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Light-shift-induced chaos in a nonlinear optical resonator
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The interaction of spin-% atoms in an optical resonator with a near-resonant cw light field and an
external static magnetic field gives rise to self-sustained spin precession. This entails a modulation
on the transmitted light at roughly the Larmor frequency. We show that under suitable conditions
this oscillation can become irregular. A detailed analysis reveals a deterministically chaotic process.
Dimensions, entropies, and Lyapunov exponents are determined; cross-checks demonstrate their mu-
tual consistency. To describe the observed dynamics, a three-dimensional model is presented that
resembles the well-known Bloch equations. Numerical simulations compare well with the experimen-
tal results. Of all the nonlinear terms in the model, the one describing the light shift can be singled
out as responsible for the chaotic behavior. This allows an intuitive understanding of the onset of
chaos as a result of the interaction between spin precession and light shift.

PACS number(s): 42.50.Lc, 32.80.—t

I. INTRODUCTION

Complex dynamic behavior can arise from fairly simple
structures. Nonlinear systems with a mere three degrees
of freedom can, e.g., exhibit chaotic oscillations. Unfor-
tunately, there are few general mathematical theorems by
which one can determine the types of behavior a given
system is capable of. It is hoped that the pattern of
just what the precise conditions for chaos are will soon
emerge. Meanwhile, it is important that in various ex-
periments the physical mechanism of the generation of
chaos is well understood.

Chaotic dynamics has been studied in many fields [1,2].
The field of quantum optics is no exception, and in par-
ticular, lasers of various kinds (single or multimode, with
homogeneously or inhomogeneously broadened gain me-
dia, with saturable absorbers, etc.) have been researched
extensively [3-8].

Passive systems, on the other hand, can display dy-
namic behavior which is just as rich and interesting [6-8].
They also come with the additional bonus that the pres-
ence of an external light field with fixed frequency pre-
cludes some of the complications met in active systems
such as mode shifting, etc.

In this contribution, chaos in a passive optical cavity is
shown to be caused by the light shift, the shift of atomic
levels that arises whenever the energy of photons inter-
acting with the transition does not quite match up with
the atomic transition energy. An intuitive picture of this
process is proposed that naturally explains experimental
findings. Moreover, quantitative analysis of the experi-
mental data is discussed in detail. The results compare
well with those from numerical simulations.

II. THE SYSTEM

We consider a passive optical resonator filled with a
nonlinear medium which consists of free atoms interact-
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ing with a cw light field and a static magnetic field. The
experiment is accessible for a transparent theoretical de-
scription within a model involving three degrees of free-
dom. The system displays periodic and chaotic spin pre-
cession, and the cw character of the experiment makes it
possible to take long streams of data so that a detailed
analysis is feasible.

We use the D, line in sodium vapor, which usually
has the complications of hyperfine splitting and Doppler
broadening. A high buffer-gas pressure as used here sim-
plifies the situation through overwhelming homogeneous
line broadening. This allows a particularly transparent
description in terms of the four-level scheme shown in
Fig. 1. It is convenient to choose the direction of light
propagation as quantization axis (z axis). Left (right)
circularly polarized light o4 (o-) will drive the transi-
tions 1 — 4 (2 — 3). Other states of polarization can
be thought of as superpositions of o4 and o_. Driv-
ing just one transition creates, together with relaxation
processes, a ground-state population difference w, which
corresponds to an alignment of the spins and a result-
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FIG. 1. Level scheme used to describe the D; transition
in sodium. o4 light pumps the transition 1 — 4 with pump
rate P;. o_ light drives the transition 2 — 3 (not shown).
Of all relaxation processes only the resulting net effects are
shown with their relaxation rates I' and v, respectively.
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ing macroscopic magnetic moment in the probe. The
pumping is counteracted by a much smaller decay rate v
between the ground states (here y~! = 10 us, see Ref.
[9]). w saturates when the pumping rate due to the light
intensity is comparable to 7.

