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The transition regime from periodic and quasiperiodic motion to spatiotemporal chaos is examined for
coupled-map lattices. For periodic states the stability criteria for homogeneous solutions are deter-
mined, and the formation of checkerboard patterns is treated analytically. Also, the period-doubling
route to spatiotemporal chaos is discussed. For the quasiperiodic transition, renormalization-group
analysis is carried out for both forward coupling and the more generic linear coupling. This leads to
scaling results for the spatiotemporal intermittent regime. In particular, a coherence length is identified,
based on the distributions of the phase fluctuations and their derivatives. Finally, percolation methods
in the study of spatiotemporal intermittency are numerically tested. It is shown that finite-size effects

are substantial.

PACS number(s): 05.45.+b, 47.20.Tg, 47.25.A¢

I. INTRODUCTION

A. Spatiotemporal chaos,
spatiotemporal intermittency, and weak turbulence

Chaos is a ubiquitous phenomenon widely observed in
dynamical systems with a sufficient degree of nonlineari-
ty. If, in addition, the system considered is spatially ex-
tended with effectively many degrees of freedom, we use
the term spatiotemporal chaos. Spatiotemporal chaos is
observed in a wide range of systems, particularly hydro-
dynamical systems (Rayleigh-Bénard convection [1,2],
surface waves [3], boundary-layer flows [4]).

For the analysis of spatiotemporal chaos, two major
fields in physics are applied, statistical physics and non-
linear dynamics. Statistical physics involves systems with
many degrees of freedom, for example, disordered sys-
tems with (typically) an inherent degree of randomness.
In contrast, nonlinear dynamics mostly has been used to
describe chaos in systems with a few degrees of freedom.
The motivation for the adoption of this dual scheme is
the very nature of the phenomenon at hand; one cannot
separate the spatial and temporal behavior—to under-
stand the patterns formed one must understand the dy-
namics that created them.

A situation of particular interest is where a system by
tuning an external parameter across a certain critical
value effectively changes from being “low dimensional”
with few degrees of freedom, and becomes “high dimen-
sional” with many degrees of freedom. As we shall see
such a transition is often followed by a breakdown of glo-
bal spatial coherence. However, a macroscopic coherence
length— a length scale below which the patterns appear
coherent—may still be observed. Patterns are formed
with coherent regions moving around in time and space.
This complex evolution that appears right above the tran-
sition to spatiotemporal chaos is often identified as spa-
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tiotemporal intermittency. For fluid-dynamical systems
we use the term weak turbulence.

B. Hydrodynamical experiments

Perhaps the best way to identify the essential features
of a phenomenon is through the description of actual ex-
periments. One example is the study of weak turbulence
in vertically forced surface waves by Tufillaro, Ramshan-
kar, and Gollub [3]. A shallow rectangular container,
half filled with a fluid, is put into rapid vertical oscilla-
tions. As a result of this vertical excitation, once the am-
plitude A4 becomes bigger than a certain critical value
A., surface waves are formed. Right above A_ these
waves are highly coherent and spatially ordered, but in-
creasing the amplitude further to 4 ~1.14,, the global
coherence of the pattern is destroyed. However, the pat-
terns do not seem to become totally incoherent
immediately—as A increases, the coherence length gets
smaller until it becomes of order of the wavelength of the
underlying oscillations. A weakly turbulent regime is
identified just above the breakdown of global coherence.

It is interesting to see how the same essential features
appear in a totally different system. Consider another ex-
periment: Rayleigh-Bénard convection in a high aspect-
ratio cylindrical cell [1] (height much smaller than the la-
teral dimensions). Heat is supplied from below, generat-
ing a temperature difference AT between the top and the
bottom plate. When this difference reaches a critical
value AT_, convective rolls are formed. Right above AT,
the rolls are stable, and the whole pattern is perfectly
coherent. However, when AT increases above
AT =1.2AT,, the rolls start to move erratically, and the
length scale on which the patterns appear coherent de-
creases. Again, this partly incoherent motion of the rolls
is referred to as weak turbulence.

The fact that, due to the geometry of the cell, the
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effective degrees of freedom of the system are weakly cou-
pled is an essential element in the resulting loss of spatial
and temporal coherence. To appreciate this, compare,
for instance, the above high-aspect-ratio experiment with
a more constrained, low-aspect-ratio experiment [5],
where the degrees of freedom are more strongly coupled.
The latter type of setup is known to generate low-
dimensional chaos and maintains its spatial coherence
even after the loss of temporal order.

Although little is known about the mechanisms that
generate weak turbulence, the striking similarities be-
tween diverse experimental systems suggest that a univer-
sal scheme might exist. In lieu of means of adequate
characterization, even the task of their classification is by
no means easy. In order to supplement the picture above,
consider the Rayleigh-Bénard convection in a cubic cell
[4]. In this geometry, one roll is formed with the size of
the cell itself. In the bulk of the flow, heat is transmitted
by convection, but layers are formed at the bottom and
top boundaries, where heat is transmitted by diffusion.
However, increasing the temperature difference AT
sufficiently, instabilities of these boundary layers set in,
resulting in a breakdown of their globally coherent form.
The coherence length appears to decrease with increasing
Rayleigh number.

Despite the disparity in the systems above, at least the
main features of weak turbulence seem to be universal.

(i) The signature of weak turbulence is the onset of spa-
tiotemporal intermittency, at which point the global spa-
tial coherence breaks down and chaotic behavior sets in.
This state should be contrasted with so-called low-
dimensional chaos in which the system displays incoher-
ence only in time, while remaining perfectly coherent in
space.

(ii) The weakly turbulent regime is characterized by a
dominant macroscopic length scale which can, in general,
be identified as the coherent length. In that respect, weak
turbulence should be contrasted with fully developed tur-
bulence where there is no predominant length scale.

(iii) Weak turbulence appears in spatially extended sys-
tems with weak coupling between the degrees of freedom.

C. Coupled maps as a laboratory system

When a phenomenon presents features independent of
the specific characteristics of systems in which it appears,
we have every reason to look for a universal, underlying
mechanism. In the preceding section, we have argued
that weak turbulence may be such a phenomenon. But
what can we say about the mechanism that governs weak
turbulence? All systems sustaining weak turbulence seem
to have two features in common: nonlinearity and
diffusion. In fluid dynamical systems described by
Navier-Stokes equations, the nonlinear term is the iner-
tial term (v-V)v and the diffusive term is the viscous term
vV2v. The nonlinear term tends to drive the system into
a chaotic state; in a turbulent fluid, it tends to drive ini-
tially neighboring elements of the fluid further apart.
The diffusive term, on the other hand, opposes this ten-
dency and acts like a spring force that couples neighbor-
ing elements of the fluid.

These arguments, however, can offer only a qualitative
interpretation. To substantiate our arguments we would
like to address more rigorous questions such as the ques-
tion of how to quantify the observed similarities or, for
that matter, the differences between the various spa-
tiotemporal patterns. What, for example, can we say
about the dependence of the coherence length on the
various physical parameters of the system in question?
Can we distinguish any type of universality out of this
quantitative study?

The quantitative analysis presented in the subsequent
sections will be done on a simple system which shows
spatiotemporal intermittency: a coupled-map lattice
[6-10]. This system is not chosen to simulate a particu-
lar physical system; rather the merits of such a choice are
(i) to be sure that the quantitative analysis will probe the
characteristics above: the nonlinearity and the diffusion;
(ii) the formal simplicity of the coupled-map lattice will
lend itself to simulational analysis, a process which can
be much more time consuming for more realistic systems.

