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Effects of saturation in the transient process of a dye laser. II. Colored-noise case
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We have derived the approximate formulas of the mean, variance, and skewness of the first-passage-
time distribution for the colored-loss-noise model and the colored-gain-noise model of the dye laser by
virtue of the best Fokker-Planck-equation approximation. Comparing the colored-loss-noise model with
the colored cubic model, it is shown that our analytic results are in good agreement with the numerical
simulation given by Zhu, Yu, and Roy [Phys. Rev. A 34, 4333 {1986)].We find that the prefactor of the
pump fluctuation term can curb the variance and skewness of the first-passage-time distribution. In the
regime 0.8 (Io (1, where Io denotes the relative laser intensity, the best Fokker-Planck equation pre-
dicts that as the laser intensity is increased, the increases of the variance and skewness of the first-
passage-time distribution for the colored saturation models are slower than those of corresponding white
saturation models.

PACS number(s): 42.55.Mv, 42.50.Md, 42.50.Lc

I. INTRODUCTION

In the previous paper [1] (referred to as paper I), we
have discussed the effects of saturation in the single-mode
dye laser driven by white noise. In the present study,
effects of saturation in the transient process for the
single-mode dye laser driven by colored noise are dis-
cussed. In this paper, we have used the best Fokker-
Planck equation (BFPE) [2] to treat this problem. The
reasons for this are as follows. First, in view of this we
will discuss two dye-laser models which contain satura-
tion terms; the BFPE approximation can treat these mod-
els without encountering the difficulty of negative
diffusion functions. Second, the BFPE method can be
used in the case in which the correlation time of the
colored noise is larger than or equal to the laser gain re-
laxation time. Third, the diffusion functions given by this
method turn out to be phase independent. Therefore, the
evolution of the laser intensity can be decoupled from the
phase.

The purpose of paper I is to calculate the mean, vari-
ance, and skewness of first-passage-time distribution
(FPTD) for the single-mode dye-laser models with satura-
tion terms driven by white noise. In that paper, a com-
parison with the cubic model driven by the white noise is
made. Since the pump noise for the dye laser is, in reali-
ty, colored, the purpose of the present paper is to calcu-
late the corresponding quantities for single-mode dye-
laser models with saturation terms driven by colored
noise, and then make a comparison between these models
containing the cubic model driven by colored noise.

The paper is arranged as follows. In Sec. II, we present
the two-dimensional Langevin equations for models A

and B. In Sec. III, the BFPE associated with these
Langevin equations is given. Section IV is devoted to the

discussion of the diffusion functions. In Sec. V, we calcu-
late the above-mentioned quantities for the models. Fi-
nally, the conclusions are presented in Sec. VI.

II. LANGEVIN EQUATIONS

A. Loss-noise model (model A)

(q, (t)q (t')) =p5, .5(t t') (i j"=1,—2) (2)

in which P is the strength of the quantum noise. The tur-
bulence in the dye jet and pump laser noise may be
represented by the pump fluctuations p(t)=p, +ip2,
which are Ornstein-Uhlenbeck noises with zero mean and
the correlation function

(3)

Here P' is the strength of the pump fluctuations and ~ is
the correlation time of the fluctuations. 5, is the

The equation of motion of this model for the complex
field amplitude E=E, +iEz of a single-mode dye laser is
given by the stochastic differential equation (SDE) [3]

BE = —KE+ I E +p(t)E+q(t),
Bt 1+k El'

where K is the cavity decay rate, I =ao+K is the gain
factor, ao is the net gain, k = 2/I, and 3 is the laser
self-saturation coefficients. The effects of spontaneous
emission on the laser field E are represented by the quan-
tum noise q(t)=q, +iq2 which are assumed to be the
Gaussian white noise with zero mean and the correlation
function
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Kronecker symbol and K, I, A, r, P, and P' are real pa-
rameters.

The change of variables to polar coordinates according
to

G(y) =
—(r —a, )x+r 1+x'

Z =xe'&= &Ie'&

allows us to rewrite (1) as

and the matrices

x 0
g'(y) =

()

= —(I' —ao)x+1 +p&(t)x1+x'
+q &

( t)cosP+ q& (t)sing, (5)

g (y)=
cosf sing

1 . 1——sing —cosPx x

(10)

d 1 . 1
=pz(t) ——q, (t)sing+ —qz(t)cosP, (6)

one can rewrite (7) as

y=G(y)+g'(y)p(t)+g "(y)q(t) .

where x' =kx =kI and I denotes the intensity. Notice
that (5) and (6) are the full two-dimensional Langevin
equations for the dye laser. One can rewrite (5) and (6) in

the matrix form as

This is the two-dimensional Langevin equation for model
A. The superscripts e and w denote, respectively, the
functional coefficients of the colored and white fluctu-
ation.