This nonlinearity, in combination with optical feedback
due to the resonator, gives rise to a variety of different
instabilities. The first that has been observed [10] is op-
tical bistability. In particular, absorptive bistability is
obtained when the resonator is center tuned with respect
to both the light and the atoms, whereas detuning leads
to the dispersive counterpart. When both transitions
are driven equally strong (linearly polarized input light),
there is a competition between two pumping processes.
In spite of the symmetry, one of the transitions will win
out as the intensity is increased: a spontaneous symmetry
breaking induces a switching to a finite w. This means
high absorption for one component of the light, and low
absorption for the other one. The result is nearly cir-
cularly polarized light in transmission. Since there are
three possible states (linear, right circular, left circular),
this effect is called tristability [11]. As with bistability,
there exists a dispersive counterpart to the absorptive
version just described, which can be understood in a com-
pletely analogous fashion: one polarization component is
shifted into resonance with the cavity, the other is pushed
away from it by virtue of intensity-dependent refractive
indices.

Now assume that there is an external static magnetic
field. First, consider the case of a transverse field (vanish-
ing component along the z axis). A new type of behavior
appears: the aligned spins precess around the axis of this
field. Thus, population is transferred to and fro between
states 1 and 2. The precession frequency is essentially
given by the Larmor frequency associated with the field
strength. It has been shown that under conditions of op-
tical feedback, in the dispersive case this spin precession
is self-excited and self-sustaining [12]. As a consequence,
the transmitted light will be modulated at the precession
frequency.

This has been described in detail before in Ref. [9],
where a good description was achieved with a theoreti-
cal model of three nonlinear coupled ordinary differential
equations of first order (“3D model”).

For our present purpose, one extension of this model is
crucial. The inclusion of a longitudinal component of the
external field leads to additional terms in the theoretical
model which are essential for the generation of chaotic
spin precession. This chaotic behavior is investigated in
the present paper.

III. EXPERIMENTS

This section starts with a presentation of the periodic
oscillations in the case of a vanishing longitudinal field.
Next, for a finite longitudinal field we show typical irreg-
ular oscillations and prove that they are deterministically
chaotic.

The experimental setup is basically the same as in Ref.
[9]. It is shown schematically in Fig. 2. Sodium vapor at
a density of typically 1012-10'3 ¢cm~3 in an atmosphere
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FIG. 2. Sketch of the experimental setup; some detail is
omitted for clarity. A stabilized single mode cw dye ring laser
is tuned near the D; resonance line of sodium. Reflections are
suppressed by an optical diode, consisting of a 45° Faraday
rotator (FR) and two polarizers. Mode matching and po-
larization optics create the desired beam characteristics and
polarization state. The confocal sodium-filled resonator, sur-
rounded by Helmholtz coils, has a cold finesse F' ~ 20. Its
length of about 150 mm is controlled with a piezoceramic
translator (PZT) and servo locked to a frequency-stabilized
He-Ne laser. The two polarization states of the transmitted
beam are separated by a A/4 plate and a Wollaston prism and
are steered onto two equal photodiodes (PD1, PD2). Their
signals are recorded with a two-channel 125-MHz LeCroy 9400
digital oscilloscope (32000 data points per channel with eight-
bit resolution).

of 200 mbar of argon buffer gas is placed inside a 150-mm
near-confocal Fabry-Pérot resonator with “cold” finesse
F =~ 20. The transmitted light is separated for its o4 and
o_ components and detected by two photodiodes. The
two signals are shown in Fig. 3 as traces (a) and (b). The
oscillations are in opposite phase, as is to be expected,
because at any one time the spins can be oriented only
one way or the other, but not both.
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FIG. 3. Periodic self-oscillations: (a) transmitted inten-

sity of the o4 light, (b) transmitted intensity of the o_ light,
(c) transmitted probe beam (~ w). Parameters: Po_ =
Poy = 7mW, B, = 70 uT, B, = 0, detuning 12 GHz, and
buffer-gas pressure 200 mbar.
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There is also a possibility to assess the ground-state
population difference w(t) directly. To this end, we em-
ployed custom-made resonator mirrors that were par-
tially coated, and partially clear. This allowed us to
send a separate light beam through the sodium vapor
that made a small angle with respect to the primary
beam and was not subject to resonator feedback. The
probe beam was linearly polarized and therefore con-
tained equal amounts of o4 and o_ light. These com-
ponents experienced different phase shifts in the vapor.
A second polarizer, set at 45° with respect to the in-
coming polarization, transformed the phase shifts into
intensity variations which could be detected easily. With
this technique, the temporal variation of w could be seen
directly [Fig. 3(c)]. w(t) is found to vary almost sinu-
soidally, as is expected from the projection of a nearly
circular precession motion. Whenever w(t) is at a maxi-
mum, the intensity in o_ is high, and o is low. Just the
opposite holds at the minima of w(t). Note that the dips
at the maxima of the transmitted intensities can now be
understood easily: When w(t) makes an excursion wide
enough so that the shift in refractive index pushes either
one of the polarization components beyond the cavity res-
onance, the corresponding intensity passes over the peak
of the Airy function.