II. COUPLED MAPS

A. The map, the coupling, and the initial conditions

In a coupled-map lattice every lattice point r is associ-
ated with a phase x,(r) for which the evolution is discrete
in time (here denoted by n) and is of the form

x, +1(r)=f(x,(r))+Jc,(r), (2.1)
where
(0= [gx,(r")—g(x,(r)] . (2.2)

r

The nonlinearity is introduced by the map f, usually
chosen as a circle map such as the sine map

fx)=x +Q——I£sin(27rx ), (2.3)
27
or the logistic map
f(x)=Kx(1—x) . (2.4)

In both cases, K is the nonlinearity parameter. For the
circle map, (2 is a driving term; in the absence of the non-
linear term (K =0), Q determines the rate of increase of
the individual phases. The last term in (2.1) represents
the diffusion. Jis a coupling constant, and g is a coupling
function. Usually, g(x)=x (linear coupling), or
g (x)=f(x) (forward coupling), and the sum in (2.2) is re-
stricted to nearest neighbors r’ to lattice point r. Notice
that ¢, (r) is then the discrete Laplacian V* of g(x,(r)).

In all subsequent studies periodic boundary conditions
are assumed, and the system evolves from a random ini-
tial configuration of the phases. We shall see that the
range [0,h] within which the random values for the
phases are chosen can be of importance. Bearing on the
analogy with thermodynamical systems we shall use the
term heat when referring to the parameter h.

We notice that the temporal discreteness allows for fas-
ter computation of the dynamics since no explicit integra-
tion is required as is the case for simulations of
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differential equations. This has proven to be an invalu-
able feature for real-time studies, for example, when look-
ing at time scales, periodicities, and long transient effects.

B. Rotation number for circle maps

A quantity of central importance in the study of the
dynamics of circle maps is the rotation number R, which
describes the average rate of change of the phase x(r),

. x,(r)—x4(r)
R= lim |————

n— o

(2.5)

n

For the sine map (2.3) [J=0], one observes mode-locked
regions in the parameter space (Q,K) regions in which
the rotation number is constant and rational [11]. As K
increases, these regions (called Arnold tongues) become
wider. Above K=1, the period-doubling route to chaos
is encountered (Sec. III). When the rotation number is ir-
rational, the evolution is quasiperiodic below K=1 and
chaotic above (Sec. IV). Above K=1, the rotation num-
ber generally depends on the initial conditions.

Now, consider the coupled-sine-map lattice (2.1)-(2.3)
with linear coupling [g(x)=x]. This system is found to
have a rotation number that is independent of r. The
linear coupling gives rise to a springlike force between
the elements of the system that prohibits the existence of
different rotation numbers in the same system: a situa-
tion in which some of the phases lag behind results in big
increases in the corresponding spring forces and thus a
large accumulation of “potential” energy in the system,;
the system avoids the development of these high-energy
states by synchronizing the average rate of increase of the
individual phases.

For K =<1, the evolution where all phases are identical,
x,(r)=x,, is stable, hence the dynamics reduces to the
dynamics for one sine map, and is, therefore, independent
of J. For K > 1 the shape of the Arnold tongues does de-
pend on J; as J increases the mode-locked regions shrink
in size. Figure 1 shows the phase diagram obtained nu-
merically for a two-dimensional sine-map lattice with
J=0.01,0.5=Q=0.7, and 1 <K =<3. The largest Arnold
tongues are shown. While the rotation number of a sin-

3.0

0.7

FIG. 1. Phase diagram for the coupled set of circle maps
given by Egs. (2.1)-(2.3) with g(x)=x and J=0.01. — — —,
R =R, (- -+ .),p=05.

gle sine map is known to depend on the initial conditions,
the rotation number for the coupled-map lattice is found
to be independent thereof. In this respect R, defined by
(2.5) for an arbitrary lattice element, characterizes the
whole system. Also shown in Fig. 1 is the path where R
equals the golden mean R =R, =(vV'5—-1)/2.

C. Phase fluctuations

Quantities such as the rotation number are capable of
probing only the overall temporal behavior of the
coupled-map lattice. The many degrees of freedom in
space have a profound effect on the way the system ar-
ranges its phases x,(r) over space. To quantify these
phase arrangements we consider the phase fluctuations
y.(1), defined as the difference from the average phase

Y, (r)=x,(r)—{x,(r")) , 2.6)

where ( ) denotes the spatial average. There are various
ways the patterns formed by these fluctuations can be
categorized. Here, we consider three clearly distinguish-
ably states of the coupled-map lattice.

(i) Homogeneous states. There is no spatial difference
between the phases x,(r)=x, and y,(r)=0. The dynam-
ics of the system is effectively one dimensional.

(ii) Nonhomogeneous and spatially coherent states. The
spatial differences between the phases are nonzero, but
the patterns remain spatially coherent. In Sec. III, we
shall particularly consider the patterns falling in this
category that are periodic in time, emerging along the
period-doubling route to spatiotemporal chaos.

(iii) Spatiotemporal chaotic states. The patterns are
spatially incoherent and temporally chaotic. In the pres-
ence of a macroscopic coherence length, on which
length-scale well-defined coherent “laminar” regions in-
terrupted by “turbulent” behavior evolve in space and
time, we use the term spatiotemporal intermittency. In
Sec. IV, spatiotemporal intermittency is shown to emerge
at the transition from quasiperiodicity to chaos. The use
of percolation models in the study of spatiotemporal
chaos is discussed in Sec. V.

ITI. PERIOD-DOUBLING ROUTE
TO SPATIOTEMPORAL CHAOS

A. Transition from homogeneous
to nonhomogeneous states

The period-doubling cascade is well known from stud-
ies of the logistic map (2.4) [12]. Increasing the value of
K above K=3, the fixed point solution x, =(K —1)/K is
no longer stable; instead the dynamics drives the phase
towards a cyclic behavior x;,x,,x,... of period 2. In-
creasing the value of K further, other period doublings
follow, increasing the period of the cycle by a factor of 2
every time. At a critical K value, K=K,
(K.=3.5699...), the cycle length diverges, and K, is
identified as a transition point to chaos.

For the circle map, period doublings appear inside the
Arnold tongues. For small values of the nonlinearity K, a
mode-locked region with rotation number R =P/Q is
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characterized by a stable periodic motion of period Q.
However, a sufficient increase of K destabilizes this
motion, and the phase drives into a periodic motion with
a period twice as large.

For coupled-map lattices, period doublings are also ob-
served. A main question is here how the coupling and
the possibility of a spatial distribution of phases affects
these transitions. How do phase configurations change as
we increase the nonlinearity parameter K of the system?
Consider first the forward coupling (g =f). Then the
nonlinearity and the coupling can be separated [13],

X, (r)=Mf(x,(r)), (3.1)
where
M=1+JV?. (3.2)

For the sake of simplicity, we have used the continuous
space formulation, replacing c,(r) by V2g(x,(r)). M and
f commute for a small perturbation 8x(r) of the homo-
geneous state x (r)=x,,

Mf(xq+8x(1)=(14+JTV?)[f(xy)+f'(x4)0x(r)]
=f(xo)+f(xo(1+JV?)8x(r)
~fM[x,+6x(r)] . (3.3)

After N iterations, the perturbation 8xy(r) from the
homogeneous state xy = f ¥(x,) is

8xy(r)~AyMNox(r), (3.4)
where
N—1
Av= 11 f'(x) (3.5)
n=0

determines the stability of the orbit {x,=f"(x,)} for
J=0 (if Ay —0 when N — oo, the orbit is stable).

Consider the Fourier expansion of the perturbation
ox (r),

dx(r)= 3 queiq" . (3.6)
q
Since
Mei9T=(1—Jg?e'9r , (3.7

the amplitude 8xy 4 of the term e ‘aT after N iterations is

8xy q=Ay(1—Jg*)V8x, . (3.8)

Thus all stable orbits for the single map (J=0) remain
stable in the corresponding homogeneous state when for-
ward coupling is applied.