B. Gain-noise model (model B)

The corresponding SDE for model B is [2]

d
dt

—(r —a, )x+r
1+x x 0 S'i

+ 0
dE = —(I —ao)E+I +E E

zp(t)+q(t) .
1+k I& I' 1+k IE I'

cosP
1——sing
x

By introducing the vectors

pi(t)
p(t) =

(t)

and

sing

1—cosP

qi(t)
,q(t)=

( )

(7) Similarly, (12) can be rewritten in the following form:

dx = —(I' —ao)x+I + p, (t)
x x

1+kx j +kx

+q, (t)cosP+q2(t)sing,

d$ 1 1 . 1

dt 1+kx xp2(t) ——q&(t)sing+ —qz(t)cosP .
x '

The matrix form of (13) is

(12}

(13a)

(13b)

d
dt

—(I —ao)x+ I
1+kx 1+kx

1

1+kx

pl(t)

pq(t)
+

cosf sing

——sing —cosP
1 . 1 qz(t)
x x

(14)

pi(t)
(t), q( )=

qz(t)

Sitnilarly, it can also be written in the form of (11)by in-
troducing the vectors

x q, (t)y=, p(t)=

g (y)=
cosP sing

1 . 1——
sing

—cosP
X x

(17)

and

G(y)=

and the matrices

x 0Y=,2 0
'( )=

—(I —ao)x+I 1+x'
(15)

(16}

III. BESTFOKKER-PLANCK EQUATION

In this section we derive the BFPE associated with the
two-dimensional Langevin equations (7) and (14) [2]. The
Liouville operator Lo associated with the systematic por-
tion of the Langevin equations and the corresponding
operators L, and L associated with the stochastic por-
tions of the equations are [2)

Lo = —Vy.G(y),
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L, (&)= —V„g'(y)p(r),

L (r)= —V' g (y)q(&),

(19)

(20)

X W, [1+O(p'~)], (21)

where W, —:W(y, t ~yo) is the conditional probability den-
sity and T denotes the transpose. In the following we
derive the BFPE for models A and 8.

A. Model A

The first, second, and third terms on the right-hand
side of (21) for model A are

—
Vy G(y)W, =—a

where V„=(B/BX,B/BP). The corresponding BFPE can
be derived from [2]

—W, = —V„G(y)W, +—[V„g"(y)] [V„.g (y)]W,

+ f dt'(L, (t)e ' L, (t t')e— ' )

f dP f dhow(x, g, t~xo, go) . (27)

Now, by virtue of (27), we get from (26) an evolution
equation for Q, :

aQ,
at

—(I —ao)x+ I Q, +—
Q,

X P a'c}

Bx

Pa1 a a—Q, + x xD„(x)Q, . (28)

B. Model B

for model 8, the explicit formulas of the first, second,
and third terms on the right-hand side of (21) are ob-
tained from (14):

It is noteworthy that due to the phase independence of
the diffusion functions D;, (x.) one can eliminate the angle
variable P by integrating Eq. (26). We thus define a re-
duced probability density

Q, —=Q(x, t~xo)

(22)
V„G(y) W; == a —(I —a )x+I W0 1+x' (29)

[V„g (y)] [V„g (y)]W,

CI2

Bx

and

—+ W, , (23)
8 1 1 8

[v„g (y)]'[v„g (y)]w,

8

Bx

and

a2—+
2 W, , (30)x2 By2

a = a—w, =—
Bt ' Bx

P a'—(r —~,)x+r, w+ —,w,1+x' 2
L

a'W+- W,
2 Bx 2

f dt'(Lo(t)e ' L, (t t')e ' —) W,

X g J(y) gas(y)Dsq(y t)w, (24)
a ~ a

rs ~&

with (i,j,K,S=1,2), where D;~(y, t) are the diffusion
functions D»=D„=O, D»=D»(x), and D»=D»(x).
These show that the diffusion functions are independent
of the phase P. We will discuss the diffusion functions in
detail in Sec. IV.