We now turn to the cases where more complicated
types of oscillation were observed. In the experiments
reported below, only the transmitted intensities were
recorded for reasons of convenience. The correspondence
between these and w is established by Fig. 3 and Eq.
(6) below. Typically the resonator phase, the irradiated
intensity, and the magnetic field were varied. The tran-
sition from regular oscillation to chaos could occur along
different routes [13]: Period doubling (P1, P2, P4,.. ., X,
where x stands for chaos), quasiperiodicity (P1, torus,
X), or intermittency (P1, bursts of x, x). Within the
chaotic regime, periodic windows could be observed. It
soon became clear from the experiment that chaos oc-
curred under some very specific conditions.

(i) For chaos, the longitudinal component of the exter-
nal magnetic field had to be within a suitable range.

(i1) Chaos occurred for purely circularly polarized light.
It quickly disappeared as the polarization was made el-
liptic. There was no chaos at all with linear polarization.

(iii) Upon reversal of either the longitudinal field or
the sense of circular polarization, chaos disappeared. It
remained unchanged, however, if both were reversed.

An example of the observed chaotic oscillation is pre-
sented in Fig. 4. Panel (a) shows a section of the time
series from a much longer data set. The envelope of
the oscillation is irregularly modulated. The power spec-
trum (evaluated from the time series with a fast-Fourier-
transform algorithm using a Blackman-Harris data win-
dow [14]) has a broad continuum predominantly at low
frequencies, which is about 20 dB above the technical
noise floor, and shows only mild peaking near the Lar-
mor frequency [Fig. 4(b)].

A continuum as in Fig. 4(b) does not prove that the
process is deterministically chaotic, since noise would
have a continuous spectrum, too. The distinction be-
tween deterministic and stochastic signals relies on the
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detection of certain correlations in the signal. The most
straightforward test, known as the first return map [15],
deals with correlations of amplitudes of successive max-
ima. The return map is shown in Fig. 4(c). The points
form a roughly arch-shaped curve, whereas an uncorre-
lated signal would give a featureless blob. It is therefore
clear that the underlying process is deterministic. Sim-
ilar arch-shaped curves are well known from the logistic
map [16]. In distinction, however, here there is substruc-
ture in the main part of the arch, and a rising ”tail” in
the right part of the figure. Differences are not surpris-
ing, of course, because here we deal with a flow, rather
than a 1D map.

The next step is to extract some quantitative informa-
tion about the process from the recorded data. Since we
have to work with noisy data sets of limited length, we
restrict ourselves to well-established algorithms for the
calculation of dimensions, entropies, and Lyapunov expo-
nents, the limitations and potential pitfalls of which are
fairly well studied [17-19]. For example, it is known that
noise reduction through low pass filtering yields a system-
atic error for the dimension estimate [20-22]. Acausal fil-
ters were used to avoid that problem [23], but here they
did not provide a substantial benefit because noise oc-
curred predominantly at low frequencies. Therefore, the
data presented in this paper are unfiltered.

Since only one variable was recorded, we first have to
reconstruct the attractor through the well-known time-
delay technique [24]. Its portrait is shown in Fig. 4(d).
The correlation dimension D, of the attractor and the
related entropy K, were determined with an algorithm
proposed by Grassberger and Procaccia [25]. Figure 5
shows the result of one such calculation of the slope of
the correlation integral. The average over the scaling re-
gion as a function of the embedding dimension (see Fig.
6) converges to what we consider a preliminary dimen-
sion estimate. We tested this estimate through variation
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FIG. 4. Chaotic signal: (a) part of the time series (8000
of 32000 points shown), (b) power spectrum, frequency in
units of inverse mean orbital period, (c) return map, and (d)
reconstructed attractor. Parameters: Poy = 20 mW, Py_ =
0, B, =38 uT, B, = 102 uT, and detuning 32.2 GHz.
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FIG. 5. Slope of the correlation integral vs length scale
for embedding dimensions 5 to 30 in steps of 5. An interval
from 0.10 to 0.15 was chosen as the scaling region. The length
scale is normalized to the largest distance. In this example,
every fourth point from the 32 000-point data set was selected
as a first coordinate for the reconstruction of attractor points,
and the delay between two successive coordinates was eight
points.