The homogeneous states of stable single-map orbits are
not stable in general. To see this, consider the linear cou-
pling

X, (D=(f +JV)x, (1) . 3.9)

For a small perturbation 6x(r) to the homogeneous state
x (r)=x,, we have

(f +IVH)[xo+8x(r)]=f(xo)+[f'(x0)+IV*]18x(r) .
(3.10)

After N iterations the perturbation is

Sxp(r) =[xy _ ) +IV] - [f'(x)+TV2]8x (1) .

(3.11)
The corresponding Fourier amplitudes 6x 4 are
Sxy.o~ TI Lf"(xn)—JqJoxq (3.12)
n=0
To lowest order in g, (3.12) yields
8xy q=Ay(1— Nil [f'(x,)]" Jg*)bx, . (3.13a)
n=0

If the single-map orbit is superstable, i.e., if one of the
derivatives is zero, say f'(x,)=0, (3.13a) is replaced by

N—1
I /() (3.13b)

n=1

dxpy g=— Jq26xq .

Thus only when the sum in (3.13a) is positive, the linear
coupling increases the stability of the orbit. When the
sum is negative, the stability decreases, and the system is
most unstable to short wavelengths (large g values); hence
the lowest-order approximation (3.13) is of doubtful
value.

As an example, consider the sine-map lattice
(2.1)=(2.3) with linear coupling and Q chosen inside an
Arnold tongue. By (3.12) the stability criterion for the
homogeneous solution is
0-1
II (1—K cos2wx, —Jg?) | <1,
n=0

AK,JgH) = (3.14)

when the rotation number is R =P /Q. Figure 2 shows
the function A(K = 1,Jq2) for J=0.01 and for various ro-
tation numbers at the superstable-orbit value of () (where
xo=0). It is noted that for larger Q values, the maximum

et ﬁé< -

r%.: / / N // >

=g f N | |
g N \ .

1 ] ! i
0 0.125 0250 0.375 0.500 0.625 0.750 0.875 1

Jq*

FIG. 2. A(1,Jg%)=Jg*|[]2Z)(1—cos2mx, —Jg?)| as a func-

tion of Jg? for the Arnold tongues corresponding to rotation

numbers ¢, 1, 23 5 and 33, where Q is chosen such that

Xxo=0.
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value of A(1,Jg?) shifts to smaller wave numbers (larger
wavelengths), i.e., the destabilizing wavelength increases
with Q.

Numerical studies at the breakdown of the homogene-
ous state confirm the conclusions above. On a square lat-
tice the shortest wavelength is 2 (lattice units). In accor-
dance with this, a transition from a homogeneous state to
a nonhomogeneous checkerboard state has been observed
in simulations for both the logistic-map [6(b)] and the
sine-map lattice for P/Q =1 (Fig. 3, see below). For the
logistic-map lattice a detailed description of the checker-

(a)

(b)

(c)

board bifurcation structure, including the effects of
longer-wavelength instabilities, can be found in Ref. [6b].
For the sine-map lattice Fig. 4 shows the wave pattern
obtained for P/Q =2 and J=0.1. The wavelength ob-
served agrees well with the wavelength about 9 calculated
from the value Jg2>~0.05 at which A(1,Jg?) is maximal
(Fig. 2).

Next, we consider in detail the scenario for the sine-
map lattice with linear coupling along the path Q=1 lo-
cated inside the R =1 Arnold tongue. First, assume that

(d)

FIG. 3. (a)-(c) Checkerboard evolution for a 128X 128 system at K=1.380 and J=0.01. (a) 150 time steps. (b) 500 time steps. (c)
2000 time steps. (d)—(e) Two distinct checkerboard states for a 128 X 128 system at K=1.025 and J=0.1. (d) 3000 iterations. The
loops will eventually disappear after ~70000 iterations. (¢) The same system started from different initial conditions after 100 000

iterations. The domain walls will remain.
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FIG. 4. A snapshot for a 128X 128 system at K =1.04895
and J=0.1 along the Arnold tongue.

the system is in the regime where it can sustain the
homogeneous solution with all lattice points undergoing
the same period two orbit {0,1,1,3,...] [14]. In the
continuous-space formulation, the stability is determined
by the condition

AKJgH = f(1)—JIq? 1 f'(0)—Jg?]]

=|(1+K —Jg>)(1—K —Jg?)| <1 . (3.15

For 0 <Jg? <2, the homogeneous solution is stable when
K] <K,, where
Kq=[(1—qu)2+1]‘/2 . (3.16)

What is important to point out here is the fact that K|,
decreases from the single-map period-doubling point
K,=V2 when gq increases, i.e., the smaller the wave-
length, the smaller is the value of K, indicating that the
homogeneous state first becomes unstable to the shortest
wavelengths. The shortest wavelength (2 lattice units)
corresponds to g =, which gives an estimate of the
point of instability; for J=0.01, for example, (3.16) gives
K =>~1.3462... .

In accordance with the analysis above, numerical simu-
lations on a square lattice show that checkerboard pat-
terns are formed when the homogeneous period-2 state
breaks down (Fig. 3). To find the accurate value for the
point of breakdown, K =K, we therefore consider a
“checkerboard perturbation” to the homogeneous
period-2 orbit, now taking into account the discreteness
of the lattice. Writing r=(i,j), we have

c,(L)= 3 [x,(k,)—x,(i,))],
(k1)

(3.17)

where (k,/) means the set of four nearest neighbors to
lattice point (i,j). A checkerboard perturbation has the
form

6x, ifi+j is even
6x, if i+j is odd .

x (i,j)= (3.18a)

The symmetry of the dynamics ensures that the perturba-
tion remains a checkerboard after N iterations,

dxy, if i +j is even

e e (3.18b)
dxy, ifi-+jis odd .

Sx p(i,7)=

From the initial state x(i,j)=0x(i,j) (perturbed from
the homogeneous state x,=0), we have by iteration (i +;
even)

xl(i,j)=f(8xa)+Jco(i,j)

~f(0)+[f'(0)—4J]6x, +4Jdx, . (3.19)
Hence
8xy ,=[f'(0)—4J]bx, +4Jbx,; . (3.20a)
Similarly, 8x, , is found to be
8xy ,=[f'(0)—4J]bx, +4Jbx, (3.20b)
Alternatively, (3.20) can be written in matrix form,
B(0) 4J
giib 4(.1) B(0) giz ’ (3.21)
where
B(x)=f'(x)—4J =1—K cos2mx —4J . (3.22)
Further iteration from the state x,(i,j)=1+48x,(i,j)
yields
5x,, | |B) ¥ | |BO) 47 ||[sx,
55 5 47 B(L)|| 4 B ,,} - 3.23)
We write
2217 ~A gi: , (3.24a)
where
B(1)B(0)+16J* 4J[B(1)+B(0)]
A= 147(B(1)+B(0)] B(L)B(0)+16J° (3:240)
by (3.22), B(0)=1—K —4J and B({)=1+K —4J.
Hence
1—K*—8J(1—4J) 8J (1—4J)
A= gra-an 1-Kk*—8J(1—47) | = 3
In general, we have
e
Thus the stability criterion is
max{|A,} <1 (i=1,2), (3.27)
where
M=1—K? A=1—K*—16J(1—4J) (3.28)

are the eigenvalues of the matrix A.

A. In analogy with
(3.16), we get (for 0<J <4) the stability condition
|K| <K, where
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K, =[(1—-8J)*+1]"%. (3.29)
Note the good estimate that (3.16) gave for K ;.