Substituting (9) into (24), we obtain

f dt'(L, (t)e ' L,(t t')e ' ) W, —

= a a a2
x xD»(x) W, + D»(x) W,

Bx BX ay'

= a a a2
x XD„(x)w, +D»(x) 2 W, .

Bx Bx $/2

Using Eqs. (22), (23), and (25), the BFPE associated with

the two-dimensional Langevin equation (7) is obtained
from (21):

f dt'(L, (t)e ' L, (t t')e ' —) W,

8 X 8 X
D ( )w11 t

a2
+D22(x) 2 w, .

Bg
(31)

We note that for model 8 the diffusion functions are the
same as for model A.

From (29)—(31) and (21), we obtain the BFPE associat-
ed with the two-dimensional Langevin equation (14):

T

aw,
jest

a (a, —r)x+r, w, +—,w,
X P a'

BX 1+x' 2 Qx

Pa 1 a x a
2 Bx x Bx 1+x'2 Bx 1+x'2

a2 1 a2+— 8;+D~2(x) 8; .
2 x Qy 1+x' BP

(32)
The reduced probability density Q, for model 8 obeys the
evolution equation

aQ, a x P(a, —r)x+r, Q, +—,Q,Bt Bx 1+x 2 ()x

P 8 1Q 8 x 8 x
( )Qx 1+x'2 Q 1+

+ x XDi, (x)W, +D»(x) 2 W, .
ax ax " ' " ay'

(26)
(33)
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IV. DIFFUSION FUNCTIONS

In this section, we calculate the diffusion functions
D; (x, t) and discuss the efFect of the ratio I /(I —ao) on
the D;, (x, t) A. ccording to the theory of the BFPE, the
diffusion functions are given by [2]

D, (x, t)= f dt'H; (x, t') e
P'

0 " ' 2~
(34)

where the functions H, (y, r) satisfy the partial differential
equation [2]

—{I—ao)t r
H&& =e when =2.

1 —a 0
(42b)

The diffusion functions associated with these H, can be
obtained by virtue of (34}. When the correlation time r is
short, it is usually argued that the upper limit in the in-

tegration in (34) can be set to infinity, and the diffusion
functions thus become independent of time [4—7]. The
off-diagonal diffusion functions vanish because of (37).
The result (38) immediately yields D22(x) =P'/2. Using
(40)—(42) and (34), the function D» (x) is given byBH;, BG,' = X (g');I '

gfcsHs,Bt ZlS

glS
c

Bx~

aH, ,'J G
Bxx

(35)

D&& =P'/2 when =1,r
I —a 0

P'/2 r
1+-'(r— )

" '" r—a0

p'/2 „ r

(43)

(44)

(45)

with the initial condition

H, (y, 0)=5;J . (36)

It is shown that model A and model B have the same H;.
since both models have the same G(y). The differential
of g'(y) of models A and 8 does not infiuence the func-
tions H, .

The solutions of this partial differential equation are

P'/2
1+2(I —ao)r

r
when )3 .

I —a0
(46)

Equations (43), (44), and (45) approximately correspond
to the three different pump levels (a} a0=2. 16X10
sec ', (b) a0=4. 32X10 sec ', and (c) ao=8. 64X10
sec ' in set 8 of the experimental data (see Ref. [8]}.

and

H,, (y, t)=0 for i'
Hzz(y, t) =1

(37)

V. MEAN, VARIANCE, AND SKEWNESS OF FPTD

A. Model A

and H»(y, t) can only be written in general in terms of a
transcendental equation:

If Dii is denoted as P,'/2, the BFPE (28) can be rewrit-
ten as

=(I'—ao)x'~e (39)
a x

(u, —r)x+r, + + x g,
Bx 1+x'

An explicit solution is only possible for particular values
of the parameters.