of the sample size (number of points) and the two delay
parameters involved in the time-delay embedding tech-
nique. The resulting average and scatter of dimension
estimates were used as a final estimate and an indica-
tion for the error margins of the computation. The data
set discussed here yields D, = 2.12 4+ 0.03. By a similar
procedure we evaluate its correlation entropy and find
Ky =(7Tx1)y.

To clearly discern chaotic from stochastic structure we
used the technique of surrogate data [17,26]. It com-
pares the dimension estimate for the original data with
those for randomized data, obtained by first scrambling
the phases of the Fourier transform of the original, then
transforming back to the time domain. As there was no
plateau in the slope of the correlation integral for the
surrogates (as expected for random signals), the same
scaling region as for the original data was used through-
out. The shaded area in Fig. 6 indicates the mean value
plus or minus one standard deviation of the dimension es-
timate for a set of ten surrogates. The difference between
original and surrogates is statistically significant: on av-
erage from embedding dimension 5 to 40, it amounts to
14 standard deviations.

We never obtained data for which D; > 3 (typically,
D, = 2.1), and therefore proceed on the assumption that
a 3D model suffices to describe the system. Results below
will further justify this approach.

A 3D system is characterized by three Lyapunov ex-
ponents. In case of nonstationary dynamics one of these
(Xo) is zero by necessity [27], one is positive to allow for
chaos (A4), and one is negative for energy dissipation
(A=). We used an algorithm presented by Wolf et al.
[28]. It evaluates the largest positive Lyapunov exponent
from a time series because it is sensitive to the direc-
tion of strongest divergence of neighboring trajectories
[29]. We have found that one can also use the same al-
gorithm to determine the most negative Lyapunov expo-
nent by using the attractor points in reverse temporal or-
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der. Through temporal inversion, diverging trajectories
become converging and vice versa. We have tested this
procedure on data with known exponents [30] and found
that it gives correct results if the algorithm converges
well for A and if Ay and |A_| are not different by more
than one order of magnitude. In a 3D system, the com-
plete Lyapunov spectrum is thus determined. The error
margins for the computation are again checked through
variation of the computational parameters and we find
A+ = K1 =(8.1+£0.8)y and A_ = (—75+ 10)7.

The computations presented so far can be checked for
mutual consistency. One test is a comparison of A4 with
the entropy Ko, since Ay = K; > K, [31]. Another
one is whether D, < D;, where D, is obtained from the
Kaplan-Yorke formula, which gives the dimension D, as
a function of the Lyapunov exponents [31]. For our 3D
system, it reads

Dy =2+ 2:/IA]. (1)

Here we find D; = 2.11 £ 0.02. In view of the numerical
uncertainties, the agreement is very satisfactory. Still
another test is less suitable for experimental data but
will be applied to numerical results below: The sum of all
Lyapunov exponents has to be equal to the phase-space
contraction rate which can be obtained from a model.
We thus get from one data set, through independent al-
gorithms, characteristic values that have to obey specific
relations. They do, and we are therefore confident that
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FIG. 6. Dimension estimate for the original data set and
the surrogate data as a function of the dimension of the em-
bedding space. The original data set of 32000 points was
compressed to 2'* points by taking every third point. The
phases of its Fourier transform were then replaced with sets
of random numbers equally distributed in [0; 2x]. By inverse
Fourier transformation a total of ten surrogate data sets was
generated. For these and the compressed data set, dimension
estimates were calculated from the same scaling region us-
ing all points and a delay of two between the components for
the attractor recomstruction, respectively. The shaded area
indicates an interval of +1 standard deviations around the
average of these dimension estimates.
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they quantify the observed dynamics correctly within the
error margins stated. Generally, we feel that calculations
of dimensions, etc., should never be considered reliable
unless such checks have been made.