Direct substitution into (3.29) gives K;=1.358 823...
for J=0.01 and K;=1.019 803... for J=0.1. Based on
the above arguments that the discrete homogeneous state
is mostly unstable to checkerboard perturbations, K,
equals the Jowest transition point from a homogeneous to
a nonhomogeneous state. In order to identify this transi-
tion, we consider the distribution D (y) in space and time
of the phase fluctuations y, (r) [Eq. (2.6)]. The width w of
D (y) is defined by

w={{[y,(DPN}V2,

where ({ )) denotes the average over space and time. In
Fig. 5, w (determined from numerical simulations) is
shown as a function of K —K, for both J=0.01 and
J=0.1. The linear behavior in Fig. 5 shows that

w~(K—K,P,

(3.30)

(3.31)

where B is determined by the slope, in both cases
B=0.500%+0.001. We conclude that the first transition
from homogeneous to nonhomogeneous solutions can be

(al
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FIG. 5. Logarithmic plot of w vs K —K; (h=0.3). (a)
J=0.01, K, =1.358 82. (b) J=0.1, K,=1.019 80. In both cases,
the slope is =0.500+0.001.

described as a ‘“‘second-order” phase transition with asso-
ciated “‘order parameter” w, and ‘“order parameter” ex-
ponent B. The transition point is found to be
K =K ,;£0.00005. The results provide strong evidence
that K, is the lowest transition point from a homogene-
ous to a nonhomogeneous state.

Numerical simulations show that when the homogenei-
ty breaks down, the period doubles from 2 to 4. This ob-
servation gives another way to determine K, but more
importantly, it gives an explanation to the result S=1:
By symmetry, the checkerboard structure has the form
(8x,,6x,)=(€e,—€). Expanding to third order, we find

for the second iterate (8x, , = —6x, ;)

8x, o =M+, K)E (3.32)
where

WJL,K)=[(1—4J72+1K?)27K)* . (3.33)

For the period-4 solution (8x,,,8x,,)=(—¢,€). By
(3.28) and (3.29), we have —(1+1,)=K?—K?, and (3.32)
yields (K =K )

, K*—Kj} 2K,
CTUILK) T WK,
Thus w ~e~(K —K)"/?and B=1.

(K —K,) . (3.34)

B. Checkerboard-state evolution

The above discussion, based on stability analysis, fo-
cused only on the tendency of the sine-map lattice
(2.1)-(2.3) to build up checkerboard structures when the
value of K was larger than a certain value K,;. However,
this will not always happen. The reason is that the sys-
tem, due to the diffusive term, has the tendency to
smooth out the perturbations [15]. These two tendencies
of the system compete—the smoothing process winning
at large perturbation wavelengths, and the
checkerboard-building process winning at small wave-
lengths. The competition gives rise to transient stages of
evolution with nucleation of checkerboard patterns [16].
We will demonstrate the two tendencies in a more quanti-
tative way. As a measure of the perturbation we use the
heat & (amplitude of the random initial state).

To illustrate the tendency of the system to follow each
of the two above-mentioned processes, we have in Fig. 6
sketched the characteristic times, i.e., the time it takes
for each process to develop assuming that the other pro-
cess is in a latent state, as a function of the heat A [17].
For the smoothing process the characteristic time, denot-
ed by 7%, is zero when the heat is zero, and it increases as
the heat increases [18]. For the checkerboard-building
process the characteristic time is infinite when the heat is
zero—in the absence of perturbations the system will
remain homogeneous. As the heat increases, the charac-
teristic time decreases [19]. This process is described by
a family of lines 7*°/(K), one for each K, with the top line
¢ corresponding to the value K, for which a checker-
board pattern is marginally formed, and with the lower
ones corresponding to higher values of the nonlinearity
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FIG. 6. Schematic representation of the characteristic time
for the smoothing process 7'*) and the checkerboard-building
process 7 as a function of the “heat” h. The family of curves
T‘l”,r(f), ..., indicates the dependence of the checkerboard-
building process on K. The upper member of the family 7'’ cor-
responds to K =K where the checkerboard structure is barely
formed. The lowest one 7' corresponds to K, =v2. This is
the case where the checkerboard process dominates even for

infinitesimally small values of A.

parameter. The lowest one 7' corresponds to K , =V2.

This is the case where the checkerboard process dom-
inates even for infinitesimally small values of h. The
point of intersection between T(IC) and 7% defines a critical
value h, for the heat.

For values of the heat above A, T(IC) <79 and there-
fore checkerboard structures form at K. But for a value
h =h' of the heat below A, T(IC) > 7% and in order for the
checkerboard process to prevail, we have to increase the
value of the nonlinearity parameter K further, namely to
a value K =K', at which the corresponding characteristic
time 7'¢ equals ¥ at h =h’. Numerically 4. has been
found to be ~107°.

To demonstrate the difference between the way the
sine-map system crosses over to checkerboard patterns
above and below A, the width w of the fluctuation distri-
bution [cf. (3.30)] is plotted as a function of K for three
different values of the heat 4 (Fig. 7). Numerically, the
width w is found to be a well-defined function of A, in-
dependently of the specific initial state. Note the jump
from the homogeneous state to the checkerboard state
when the heat is smaller than 4.

In Fig. 3 a sequence of pictures is shown, displaying
the transient stages prior to the formation of a checker-
board pattern. The nucleationlike nature of the process
is apparent. What happens is the following: The initial
white noise is smoothed out by the diffusion term [15].
At the same time the system starts to rearrange itself into
checkerboard structures. Throughout the system centers
of checkerboard-formation activity appear and start to
spread [Fig. 3(a)]. This is a local process and it happens
faster wherever the initial configuration is a favorable
one. If the characteristic time of the checkerboard-
formation process is shorter than that of the smoothing

process, eventually the checkerboard formations will
spread and cover the whole lattice. In Fig. 3b, the state is
shown for the same parameter values at a time where the
isolated checkerboard domains have started to merge.
Because two adjacent domains can be out of phase, they
will not merge but instead relax the frustration by devel-
oping a domain wall [6b]. In the beginning these domain
walls appear interwoven, but in the course of time they
smooth out [Fig. 3(c)]. Eventually, two things can hap-
pen: either the one phase will completely dominate [per-
fect checkerboard, Fig. 3(d)], or both phases will coexist
separated by a domain wall [Fig. 3(e), keep in mind that
due to the periodic boundary conditions the planar lattice
is folded into a torus].

C. Onset of spatiotemporal chaos

Finally, we give a brief survey of the pattern evolution
as K increases along the =1 path. In Fig. 8, we look at
the fluctuation width w as a function of K and h for
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FIG. 7. Width w plotted as function of X for fixed J=0.01
and for different values of the heat. , h=1.0X107%
— — =, h=10X10""% . ... h=1.0X10"'" Notice the
jump in w at the transition point K =K' from homogeneous
states to checkerboard structures when h=h’'<h,: For
h=1.0X10"2 K'=K,=1.3588; for h =1.0X 1071, K'=1.361;
and for h =1.0X107 " K'=1.41~V2.
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FIG. 8. Width w plotted vs K for fixed J=0.01, and for
different values of the heat. O,h=10"% 0,h=10"19
A,h =107 The period-doubling points K,, K, and K, are
also indicated.

J=0.01. The value of w for (K,h) values leading to
checkerboard patterns is independent of h. However, in-
creasing K further, the value of w start to depend on h.
At K=1.5, well below the second period-doubling point
K,, the checkerboard structures have shrunk to small re-
gions and patterns of larger wavelength have started to
dominate. We have marked the points of subsequent
period doublings: K,=1.789, K;=1.809, K,=1.821.
Mere inspection of the first few members of this sequence
is enough to place the accumulation point
K =K_,~1.84+0.01.

At K=1.9, well above the onset of chaos K, one still
finds a checkerboardlike “background,” now with many
isolated points of chaotic activity on top of it. Further
increase of K results in an abrupt decrease in w (Fig. 8).
The patterns acquire a more complicated structure and
they fluctuate less. Yet the patterns retain their spatial
coherence [7]. The dip in w indicates that the disappear-
ance of the checkerboard mode is a breakdown
process—suddenly, the checkerboard mode, due to the
increase of the nonlinearity, becomes unstable. Despite
the fast chaotic activity, the new favorable state is flatter
than before. This is due to the fact that the system is able
to wander over more degrees of freedom, and therefore it
can choose a smoother state. The system remains into
this coherent-chaotic state [9] up to K=1.96. At that
value the system looses the spatial coherence and crosses
over to a spatiotemporal chaotic behavior. The onset to
spatiotemporal chaos manifests itself as a sharp increase
in w. We emphasize that w is independent of h in the spa-
tiotemporal chaotic regime.

