dipole interaction, marked by a cross in the
upper line, causes a transition from the state c to the state
a. With a cross on the upper line marking a transition
from a to c, we associate the Hermitean conjugate interac-
tion matrix element —ip„as a factor

a —iP,„c(upper line) .

If a cross occurs in the lower line we associate with it the
interaction matrix element ip„,

(lower line) .

FIG. 2. The diagrams for the propagators (ab), showing
second- and third-order terms. The contributions of the
second-order terms are shown explicitly. Note that for this
quantity, the product of the factors has to be multiplied by —1

to obtain the contribution.

The squeezing interaction causes a switch of states,
represented by a crossover diagram a

b
ba

The sign and nature of these matrix elements arises from
the form of the equation for o,b, which is given in the
caption for Fig. 1. Propagators are associated with each
state o; that appears in the diagram. For the first of the
first-order diagrams the propagators are (cb) ' and
(ab) . The contribution of each diagram is obtained by
taking the product of all these factors, and the total up to
the order being considered is obtained by adding the con-
tribution of the diagrams corresponding to all possible in-
itial states.

A similar diagrammatic interpretation of the terms in
the series for (ab) is given in Fig. 2. The rules are the
same as for Fig. 1, except that (i) the initial and final
states ab are the same; (ii) propagators are only associated
with the intermediate states; and (iii) each contribution
must be multiplied by the factor ( —1 ). For such a quan-
tity as (ab),z the rules are the same, except that diagrams
which would give rise to the factor (cd). . . are excluded.

Equation (15) gives the solution for the off-diagonal ele-
ments in terms of the diagonal elements and the initial
coherences p,~(0) through the factors B,~. We substitute
these solutions into Eq. (10) for cr„=p„(z):P, (z). We-
obtain



45 DIAGRAMMATIC ANALYSIS OF ATOM-SQUEEZED-LIGHT. . . 6861

(z+I „)o„=p„(0)+bP, + g y„cr„
c (Aa)

Pac
c (Wa)

+i g P„
c (Wa)

Pca(~aa acc ) a PcdPda(aaa ~dd ) a PdaPcd(+dd +cc )+ + 0 ~ ~

(ca) (ca, da) (ca, cd)

Pac(~cc aaa ) a PadPdc(acc +dd a PdcPad(+dd aaa ) + ~ ~ ~

(ac) (ac, dc) (ac, ad)

+i
c (Wa)

2 2
Pacfca(+aa acc ) Pcafac(~aa ~cc )+ + ~ ~ ~

(ca, ac) (ac,ca)
(19)

where hP, is given by Eq. (13). The diagrammatic series
for this term is shown in Fig. 3. Here we list all possible
diagrams which take one from any initial off-diagonal
state ij to the final state aa.

We relabel and rearrange terms in the above series to
obtain our main result, the rate equation (11). We have
used the properties

I

contributions of the diagrams shown.
The quantity

w, (z) = g w„(z)
c (Aa)

(21)

is the total rate of coherent transitions out of level a.
One can show that, to third order, it is given by

(ij, kl, . . . )=(ji, lk, . . . )',
(ij,kl)ab c~ =(ji, lk);. «

(20) Pac Pca . Pcd Pda Pac
w, =2Re l(ac), z (ca, da, ea)

Pca kac Pca

ca, ac

which are easily inferred from the definitions (16)—(18).
The contributions to w„may be obtained using the di-

agrammatic analysis illustrated in Fig. 4, where we show
the diagrams that contribute up to third order. The rules
are the same as in earlier figures, with the initial state be-

ing cc and the final state aa, and only intermediate-state
propagators being taken into consideration. In addition,
we omit all the mirror-image diagrams of those shown in
Fig. 4 because their contribution is just the Hermitean
conjugate of the contribution of the original diagrams.
The total contribution is thus twice the real part of the

+ ~ ~ ~ (22)

It is represented by the particularly simple set of dia-
grams we show in Fig. 5 (omitting mirror images). Here
both lines begin and end with the state a, and we must
multiply the contribution of each diagram by (

—1).
Frequently, one is interested only in the steady-state

solutions. These can be found from the Laplace trans-
forms without making a Laplace inversion. One way is to
solve the algebraic equations (11) and then use the identi-
ty

First order:

—1p, b
—iP,gb, (0)

(bal
Second order: ip,

(ac)

. ~ac~ca
(ac)

Second order:

Third order:

a

FIG. 3. The diagrams for the quantity EP, (0) (which incorp-
orates the initial values of the coherences) up to and including
second-order terms. For all orders there are also mirror-image
diagrams (the mirror being below and parallel to the diagram)
which contribute the complex conjugate of these terms. These
mirror-image diagrams have not been shown.

FIG. 4. The diagrams for the generalized transition rate
w„(z), up to and including the third-order terms. The mirror-
image diagrams, which contribute the complex conjugate of
these terms, have not been shown.
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Second order:

~ca I ac
c a

a
(ca)

. ( ]) ~acl ca

(ca)

P, ( ac)=0= g I [y„+w„(0)]P,(00)
e (Wa)

—[7„+w„(0)]P,( ~ )], (24)

where z has been set to zero in the transition rates.

Third order

c

FIG. 5. The diagrams for the quantity w, (z), up to and in-
cluding the third-order terms. Note that for this quantity the
product of the factors has to be multiplied by ( —1) to obtain
the contribution. The mirror-image diagrams, which contribute
the complex conjugate of these terms, have not been shown.

IV. CONCLUSION

We have used the master equation of Gardiner and
Collett, which describes the interaction of an atomic sys-
tem with a broadband squeezed vacuum, to derive rate
equations for such a system interacting with applied clas-
sical light fields. The resulting equations, being exact, are
complicated —at least, in the higher orders. We have
presented a diagrammatic analysis which enables one to
write down the contributions much more simply than us-
ing the algebraic expressions for the solutions. The dia-
grams also assist in the physical interpretation of the
various terms.
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