IV. THEORETICAL MODEL

The time evolution of our system can be described
semiclassically by the equation of motion for the density
matrix p:

ihp = [H, p) + relaxation terms. (2)
A detailed derivation of the model for the case with a
purely transverse magnetic field has been given in Ref.
[9]. Therefore, only a brief review is given here, with an
emphasis on the modifications required for an arbitrary
direction of the magnetic field.

We write the Hamiltonian in the form H = Hy+ Hg +
Hpg, with Hy for the free atom, and Hg and Hp for the
interaction with the light field and the magnetic field,

respectively. The light field is described as a monochro-
matic plane wave of the form

E(z,t) = L[E4(2)(es+iey)+E_(z)(e; —iey)]e ™ +c.c.,
3)

where E, and E_ are the amplitudes of the circularly
polarized light field components o4 and o_.

This leads to the following elements in the Hamilto-
nian:

Hy = hw — 39.),

H3z = h(ws — %Qz);

Hao = h(wy + 392.),

Has = R(ws + 390.),

Hy =Hy = —g(ﬂz +i€y),

H31 = Hy2 =0,

Hzz = h(B_e™™" + fye™),

Hay = R(Bye™™" + g eit).
Here, fw; and hws denote the unperturbed energies of
J

Poi(l - Rf)
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the atomic levels 1 and 3, and wo = w; — w3 is the cor-
responding atomic transition frequency. f+ = ppFE4 /2h
denote the electric dipole coupling strengths for the o4
components, and pg is the reduced electric dipole ma-
trix element. Q, Q,, and Q, are the three spatial com-
ponents of the external magnetic field B, normalized as
Larmor frequencies through Q; = ppgyB;/h. The re-
laxation terms are introduced phenomenologically and
remain the same as in Ref. [9].

In the calculation, excited-state population is ne-
glected. This is a valid approximation as long as the
intensities are relatively low. Extensions of the model
have been given to cover higher intensities [32], but for
the present purposes we need not be concerned with that.
Within the rotating-wave approximation and after adia-
batic elimination of the coherences involving the excited
states, we obtain a description in which only the two sub-
levels of the ground state are relevant for the dynamics.
The spin orientation in the ground state has the value
m = (u,v,w) € R, where

u=pi2+p21, v=1i(p12— p21), W= p11 — pPa2.
The equation of motion for m is given by

m=—-(y+Sm+T+mx R, 4)
with @ = (2;,92,,9Q. — DA), and T = (0,0,D). As

mentioned above, v is the relaxation rate between the
substates of the ground state. A is the detuning (wo —
w)/T, with T the decay rate of the optical coherence.
S=Py+ P_and D= P_ — P, where

18]
:fAizi-il 5)

Py

are the normalized intensities, or pumping rates, for the
right and left circularly polarized light field components
inside the resonator. Since the description was effectively
reduced to a two-level system, it is no surprise [33] that
the resulting equation of motion formally resembles the
well-known Bloch equation [34].

The optical feedback is represented mathematically
through the resonator equation (written here for a ring
resonator for simplicity)

Py (w)

Pyt describes the incoming intensity for the two light
field components and R = /Ry R, is the effective reflec-
tivity of the front and back resonator mirrors R; and Rs.
« is the intensity absorption coefficient of the sodium va-
por at the laser frequency, and L the interaction length.
®; is given by (n — 1)wL/c, where n is the small signal
refractive index. Through dispersion relations, ®; = aA.
®, is the resonator round trip phase at low intensity.
Equations (4) and (6) together constitute our model. It
is instructive to understand the physical meaning of the
individual terms. Equation (6) is the well-known Airy

= . 6
1+ (Re~elU2w)y2 _ 9 Re=aL(1£W) co5( 1Py w — Bg) ©)

[

function, except for the exponential functions in the de-
nominator, which describe nonlinear absorption, and the
nonlinear phase shift +®; w contained in the cosine. Note
that all the nonlinearity of the problem comes from these
terms. The first term on the right-hand side (RHS) of Eq.
(4) describes the dissipation of energy to the heat bath.
The second term stands for an energy supply from the
photons to the spin system; this term drives the system
out of equilibrium and is responsible, e.g., for bistability
in the absence of magnetic fields. The last term on the
RHS of Eq. (4) describes the precession of m around
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@ as the external magnetic field exerts torque on the
atomic magnetic moments. Note that 2 also contains an
intensity-dependent term DA by which the photons can
supply energy to the precession.