It is noted that for smaller mode-locked regions, the
parameter regime between the homogeneous state and
spatiotemporal chaos is smaller, and the intermediate
stages become increasingly difficult to observe.

IV. QUASIPERIODIC ROUTE
TO SPATIOTEMPORAL INTERMITTENCY

A. Onset of spatiotemporal intermittency

In this section we concentrate on the dynamics of the
sine-map lattice (2.1)-(2.3) along an ‘‘irrational path”
outside mode-locked regions, defined as the curve in
(Q,k) space along which the rotation number R is fixed
and irrational. The dashed curve in Fig. 1 is the irration-
al path for the golden mean R =R, =(V'5—1)/2. Nu-
merical simulations along the ‘“golden-mean path”
R =R, have shown that the point K=1 is of special
significance. Below that point the system falls into the
homogeneous state, which means that our system for
K =1 is completely described by one sine map (J=0).
The point (Q,K)=(Q,,1), where (, is the Q value for
the golden mean at K=1, is a very special point on the
golden-mean path: it is the point at which the dynamics
becomes chaotic. The system is observed to change
drastically. From a perfectly “flat” homogeneous state
below K=1, the system crosses over to a nonhomogene-
ous state that shows all the features of spatiotemporal in-
termittency as described in Sec. II [Fig. 9(a)]. In particu-
lar, a macroscopic coherence length £ is found to diverge
as K approaches K=1 from above.

(b)

FIG. 9. Two typical spatial patterns above the onset of chaos
(system size 128X 128). K=1.1 and (a) J=0.1, (b) J=0.0015.
The value of  is chosen such that the rotation number equals
the golden mean R,.
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To describe the onset of spatiotemporal intermittency,
we follow the general renormalization-group scheme
[13,20]. The renormalization-group transformation 7 for
the circle map (2.3) at the critical point (Q,K)=(Q,,1)
has the form

Fnsr(x) =T‘ Falx) af(af, _(x/a?)

fulx) fu—1(x) f(x)

4.1)

where a=—1.2885. .. .
Tisgivenby
f*x)=af*(af*(x/a?)

where f*(0) is arbitrary, but usually chosen to be 1. Per-
turbations from f* are studied by iterative use of T:

The fixed-point function f* for

(4.2)

From initial deviations f,=f*+hy and f,=f*+h,, h,
is defined by
*+h *+h
f . n+1 { n (4.3)
f*+h, f*+h,_

The (largest) eigenvalue p associated with the perturba-
tion is determined by the relation h,~u"h,. For in-
stance, for a small change e=|K —1] in the K value, the
perturbation is of the form ex, and p=a? [20].

Here we are interested in perturbations of the type
JV% (J  small. Based on the equality
V2g(x +6x(r))=g'(x)V?*8x(r) for a small perturbation,
(4.1) and (4.3) yield

h,(x +8x(r)=J,(x)V2g(x +8x(r)) , (4.4)
where J,(x) is given by the recursion relation
8 (XM 41(x)
=f*(x/a®)g (af*(x /), (af *(x /a?))
+ ¥ (af*(x /a®)g'(x /), _(x /a?) . 4.5)

For the forward coupling, g =f*, and by (4.2), (4.5)
reduces to

FHOOT, ()= (x)[J,(af *(x/a?))
+J,,_,(x/a )], (4.6)
with the simple solution J,(x)=J,~ 4,, where
Ay, Ay, . .. is the Fibonacci sequence, defined recursive-
ly by 4,,,= A .t A,_;, with 4,=4,=1. Further-
more, A, ~R ", hence the relevant eigenvalue is

p=1/R,=1.61%0. .. .
If g'(0)#0, as is the case for the linear coupling
g (x)=x, we find, for x =0 [ * (0)=0],

g'(0)J, (0)=F*(a)g'(0)J,_,(0) . 4.7)

By differentiation of (4.2), one finds f*(a)=a*. Thus
(4.7) has the solution J,(0) ~a?", corresponding to the ei-
genvalue u=a?>=1.6602. .. . Note that a®> 1/R,. For
other initial conditions we have

MJ,,H(M:g—("‘f—L J (af*(x/a?)
f*(x) F*¥(af*(x/a?)
LB sty )
f*(x/a%)
Repeated use of (4.8) (from initial values J,,J;) shows,

nevertheless, that the behavior at x=0 eventually will
dominate: For J, there will be 4, _, g'/f* terms times
J,and A, _, g'/f* terms times J,. Naively, one then
would guess that J, ~ 4,, and u=1/R,. However, even
from the last term on the right-hand side of (4.8) we have
(n odd)

' n+1
x)=-—g—(;x£—).]0(x/a"+l)+ cee

f*¥(x/amth)

g'(x)
f*(x)

n+1

(4.9)

where the ellipses denote other terms. For small x,
f*'(x)~x2, ie., gl(x/an+1)/f#'(x/an+l)~a2(n+l)'
Hence p=a? or larger.

A closer inspection of the actual x values entering the

x)/f*(x) terms shows that these can be divided into
(n —1)/2 groups G,,, where G,, contains A4,, elements
of order a*” ~". To illustrate this, consider x =a ! in
(4.8). This gives a value af*(x /a*)=~a on level n, and a
value x /a*=a "~ * on level n —1. The value @ on level n
gives a value af*(a” ')=a ! on both level n —1 and
n —2, while a3 on level n —1 gives af*(a”%)~a on
level n —2 and a > on level n —3. The point is that all
the values entering are of the form a” % where k> —11is
odd. The rest is trivial counting (for simplicity, k = —1
and 1 form one group). In the above notation, the corre-
sponding g'/f* terms are of order a*" ~*", and the ei-
genvalue can be found,

J,~ 3 Ao im—a?n (4.10)
m

since 4,,, ~Rg“2'" and azRg > 1. Hence u=a?.

From the analysis above, we see that using forward
coupling g =f, we move in a very special direction in
function space—a direction with a smaller eigenvalue
(1/R,) than the dominant one a®. This is also the case
for the transition to spatiotemporal intermittency at oth-
er rotation numbers. Consider, e.g., the rotation numbers
R(n)=lim,, A,(n)/A4, . (n), where A, +(n)
=nd,(n)+ A4, _(n) (n=1 is the golden mean). For
forward coupling, the eigenvalue obtained is 1/R(n),
while for the linear coupling, one obtains the eigenvalue
[a(n)]?, where a(n) is the associated single-map scaling
factor, We can compare the two eigenvalues by writing
la(n)|=[1/R (n)]*™; then the largest eigenvalue is
[a(n)]?if x (n)>0.5 and 1/R (n) if x (n)<0.5. A careful
analysis shows that x (n) decreases with n [20(a),21] from
the value x(1)=0.527... . At n=5, x(n) barely be-
comes smaller than 0.5, x(5)=0.496. .. .

An analysis similar to that above can be made for

coupled logistic maps [22]. In that case, the
renormalization-group transformation 7 is
fo1X)=T[f,(x)]=afix/a), 4.11)
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where a=—2.5028. .
is given by

frx)=af*}x/a).

Then, (4.5) is replaced by
g (X)W, (X)=F*(x/a)g'(f*(x /)W, (f*(x /a))
+¥(f*(x/a)g' (x /a),(x /a) . (4.13)

., and the fixed-point function f*

(4.12)

For g =f*, we have
YO, )=F* [T (f*(x/a))+T,(x /)],
(4.14)

with the solution J,(x)=J,~2", and eigenvalue [13]
p=2. When g'(0)70, x=0 yields

g'(0)J, 1(0)=£*(1)g'(0)J,(0) .