If I /(I' —ao) ))1,we have from (39)

+ ~) P+2 P'

2 2
(47)

—2(I —ao )tH„=e
We see from (47) that the amplitude-dependent drift
coefficient F(x) has the form

and if I /(I —ao) =1, we find

H))=1 . (41)

x PF(x)=(ao —I )x+I + + x
1+x '2 2x 2

In the cases I /(I —ao) = l. 5 and 2, in order to obtain ex-
plicit solutions of (39}, it is necessary to make some ap-
proximations. Therefore, we use the value at the station-
ary state xss=ao/(I —ao) to replace x' in (39). The
function H» is then given by

xx'
=a0x —I + x

1+x
(48)

p P,'
D =—+ x .(x) (49)

and the amplitude-dependent diffusion coefficient D (x) is

and

—(I —a )/t I
H]~ =e when = 1.5

I —a0
(42a) It follows from the approximate methods of paper I that

the approximate formulas of the mean, variance, and
skewness of FPTD are given by
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&t) =&t)q+&r)p=
0

Io ao2C+ 1n +ln k(r —a, )P

ap
ln(1 I—o)I —ao

(50)

&(&t)'& = &(&r )'&, + &(«)'&,

1 ~ Pe

(2ao ) 6 ao

3 3 ao 3 ao——I —— +—
2 0 2 ao —I 2 ao —I

(1 IQ)—

2
ao

2 ao —I

3

—3
Qp

ap I
1

1 —Io

Qp

ao —I
Io

+ln +
1 Io 1 Io

r 3
Qp 3

ln(1 Io )———
ao —r 2

and

2 3
aoP,

'
ao3 ao 3 3+— +— +- +1n

2 ao —r 2 ao —r 2 ao —r k(I —ao)P
(51)

&(&r)') = &(&t)'&, +&(&r )'&,

1 1

(2ao) ~=, j
P,'+12
ao

n ln2 + 1 ~+' 1

J „ &
2"n

(1—Io)~ "
1 Io k—(I —ao)P

5 Qo 1 5 Qo

4 ao —r (1 Io)4 4 —ao —r
2

ao

a —I0

5 1 5 1 5 1+ I2 +
2 (1—Io) 3 (1—Io)' 6 (1—Io)'

5 1 5 5+ +
3 1 —Io 6 2 ao —I

I

Io( —', —Ip)

(1—Io)
'4

I4,

(1—Io)

a —I0

ap+—
4 I —ao

5
ao I, 1 1 1 1

4(1 Io) 6(1—I—o) 12 (1 Io)—
1 o o o+ — + +ID+in(1 —Io)

0
(52)

The BFPE (33) can be rewritten as

ag, a
F(x)Q, + D (x)Q, ,

B. Model B

(53)

where
I

F(x)=(ao —1 )x+r + 'P,'—x P. x, xx'
1+x' 2 (1+x' )

' (1+x' )'

P P,' x'
D(x) =—+ (1+x' )

Similarly, the corresponding approximate formulas of the variance and skewness of FPTD are

(54)

(55)
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&(&t)'& = &(&t)'&, + &(~t)'&,

2'+
(2ao)2 6 ao

and

&(~ )'&=&(~ )'&, +&(~ )'&,

—' —Io Io
+ln

(I —Io )~ 1 Ip—

aop,
'

ao 1 ao—
—,'+ln +

k(I —ao)P 2(ao —I') (1—Io) 2(ao —I') (56)

1
"

1 m ln2 "
1 ~ '

1
X —.

3
— +2 X —.

~ X(2ao) J =t j 3 J =t J «=t 2n

p g 2

+12
ao

1 Io aoP,
'

ao 1 + ao

4(a, -I ) (I-l, )4 4(a, -l) (57)

C. Colored cubic model

1 ao Io2

&t &= C+1n +1n
2ao

2P,' —,
' —Io&(~t)2&=, + ' ', +ln, ',

(2ao ) 6 ac (1 Io ) 1 I—o—a,p,'—
—,'+ ln

3 1 1 m' ln2 1 ' 1&(~t)'&=, 3 y —,= +2 y —,y(2ao) J=i j 3,=i j' „,2"n

Similarly, the approximate analytic expressions of the mean, variance and skewness of FPTD are as follows:

(58)

(59)

p/
+12

ao

1 I, a,p,'
(60)

where A =kl.

1.0

0.8
Q
to
S

X 0.6

+a
0

! e

0.8
0S

0.6

CI

0 e

0.2

0.0 0.2 0. %

o

0.6 O. B 1.0

0.2

0.0 0 ~ 2 0. % 0. 6 0.8

(n

Q~C

1.0

FIG. 1. The effect of saturation [Eq. (51)] on the variance of
FPTD. , colored cubic model [Eq. (59)]; ——.—., model
A [Eq. (51)]. Curve a, ao =2. 16X 10 sec ', curve b,
ap =4.32 X 10 sec '; curve c, ap =8.64 X 10 sec '. The other
laser parameters are those of set B.