This term merits further discussion. Atomic levels in
the presence of a light field are energetically shifted; this
is well known under the names “ac Stark shift” or “light
shift.” It has been described in detail in Ref. [35] and ref-
erences therein. In our case, sublevel 1 is shifted in pro-
portion to Py A, and 2 is shifted in proportion to P_A.
The degeneracy of the substates is thus lifted by a net
shift DA. The light shift can also be interpreted as a fic-
titious magnetic field [35]. Accordingly it appears here in
sum with the component €2, of the magnetic field, which
also lifts the degeneracy through Zeeman splitting.

A first qualitative test of our model is whether sym-
metries of the model reflect the experimental findings.
Simultaneous reversal of D and Q, (i.e., 04 — o_ and
Q, — —Q,) does not change the absolute value of the
term (2, — DA). One therefore expects unchanged be-
havior, except for a different sense of precession. This
is in agreement with experimental observation, as was
pointed out above. The model also suggests that a reduc-
tion of D can be compensated for through an increase in
A to retain the same dynamic behavior. Similarly, small
changes in D can, within limits, be accounted for through
compensating changes in §2,. This was confirmed in the
experiment as well. We also find that larger changes
in Q, can only be compensated for when §, or Q, are
also changed roughly in proportion such that the spatial
direction of the resulting magnetic field is kept approxi-
mately constant. This is plausible by the following argu-
ment: The three equations for #, v, and @ implicit in Eq.
(4) are linked by coupling terms of comparable order of
magnitude. With said compensating changes the ratio of
these terms remains essentially unchanged.

V. NUMERICAL SIMULATIONS

In the numerical simulation we choose o light and,
due to cylindrical symmetry around the z axis, omit €,
without loss of generality. Also we normalize Py, Qg,
Q,, and time to units of y~1. We thus deal with a seven-
dimensional parameter space spanned by Poy, aL, ®,
A, Qg Q,, and R [36].

The corresponding experimental parameters are
known. Unfortunately, for ®,, on which the behavior
is very critically dependent, we did not achieve sufficient
accuracy. For Py, there is a conceptual problem: The
model assumes plane waves, whereas in the experiment
there is a transverse beam profile (the shape of which,
given a nonlinear absorber, has to be neither Gaussian
nor even constant in time). Therefore, the corresponding
Py, is known only in coarse approximation.

In locating a chaotic regime numerically, we benefitted
from calculations by Lange, Nalik, and Méller [37] on a
similar model that also included the excited-state popu-
lation as an additional variable and was thus four dimen-
sional. With the help of the AUTO software package [38]
they found parameter sets for chaos; starting from one of
these sets we found qualitatively similar chaos in our 3D
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FIG. 7. Chaotic signal from a numerical simulation: (a)

part of the time series (8000 of 32000 points shown), (b)
power spectrum, frequency in units of inverse mean orbital
period, (c) return map, and (d) reconstructed attractor. Pa-
rameters: see Table I.

model also. Thus, at least the existence of chaos in the
3D model was proven, and while details may differ and
the chaotic regime may be larger in 4D, the mechanism
must be all there in the 3D model.

Figure 7 shows a result from numerically simulated
chaos in the 3D model. The magnetic fields chosen here
are smaller than what would correspond to the experi-
ment, a difference in which the main effect has simply
been a change of the oscillation frequency. The other
parameters are realistic for comparison with the exper-
iment, but in view of the above-mentioned difficulties
we cannot claim exact correspondence. It is therefore
encouraging that a comparison of results from computa-
tion and experiment reveals a lot of similarity between
both. Analysis of the attractor shown here, using the
same algorithms as for the experimental data, yielded
Dy =2.07, Ky = 0.629, Ay = 0.767, and A_ = —11.47.
Applying the cross checks mentioned above we find that
indeed K2 < A4 and Dy = 2.07 > D, and that Ay +
A_ = —10.6+, to be compared to the average phase-space
contraction rate (9u/du + 8v/0v+ 0w/Ow) = —9.4v.
Again these cross checks give mutually consistent results.
Furthermore, experimental and numerical data show rea-
sonable agreement considering the different time scales
mentioned above. Beyond this analysis we found both
the period-doubling route and the quasiperiodicity route
to chaos also seen in the experiment. Table I gives rep-
resentative parameter values.