Differentiation of (4.12) gives f*(1)=a; hence
J,(0)~a", and [6(a),6(b)] u=a. Again, we see that, using
forward coupling, we move in a very special direction in
function space [13(b)]. Although the forward coupling is
easy to work with, it is not generic.

(4.15)

B. Fluctuations and coherence length

Consider again the golden-mean path for the linear-
coupled sine-map system. Figure 9 shows the spatial
“landscape” of the phase at a particular time n >>1, for
K=1.1 and for two J values, J=0.1 and 0.0015. The two
landscapes are quite different; while coherent regions are
clearly present at J=0.1, such regions are not observed at
J=0.0015. This is an indication that the coherence
length £ decreases with decreasing J. More precisely,
since ¢, (r) is the second spatial derivative, a rescaling of
the spatial variable by V'J removes the J dependence in
(2.1). Assuming that £ is the only important length scale,
one must have

E~VT . (4.16)

Moreover, £ is observed to increase as K decreases to-
wards K =K_.=1, where the landscape becomes flat:
x,(r)=x, with £=c. By the renormalization-group
analysis in Sec. IV A, we have the conjecture

EJ,K)=E(J /a? (K —1)/a?) , @.17)
with the solution

EU,K)=EJ /(K —1)F), (4.18)
where B=1. By (4.16),

ELK)~[J/(K —1)f]1/% (4.19)

The renormalization-group result for the forward cou-
pling is obtained by replacing J /a? with J /( 1/R,)=JR,.
Then the exponent B is determined by R,a*=1,
ie., B=—InR,/(2Inlal)=1/[2x(1)]=0.948. .. which
differs only slightly from the linear-coupling value B=1.
The difference is more clear for coupled logistic maps.
Here the eigenvalue u=2 for the forward coupling differs
noticeably from the generic linear-coupling eigenvalue

p=a. The relevant eigenvalue for the K direction is
6=4.699. . ., so we have B=In2/In8=0.458. .. for the
forward coupling, while 8=In|a|/In6=0.584. . . for the
(generic) linear coupling.

One way to measure the characteristic length & for the
onset of spatiotemporal intermittency is through an
equal-time two-point correlation function. However,
above the onset of spatiotemporal intermittency, there
persist highly active (turbulent) domain boundaries en-
closing the coherent (laminar) regions. These macroscop-
ic patterns have a substantial effect on the correlation
function and it is very difficult to obtain a clean exponen-
tial decay.

Other ways to find & exist [9]. Here we shall take an
approach based on a direct study of the phase fluctua-
tions y,(r) [Eq. (2.6)] [10]. In addition to the distribution
D (y) of these fluctuations with width w [Eq. (3.30)], con-
sider the distributions in space and time of the first and
second ‘“derivatives” [7], i.e., the distribution D (8) of
‘““gradients”

8,(r,r')=|x,(r)—x,(r')] , (4.20)
between neighboring sites, with width
A={<<[8,(r,r)]*>>}12, 4.21)

and the distribution D (¢) of “curvatures” c,(r) [cf. (2.2)]
with width

k={ <<[c,(D)]?>}12. (4.22)

The widths w, A, and « are all found to be independent of
the random initial conditions. We shall see that the
widths w, A, and « are essential ingredients in the
identification of a coherence length. _

Figure 10(a) shows k /A as a function of 1/V'J for vari-
ous values of K. Similar curves are found for A/w. Ata
certain K-dependent J value, J =J_(K), a crossover is ob-
served, separating two distinct regions: (i) J>J.(K),

where k/A and A /w both are proportional to 1/V'J; (ii)
J <J.(K), where A/r and r/w are constant. The cross-
over at J =J.(K) originates from the point where the
coherence length £ becomes 1 (the lattice unit). When
£>>1, the spatial variation is ‘“smooth,” and the ex-
istence of a coherence length suggests the relation (by di-
mensional analysis)

k~A/E~w/E* . (4.23)
From (4.23) it follows that the two ratios x/A and A/w
both scale like £/, in accordance with (4.16). Since w is
not affected by spatial rescaling, (4.23) also implies that
A~1/VJ and k~1/J[E>>1]. Numerical simulations
confirm this behavior (Fig. 11).

For £ <<1, w, A, and « are all of the same magnitude,
and their values are much larger than 1. Assuming that
the sine term in (2.3) behaves as a random variable with
amplitude 1/V'2, we have at time n [x,(r)=0]

n—1 n—1

y,,(r)=£ S Sn(n)+T I (), (4.24)
27 m=0 m=0

where £, (r) is random (with amplitude 1/V2). Since the
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sum of #n random numbers has width V'n, w will be of or-
der KV'n. Therefore k~KV'n, and the last term in
(4.24) is of order JnKV'n. The dynamics stabilizes when
all terms are of the same order, i.e., when n ~1/J. Thus

w~K/VI, A~K/NVT, k~K/VJ] (£<<1).
(4.25)

The interpretation of J.(K) as the value for which &
equals 1, suggests that £ is a function of J /J.(K), or since
§~ ‘/J’

E~VI/I.(K) . (4.26)
By (4.19), (4.26) yields
J(K)~(K—1). 4.27)

Numerically, one finds S=1.2+0.2. This value should be
compared with the unit value of S obtained by
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FIG. 10. (a) The ratio k/A obtained for R =R, and plotted
vs 1/V'J for various values of K. From left to right, K=1.10,
1.05, 1.03, 1.02, and 1.01. (b) x/A and « for R =R, (O) and
R =R(2) (A), and for the sine-cubed map at R =R, (O), and
plotted K —1 (log-log) for J=0.01. Below the crossover, the
slopes are found to be 0.56, 0.56, and 0.51 for /A (left curves),
while the slopes for « (right curves) are found to be 2.01, 2.10,
and 1.98.
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FIG. 11. The width A of the gradient distribution D (8), ob-
tained for K=1.03 and R =R,. For both regimes (£>>1 and
£<<1) £&~1/VJ. The crossover from one regime to the other
can, however, easily be detected as a disruption of the linear be-
havior.

renormalization-group analysis.

More accurately, one can directly find the K depen-
dence of &, e.g., by determining « /A as a function of K.
By (4.19) and (4.23), k/A~(K—1)?2. Figure 10(b)
shows the result for J=0.01. A least-squares fit yields
[3/2=0.56. Since our accuracy decreases close to K=1,
we cannot exclude the possibility that 3 is eventually
given by the unit renormalization-group value. Also
shown in Fig. 10(b) is k for various values of K (for fixed
J=0.01). The points at low values of K —1 follow a
straight line with slope ¥ =~2.01. From (4.19) and (4.23),
the following scaling behavior of w, A, and « is now ob-
tained:

w~(K—1""F A~K-—-1)1"B2/g |
k~(K =17/ (E>>1).

(4.28)

To examine the universality of the exponents 3 and v,
we (i) follow another route with rotation number
R =R (2)=V2—1 and (ii) use another circle map f =f,,
where

falx,(0)]=x,(1)+Q

—%{Sin[wan(r)]+a sin’[2mx, (0]}

(4.29)

with a=—1. The results are shown in Fig. 10(b). The
exponents obtained are identical to the golden-mean ex-
ponents within an accuracy of 5%.

For an experimental system, the method to measure a
coherence length from spatial-derivative plots can be
used when an underlying lattice is determined by a basic
length scale and the geometry. For the thin fluid layer in
a container, the basic length scale is the wavelength, for
Rayleigh-Bénard convection, it is the roll size. For
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Taylor-Couette flows, the basic length is the distance be-
tween the cylinders (or more precisely the size of the
spirals). Having identified the basic length scale, and
thereby the lattice unit, it is clear how to proceed. The
basic length scale should be observed at the onset of spa-
tiotemporal intermittency since it generally changes with
the nonlinearity. Typically, this variation is small.