FIG. 2. The effect of saturation [Eq. (52)] on the skewness of
FPTD. , colored cubic model [Eq. (60)]; —.—.—., model
A [Eq. (52)]. Curve a, ao =2. 16X 10 sec '; curve b,
ap=4. 32X10 sec '; curve c, ap=8. 64X10 sec '. The other
laser parameters are those of set B.
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a 0

0.8
0

0.6

+'

V

0.2

0.8
0I
X 0.6

+'
Cl

0.&

0 2

'I

//

(b

0.0 0.2 0.% 0.6 0.8 a. o

0.0 0.2 0. 't 0.6 0.8 1.0
FIG. 3. The effect of saturation [Eq. (56)] on the variance of

FPTD. , colored cubic model [Eq. (59)]; ———,model 8
[Eq. (56)]. Curve a, a0=2. 16X106 sec ', curve b,
ap=4. 32X10 sec '; curve c, ap=8. 64X10 sec '. The other
laser parameters are those of set 8.

FIG. 5. The effect of saturation [Eqs. (51) and (56)] on the
variance of FPTD. ———,model A [Eq. (51)];
model 8 [Eq. (56)]. Curve a, ao=2. 16X106 sec ', curve b,
ap=4. 32X10 sec '; curve c, up=8. 64X10 sec '. The other
laser parameters are those of set 8.

VI. CONCLUSIONS

By means of comparing the resulting explicit formulas
of the variance and skewness of FPTD for the three mod-
els we treated, important conclusions are drawn. It
should be pointed out that the mean of FPTD for all the
saturation models we treated has the same expression in
the approximation as can be seen from the corresponding
formula, so no plot needs to be made. The conclusions of
this paper are as follows.

A. Comparing saturation model A with the cubic model

In Figs land .2, the curves of ((ht) ) and ((b t ) ) ob-
tained from Eqs. (54), (55), (59), and (60) with three

different pump levels (a) ac =2. 16X 10s sec ', (b)
ac=4.32X10 sec ', and (c) ac=8.64X10 sec ' have
been plotted as a function of the relative intensity Io.
The other laser parameters are those of set 8 given in
Refs. [3] and [8]. That is, A =2.64 X 10 sec
P=0.0043 sec ', P'=3X10 see ', and y=2.4X10
sec '. These curves show that in the regime 0 &Ic & 0.8,
saturation model A and the cubic model cannot be dis-
tinguished. However, in the regime 0.8&IO &1, as the
laser intensity is increased, the increase of variance and
skewness of saturation model A is faster than that of the
cubic model. Comparing Figs. 1 and 2 with Figs 7(b).
and 7(c) of Ref. [3], respectively, we conclude that our an-
alytic results show good agreement with numerical sirnu-
lation.

0.8
0a

n, 0.6

+'

0. %

0.2

l
I'a

I

I
I

I

I

I b
I I
I

I

0.8
QI

0.6

+

0 w

0.2

0.0 0.2 0.6 0.8

.C

a. o 0.0 0.2
I 4

0.6 0.8

FIG. 4. The etfect of saturation [Eq. (57)] on the skewness of
FPTD. , colored cubic model [Eq. (60)]; ———,model 8
[Eq. (57)]. Curve a, a0=2. 16X106 sec '; curve b,
ap=4. 32X106 sec ', curve e, ap=8. 64X10 sec '. The other
laser parameters are those of set 8.

FIG. 6. The effect of saturation [Eqs (52) and (5. 7)] on the
skewness of FPTD. —.—.—,model A [Eq. (52)];
model 8 [Eq. (57)]. Curve a, a0=2. 16X10 sec ', curve b,
ap=4. 32X10 sec ', curve e, ap=8. 64X10 sec '. The other
laser parameters are those of' set 8.
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1.0 1.0

0.8
O
tD
to

X 0.6

+'
Cl

0

0.2

0.8
O
tD

X 0.6

+
&l

0

0.2

l

!
!

r

t

J

r

/

b
I,

~ ~~~ ~ ~ ~ ~~ ~ ~ ~ ~o~'
0.0 0.2 0. % 0.6 0.8 1.0 0.0 0.2 0. 'f 0.6 0. 8 1.0

FIG. 7. The effect of saturation [Eq. (51) and Eq. (40) in pa-
per I] on the variance of FPTD. ———,colored model A

[Eq. (51)];~,white model A [Eq. (40) in paper I]. Curve a,
a0=2. 16X10 sec '; curve b, a0=4.32X10 sec ', curve c,
ao=&.64X10 sec '. The other laser parameters are those of
set B. In curves a the curves of both colored model A and white
model A are concurrent.