VI. REDUCTION OF THE MODEL

It could be shown so far in this paper that our 3D
model is indeed able to describe deterministic chaos in
qualitative agreement with the experimental results. Be-
yond that, one may ask what the physical mechanism is
that drives the system from periodic self-oscillations into
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TABLE L.
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Parameter values for the numerical simulation [Eqgs. (4) and (6)], which produce (a) the chaotic behavior shown

in Fig. 7, (b) a period-doubling sequence or (c) a torus followed by chaos through the variation of the pump intensity, and (d)
gives parameters for chaos in the reduced model with a linearized T of the form T = (—~1.9w,0,—0.1). In all cases Ry = R, = R.

Scenario P0+ Qo Qx Qz A al R

(a) x of Fig. 7 0.2292 —0.635 —24.25 —48.0 31 0.1 0.9322
(b) Period doubling 0.196-0.2292 —0.635 —24.25 —48.0 31 0.1 0.9326
(c) Torus 0.354-0.360 —0.570 —21.5 —43.0 31 0.06 0.9326
(d) x (reduced model) 0.109 86 -3.1128 —37.46 —56.5 38 0.1005 0.9450

chaos. Since chaotic behavior arises from nonlinearities,
the question is whether any of the nonlinear terms in Eq.
(4) can be identified as the crucial one.

We opted for the approach of eliminating the nonlinear
terms one by one by replacing them with linear or even
constant terms to determine whether the chaotic behav-
ior is maintained, possibly through slight changes in the
remaining parameters.

As noted above, the nonlinearity in the problem is en-
tirely contained in P; = Py(w) as given by Eq. (6).
There is both a nonlinear phase shift (in the cosine) and
nonlinear absorption (in the exponential functions). If
the latter are replaced by the constant Re~*L, chaos per-
sists. We therefore deal here with a purely dispersive
effect relying on the nonlinear phase shift.

In Eq. (4), P4+(w) apears in three places. In the dissi-
pative term —[y + P;(w)]m, it can be simply set to zero,
and chaos still persists. In T, it can be replaced by a lin-
ear function of w. This leaves us with §2, where the third
component reads Q, — Py(w)A. The light shift term
alone is thus capable of generating chaos in our model.
The question arises whether any of the other nonlinear
terms has the same property.

This can be addressed as follows. All routes to
chaos discussed above start with a Hopf bifurcation
from steady-state to self-oscillating behavior. In the
model, further characterization of this bifurcation is pos-
sible; it turned out that it consistently occurred for
0P, (w)/8w > 0, independently of the above elimina-
tions. However, if the P;(w)A term is replaced by a
constant, it can be shown analytically that Hopf bifur-
cations are no longer possible on this branch. The proof
is given in the Appendix. Therefore, the routes to chaos
discussed here cannot occur without the light shift term.
The light shift Py (w)A is thus singled out as the nonlin-
ear term necessary and sufficient for deterministic chaos
in our system.

With this knowledge we can give an intuitive picture
of the process that allows the onset of chaotic behavior
in our system. The term m x © in Eq. (4) describes
the precession of the magnetization m around the axis
of the effective magnetic field 2. Neither magnitude nor
spatial direction of € are constant, rather both are w
dependent: the angular velocity of the precession, e.g., is
given by || = [Q2+Q2+(Q, — DA)?)'/2. Tt is modulated
with DA.

As a specific example, let P, oscillate periodically and
choose D = —P,, A >0, Q, <0, and |Q,| > |P;A| at
all times. At times when the population is at its min-

imum in 1 and at its maximum in 2, the absorption is
at a minimum. Thus, P; assumes its maximum value.
During the half cycle in which the atoms go from state 2
to state 1, Py decreases. Since (Q, + P+A)? has the op-
posite phase of P, alone, |(2| increases: the precession is
accelerated. During the other half cycle, it is decelerated.
However, during this half cycle the atoms have an addi-
tional channel from 1 to 2 through optical pumping via 4.
Thus the acceleration is “in phase” with the precession
in the sense that it affects all the spins, whereas only a
smaller number of preceding spins is decelerated. For o_
light, on the other hand, there is a net deceleration.