C. Lyapunov exponent

Next consider a perturbation 8%, of the system in its
stationary state (n>>1). The Lyapunov exponent A
expresses how fast perturbations grow in time,

Ox,

A= lim ¢! lim In

t— 8x,—0

(4.30)

6x,

where 8x, is the length of the perturbation 86X, after a
time . Hence A represents a natural frequency of the sys-
tem. However, from the identification of x, , ;(r)—x,(r)
as a time derivative, dimensional analysis of (2.1) y1elds a
natural frequency @ given by ww ~Jk, and the relation
(4.23) leads to w~J /E2=J, [for §> 1; cf. (4.26)]. We are
therefore led to the conjecture A~J,, ie,

A~(K —1)F (4.31)

which contains no J dependence.

We notice that for both the sine map and the logistic
map, the behavior (4.31) for A, given by the (linear-
coupling) renormalization-group value of 3, differs from
the behavior found for a single map, where 8 has the
smaller forward-coupling value [23,24]. Naively, this
seems to contradict the “missing” J dependence in (4.31),
since J=0 gives the single-map result. It is, however, im-
portant to remember that (4.31) is only valid in the re-
gime J >J (K), and one cannot take the limit J—0 for
fixed K.

The conjectured scaling behavior for A can be tested by
perturbing the system by a small value € at one site, i.e.,
8x,=¢, and then follow the temporal development of 5x,
in the time regime where 6x, still grows. Numerical re-
sults obtained for 1.01 =K < 1.5 and 0.001 =J <0.1 show
no significant dependence of A on J, and are consistent
with the conjectured K dependence [25].

The scaling (4.3) for the Lyapunov exponent A leads to
a scaling result for the width w of the phase fluctuations.
This is most clearly illustrated for J ~0. For any pertur-
bation 6x from the homogeneous state x,, iterations
eventually increase (or decrease) the perturbation to w,
i.e., for sufficiently large N,

FMxog+8x)=fNMxo)+w .
To second order,

(4.32)

SN +8x)=fN¥ox)+ () (x0)8x +1(fN)"(x4)8x2 .
(4.33)
In particular, §x =w yields
—1
1—(f M) (xq) i=
w=p ZV x| 0 (4.34)

(fFNy'(x,) N¢(Q,K) ’

where
1 N2
$(Q,K)= 1 N 2 fU(x)/72f"(x;)] . (4.35)
Since [[N='f'(x;)~e™*, we have
w~A~(K—1)8 (4.36)
Hence, by (4.28),
Y=28, 4.37)

in agreement with numerical results (Fig. 10).

V. PERCOLATION METHODS
FOR SPATIOTEMPORAL CHAOS

A. Laminar and turbulent regions

In fluid dynamics, spatiotemporal intermittency is the
coexistence of a laminar and a turbulent phase in space
and time. One example is the flow of water down a pipe.
The first experiment on this phenomenon was conducted
by Reynolds. By monitoring the flow using a dye he was
able to distinguish a laminar and a turbulent phase in the
fluid motion as well as their time evolution [26]. One
simple (although arbitrary) way to make a distinction be-
tween laminar and turbulent regions in coupled dynami-
cal systems is by choosing a cutoff. Recently, this type of
phase separation has been studied quantitatively, both in
model systems [8,27] and in actual experiments [2].

Consider the absolute value of the gradients §,(r,r’)
[Eq. (4.20)] between neighboring lattice points r and r'.
This is a quantity analogous to the temperature fluctua-
tions in Rayleigh-Bénard convection experiments or to
the velocity fluctuations in a pipe flow. In order to dis-
cern the turbulent from the laminar, an arbitrary cutoff a
is introduced. If the difference d, (r,r’) is larger than the
chosen cutoff, the corresponding bond is considered tur-
bulent; otherwise it is laminar. We refer to the resulting
clusters (groups of connected turbulent bonds) as tur-
bulent bursts. The turbulence strength p is then defined as
the ratio of turbulent cluster sites over the total number
of sites. Having developed a systematic procedure to
identify the turbulent bursts, we can pursue the standard
statistical treatment, widely used in the study of critical
phenomena and percolation theory. The goal is to
characterize the spatiotemporal regime in terms of scal-
ing exponents and, if possible, identify the appropriate
universality classes.

B. Spatiotemporal chaos and bond percolation

Based on the above identification of turbulent clusters,
we define n; as the distribution of turbulent bursts of size
s. Consider again the coupled sine-map lattice. For
a=0.5 and J=0.01 we examine the behavior of n, along
three different paths: (i) the golden-mean path
K =K (Q), for which R(Q,K(Q))= g (i) 2=0.5; (iii)
0=0.635.

Figure 12 shows the results from a statistical analysis
of the turbulent bursts on a 30X 30 lattice over 24000
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successive time steps (considered as a statistical ensemble)
after the system is let to relax through 1000 iterations.
For values of the nonlinearity K close to 1, the turbulent
bursts are sparse and fragmented; n, follows a power law
up to a characteristic size s, for then to fall off exponen-
tially [Fig. 12(a)]. As we drive the system harder, in-
creasing K, the characteristic size s, becomes larger. At
a certain critical value of K, K, corresponding to a criti-
cal value for p, p, =p(K,), the exponential tail is com-
pletely suppressed [Fig. 12(b)]. This behavior can be
summarized in an expression similar to the one appearing
in percolation theory:

ng s Texp(—s/sy) . (5.1

The exponent 7 is found to be “universal”’; for all cases,
7=~1.73+0.08. Moreover, while K_ differs from case to
case [from K_.~1.89 in (i) to K. =2.28 in (ii)], p. remains
constant, p. =0.465+0.005. Also, the values of 7 and p,
do not change when we increase the cutoff or the cou-
pling constant, e.g., (iv) a=1.0, J=0.01, Q=0.5; (v)
a=0.5,J=0.1, 2=0.5.
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FIG. 12. n, for a 30X30 system at J=0.01. (a) on (i) at
K=1.55<K_, semi-logarithmic plot; (b) on (i) at K =K, =1.89,
(i) at K =K_.=2.28, (iii) at K =K_.=1.95, double-logarithmic
plot.

While the value found for the turbulence strength is
comparable with the value for bond percolation on a
square lattice, p, =1, the value of 7 is lower than the per-
colation value 7=187/91=2.0549... . However, for a
30X 30 system finite-size effects are substantial. Repeat-
ing the calculation of p, and 7 for a 100X 100 system
along path (i) 1=0.5 yields p.=0.497%0.005, and
7=2.0x0.1, in accordance with bond percolation. Still,
finite-size corrections are noticeable for crossover ex-
ponents such as the scaling exponent o, associated with
the characteristic length s, [cf. (5.1)],

so<|p—p 1. (5.2)

By plotting In(s"n;) vs s, 1/5, is determined as the (abso-
lute) slope. Repeating the procedure for different p
values, s, is found as a function of p, and o can be deter-
mined. Using p. =0.50%0.01 gives 0 =0.46+0.05. This
value for o is slightly larger than the theoretical percola-
tion value o = =0.3956. . ., but not different from the
value obtained numerically for (bond) percolation on a
100X 100 lattice (p,=0.49+0.01, 7=2.0%0.1, and
0 =0.46+0.05).

From the analysis above two main conclusions are de-
rived. The first is that the scaling exponents for the dis-
tribution n,, derived for the sine-map system (2.1)-(2.3),
seem to fall within the universality class of percolation
when a~1 (see below) [8(c)]. The second is that finite-
size effects are important, and unless one works with
large systems, significant deviations from (infinite-size)
percolation exponents are to be expected. Both con-
clusions are particularly relevant for experiments [2],
where the system size generally is relatively small and the
cutoff a is chosen of the order of a typical oscillation am-
plitude.