FIG. 9. The effect of saturation [Eq. (56) and Eq. (46) in pa-
per I] on the variance of FPTD ——. —,colored model B [Eq.
(56)]; ———,white model B [Eq. (46) in paper I]. Curve a,
a0=2. 16X10 sec ', curve b, a0=4.32X10 sec ', curve c,
a0=8.64X10 sec '. The other laser parameters are those of
set B. In curves a, the curves of both colored and white models
Bare concurrent.

B. Comparing saturation model Bwith the cubic model

The curves of ( (ht ) ) and ((b t ) ) obtained from Eqs.
(56), (57), (59), and (60) have been plotted in Figs. 3 and 4.
These curves show ((ht) ) and ((b,t) ) for the three
pump levels. From Figs. 3 and 4 we clearly see that in
the regime 0 & Ip & 0.8, model B and the cubic model can-
not be distinguished. However, in the regime 0.8 & Ip & 1

as the laser intensity is increased, although the increase of

the variance and skewness for saturation model B is fas-
ter than that of the cubic model, but the increase of vari-
ance and skewness in the colored-gain-noise model (mod-
el B) are slower than those obtained from the colored-
loss-noise model (model A). Therefore, the prefactor of
the pump fluctuation term in model B seems to play a
curb role in the increase of the variance and skewness.
For the advantage of comparison, we have plotted the
curves of ((ht) ) for both models A and B in Fig. 5.
Similarly, the curves of ((b,t ) ) are plotted in Fig. 6.

1.0 1.0

0.8
OI
X 0.6

+'
CI

v 0. &

0.2

0.8
0

X 0.6

0

0.2

!
E

!
!
!
!
t

r Ib
ts

I',c

0.0 0.2 0.0 0.6 0.8 1.0 0.0 0.2 0. % 0.6 0.8 1.0

FIG. 8. The effect of saturation [Eq. (52) and Eq. (43) in pa-
per I] on the skewness of FPTD. ——.—,colored model g
[Eq. (52)];. . ., white model A [Eq. (43) in paper I]. Curve a,
ao=2. 16X10 sec ', curve b, a0=4.32X10 sec ', curve c,
a0=8.64X10 sec '. The other laser parameters are those of
set B. In curves a, the curves of both colored model A and
white model 3 are concurrent.

FIG. 10. The effect of saturation [Eq. (57) and Eq. (47) in pa-
per I] on the skewness of FPTD. ———,colored model B [Eq.
(57)]; ———,white model B [Eq. (47) in paper I]. Curve a,
a0=2. 16X10 sec ', curve b, a0=4. 32XIO sec ', curve c,
a0=8.64X10 sec '. The other laser parameters are those of
set B. In curves a, the curves of both colored and white models
Bare concurrent.
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C. EfTects of the noisy color in the laser transient
of the saturation models

From Figs. 7—10, we clearly see that in the regime
0(I, (0.8, the colored saturation model and the white
saturation model still cannot be distinguished. But in the
regime 0.8 (Io (1, as the laser intensity is increased, the
increase of the variance and skewness for saturation mod-
el A (B) with colored noise are slower than those of satu-
ration model A (8) with white noise. Moreover, due to
the influence of the prefactor of the pump fluctuation
term, the difference between the colored-gain-noise model
and the white-gain-noise model has become small. The
same influence also occurs in the skewness.

Finally, it must be pointed out that the stochastic be-

havior of dye lasers has become the main focus of interest
for many investigators. To get an effective Fokker-
Planck equation from the dynamical equation driven by
colored noise, a number of theories have been proposed.
However, the conventional theories are restricted to the
small correlation time of the colored noise [5,9]. Recent-
ly, Jung and Hanggi have developed a unified colored-
noise theory which does not restrict the value of the
correlation time of the noise [10,11]. In a separate paper,
we have studied the same problems treated in this paper
by virtue of the unified colored theory [10] and make a
comparison between the theories mentioned above. In
this paper we have confined ourself to use the BFPE for-
mulas to calculate the mean, variance, and skewness of
the FPTD for the colored-noise models only.

'Also at Institute of Theoretical Physics, Academia Sinica,
P.O. Box 2735, Beijing, People s Republic of China.
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