From this it becomes clear that the light shift provides
a nonlinear feedback, acting on the axis and the velocity
of the spin precession. It can either feed energy into the
precession or absorb energy from it. For linear polariza-
tion, the situation is symmetric with respect to optical
pumping, and the net effect on the precession is nil.

Going back now to the conditions (i)—(iii) for chaos
in the experiment given above, one immediately sees a
remarkable correspondence: The experiment shows chaos
if and only if the intuitive picture indicates “in phase”
feedback.

We thus visualize the generation of chaos as follows. A
nonlinear feedback, mediated by the light shift, perturbs
the regular precession. If the perturbation is in phase
and strong enough (e.g., as one raises the input power
P,,), the periodic precession is destabilized. This is the
onset of chaos.

VII. SUMMARY

We have shown that spin—% atoms in an optical res-
onator can, in addition to other instabilities observed be-
fore, exhibit deterministic chaos. Our experimental data
allowed a detailed quantitative analysis of the dynam-
ics. The results for attractor dimension, Lyapunov expo-
nents, and entropy pass the test of mutual cross checks.
A previous theoretical model consisting of three differen-
tial equations, modified to cover the present case, is ca-
pable of producing chaos with many characteristics that
are also observed in the experiment.

Rather than perfecting this model through inclusion of
more detail, we went the opposite way and simplified it by
linearizing nonlinear terms such that chaos still persisted.
In the end, only a term describing the light shift of the
participating atomic levels turned out to be necessary.
Since chaos can never occur in linear systems, this must
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be the nonlinear term responsible for chaos. An intuitive
picture is suggested of how the light shift perturbs the
regular motion and leads into chaos.
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APPENDIX

The numerical simulations have shown that a reduced
theoretical model containing the light shift —P, A as the
only nonlinear term is still able to produce chaos similar
to that obtained from the complete model. For all cases
the chaotic behavior was preceded by a Hopf bifurcation
which occurred in the regime of P, = 9P;/0w > 0.
Assume that there is some other reduction that keeps this
characteristic of the transition but involves elimination of
the light shift. First replace (2, — P4A) in Eq. (4) with
Q, to linearize m x 2. This leads to a simplified system of
three scalar equations. The eigenvalues A of its Jacobian
are solutions of the following characteristic equation:

0=-2%=A2[3(1 + Py) + PL(1 + w)] = AB(L + Py)? + 2P, (14 Py )(1 4 w) — PLQ.v+ Q2 + Q%] — (14 P)®
—(1+ P)(Q2 + Q2 — Q, P{v) — PL[(1+ w)(1 + Py)? — uQ,Q, + Q*(1 4+ w)].

At a Hopf bifurcation, two of these eigenvalues have to be purely imaginary, i.e., Ay = +i¢ with ¢ € R\{0}. We thus
insert i¢ for A. Since this equation has to hold for its real and imaginary part simultaneously, ¢ can be eliminated.
This yields the following necessary condition for the existence of a Hopf bifurcation:

0=8(1+ Py)® +2(1+ Py )(Q2 + Q) + P2(1 + w)[2(1 + P4)(1 + w) — v,

+PL[8(1+ w)(1 + P4)? + Q2(1 + w) — 20Q,(1 + Py) — uf.Q,].

Since by definition Py > 0, (1+ w) > 0, and in the case
considered here also P{ > 0, all terms except the ones
containing v§2, or uf2,Q, are thus immediately seen to be
positive. The signs of the latter follow from the steady-
state condition m = 0, which yields

Q,9Q,
u= (TP P+)2w, (A2)
_ Q1+ Py)
v= QZ+(1+P+)2w’ (A3)

(A1)

f

2

Equation (A4) requires w < 0. With this, Egs. (A2)
and (A3) yield vQ; < 0 and u2,Q, < 0. Therefore,
all terms on the RHS of Eq. (A1) are positive, and Eq.
(A1) has no solution. We conclude that in the absence
of the light shift term, a Hopf bifurcation does not exist
for 6P, /0w > 0. Hence, the light shift is necessary for
the type of chaos reported here.
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