How do we account for the appearance of the percola-
tion universality class? From our discussion in Sec. IV it
became clear that the coherence length § characterizing
the patterns decreases fast with increasing K or decreas-
ing J. For example, for a fixed J value, J=0.01, K be-
comes comparable to the lattice spacing already for a
value of K ~1.1. Comparing this value to the values of
K, found above (K,=>1.89), we find that even nearest
neighbors are uncorrelated. We emphasize that this does
not necessarily mean that each gradient takes on a ran-
dom value as is the case with bond percolation. In fact,
real-time observation reveals a dynamics much richer
than that of random noise [28].

C. Spatiotemporal intermittency

To quantify the “static” properties of the sine-map sys-
tem, we consider the normalized distribution D (8) of the
gradients §,(r,r’). In Fig. 13 we show a number of distri-
butions obtained for the golden-mean path and for the

=1 path (J=0.01). Fitting with a Gaussian distribu-
tion seems to give a reasonable approximation, but there
are observable deviations. Periodic fluctuations are su-
perimposed on all the distributions and show the tenden-
cy of the system to synchronize its phases. The main
period both for the irrational path as well as the mode-



45 COUPLED MAPS: AN APPROACH TO SPATIOTEMPORAL CHAOS 689

locked path is 27r. Synchronization of phases differing by
one, two, and three cycles is clearly seen, even differences
of four or five cycles are observable, although much re-
duced. For the Q=1 path, also the 7 period is apparent.

Neglecting the “modulation” on the distribution D (§)
when £ < 1, we have approximately

D(&;Q,K,J):—iw : (5.3)

S
A

where A=A(Q,K,J) is the width of D (8) [Eq. (4.21)] and
@(z) is the Gaussian distribution

2
——exp

d(z)= Yoy

) (z=0).

(5.4)

Based on this approximation, we have for the tur-
bulence strength p,

p=[" D®)ds=[" 4(z)dz .

Thus, to the extent that the approximation (5.3) is valid,
we are able to reduce the initial (a;(,K,J) dependence of
D,

(5.5)
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plo; K, J)=P(a/A(Q,K,])) , (5.6)
where
<I>(u)Ef(qu(z)dz=fac ‘/i— exp _z dz . (5.7)
u u T
Then, in the regime where £<1, all points

[p(a;Q,K,J);a/A(Q,K,J)] should collapse onto the
same curve. Figure 14(a) shows that these points, deter-
mined for different cutoffs at different configurational
points, approximately all lie on the same curve.

Consider next the £>1 regime. In Sec. IV we have
seen that this regime is characterized by a clear change of
the scaling behavior characterizing w, A, and k. A corre-
sponding crossover to the £> 1 regime is, however, very
difficult to observe in the power-law behavior of n;. To
ensure that we are in the spatiotemporal intermittent re-
gime, a must be reduced by one order of magnitude.
This makes it excessively difficult for one to tell whether
a developing trend constitutes a new power-law behavior
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FIG. 13. Logarithmic plots of the normalized distribution D(8) of gradients 8. (a) for the golden-mean path at J=0.01, and
different K values (from left to right): 1.20, 1.40, 1.70, 1.89, and 2.00. (b) for the Q=% path at J=0.01; K values from left to right:

2.00, 2.10, 2.20, 2.40, and 2.80. (c) and (d) Comparison with corresponding Gaussian distributions (determined by least-squares
fitting). (c) K=1.70 and J=0.01, on the golden-mean path. (d) K=12.0,J=0.1,and Q= 1.
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or it is just an effect of the modulations on the distribu-
tion D (§).

Another noticeable difference in the £> 1 regime is the
dependence of p. on a. p, tends to decrease with decreas-
ing a. For instance, when a¢=0.15 the corresponding p,
value is p, ~0.27. We can qualitatively account for this
dependence by looking at the distributions D (8). When
a is tuned to small values ~0.1, small § values come into
play, and the deviations from the Gaussian distribution
become important [remember that the peak at §=0 (Fig.
13) is greatly suppressed by the logarithmic scale].
Another way to demonstrate the disparity from Gaussian
behavior in this regime is by direct numerical testing of
the rescaling hypothesis (5.6). In Fig. 14(b) p is shown as
a function of a/A (J=0.01). The deviations for inter-
mediate values of a/A demonstrate the breakdown of the
rescaling assumption (the convergence of the data to 1 in
the limit of small a/A follows since any normalized dis-
tribution gives p=1 for a=0).
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FIG. 14. (a) p vs a/A for different configurational points
(a;9,K,J) inside the §<1 regime. The solid line depicts the
®(a/A) function. (b) p vs a/A for configurational points in the
&~ 1 regime.

The analysis has shown the existence of two regimes:
One corresponds to £ < 1. In this regime a universal scal-
ing behavior is observed, where the exponents 7 and o as
well as p. are found identical to those of bond percola-
tion. For this regime, p is the single relevant parameter.
In contrast to the £ <1 regime (where p. remains fixed),
p. decreases as we get closer to the onset of spatiotem-
poral intermittency. It is, however, very difficult to ob-
tain a clear power-law behavior for the cluster size distri-
bution n; in the regime corresponding to §> 1.

VI. CONCLUSIONS

We have studied coupled-map lattices in the transition
regime to spatiotemporal intermittency and chaos. We
have shown that, although forward coupling is easy to
work with, it is nongeneric, and a linear coupling term
must be considered in general. In this case, the break-
down of a homogeneous periodic state results in patterns
with short wavelengths; however, the wavelength in-
creases with the period. In particular, we have derived
the stability conditions for the checkerboard state, and
discussed its dependence on initial conditions in terms of
a nucleation picture. Along the period-doubling route to
chaos, we have calculated the phase fluctuation width,
which is found to increase square-root-like at the first for-
mation of checkerboards. Below the transition to spa-
tiotemporal chaos, the width in general depends on the
initial conditions (which is not the case above).

Following a quasiperiodic path leads to spatiotemporal
intermittency. At the onset of chaos, patterns emerge
with a characteristic coherence length. For the golden-
mean path, the scaling properties for the coherence
length £ are found by renormalization-group analysis.
The results are tested numerically, using a method based
on the distributions of the phase fluctuations and their
derivatives. The relation between the coherence length
and the Lyapunov exponent is discussed.

Finally, we have examined the use of percolation
methods in the study of spatiotemporal intermittency.
Usual percolation exponents are obtained in the small-§
regime. We have seen that finite-size effects are substan-
tial and cannot be ignored. This is of special importance
in experimental systems where it is very difficult to work
with variable sizes. Another point is that the study of the
£>1 regime requires tuning the system very close to the
onset of spatiotemporal intermittency. This tuning can-
not be done after a cutoff is fixed because the transition
point is not known beforehand, neither is the appropriate
range of values for the £> 1 regime. In that respect the
procedure described in Sec. IV offers an alternative way
for finding the £ > 1 regime. Then, if wanted, a cutoff can
be chosen appropriately.
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FIG. 3. (a)-(c) Checkerboard evolution for a 128 X 128 system at K=1.380 and J=0.01. (a) 150 time steps. (b) 500 time steps. (c)
2000 time steps. (d)—(e) Two distinct checkerboard states for a 128 X 128 system at K=1.025 and J=0.1. (d) 3000 iterations. The
loops will eventually disappear after ~70000 iterations. (e) The same system started from different initial conditions after 100000
iterations. The domain walls will remain.



FIG. 4. A snapshot for a 128X 128 system at K =1.04895
and J=0.1 along the & Arnold tongue.



FIG. 9. Two typical spatial patterns above the onset of chaos
(system size 128X 128). K=1.1 and (a) J=0.1, (b) J=0.0015.
The value of  is chosen such that the rotation number equals
the golden mean R,.



