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Exact solutions of the nonlinear Schrodinger equation
for the normal-dispersion regime in optical fibers
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We describe a method for obtaining exact solutions of the nonlinear Schrodinger equation for describ-

ing pulse propagation in optical fibers in the normal-group-velocity-dispersion regime. The method is

based on the construction of a certain complete integrable finite-dimensional dynamical system whose

solutions determine the exact solutions of the nonlinear Schrodinger equation.

PACS number(s): 42.65.Vh, 42.50.Rh, 03.65.Ge

Optical solitons in fibers are pulses that propagate
without any change in pulse shape or intensity. Because
of their remarkable stability properties, optical solitons
are now at the center of an active research field of non-
linear wave propagation in optical fibers. This research
field started with the result obtained in [1,2] that under
appropriate combinations of pulse shape and intensity,
the effects of the intensity-dependent refractive index of
the fiber exactly compensate for the pulse-spreading
effects of group-velocity-dispersion. For the anomalous-
group-velocity-dispersion regime (8 co/t)k )0) which
occurs in typical single-mode silica-based fibers for wave-

lengths A, & 1.27 pm, the fundamental soliton is called a
bright pulse [1] and the propagation of these bright soli-
tons has been studied intensively and verified experimen-
tally [3]. For the normal-group-velocity-dispersion re-
gime (8 co/Bk (0) the theory [2] and numerical simula-
tions [4,5] predict that the solitons are dark pulses (i.e., a
dip occurs at the center of the pulse). The generation of
dark solitons in single-mode optical fibers was also
demonstrated [6—8]. Recently a soliton-transmission
technique that makes positive use of the existence of
slight fiber loss, called dynamic soliton communication,
was used to send optical solitons over long distances [9].
It was demonstrated that digitally coded optical solitons
at a bit rate of 10 Gbit/s can be successfully transmitted
over 300 km using erbium-doped fiber amplifiers. We
mention also the works of several very active research
groups in the field of the theory of pulse propagation in
optical fibers in both the picosecond and the femtosecond
regime [10—23].

The propagation of optical pulses in monomode optical
fibers exhibiting Kerr-law nonlinearities is described well
by the dimensionless nonlinear Schrodinger equation
(NLSE):

ig, +a/ +2~/~ /=0,
where g represents a normalized complex amplitude of
the pulse envelope, t is a normalized distance along the
fiber, x is the normalized time with the frame of reference
moving along the fiber at the group velocity, a = + 1 cor-
responds to the anomalous-dispersion region, where
bright solitons can exist, and a = —1 corresponds to the
normal-dispersion region where dark solitons occur. The

NLSE is one of the complete integrable nonlinear equa-
tions and the solutions may be obtained by different
methods, e.g. , by using the inverse scattering method
[24—30]. A large number of exact analytical solutions for
the higher-order NLSE were found by using Lie-group
theory [31—33]. Another way of obtaining solutions of
the NLSE is the Darboux-transformation method [34].

Recently an alternative method of obtaining exact solu-
tions of the NLSE for describing pulse propagation in op-
tical fibers in the anomalous dispersion regime was given
[35]. This method is based on the following linear rela-
tionship between the real u (x, t ) and the imaginary
v(x, t) parts of the complex amplitude pulse envelope
g(x, t):

u (x, t ) —ao(t )u(x, t ) bo(t )=0— (2)

with the coeScients ao and bo which depend only on the
"time" variable t. The method is essentially the construc-
tion of a certain system of ordinary differential equations
the solutions of which determine the solutions of the
NLSE (1).

In this paper, following the method developed in [35],
we obtain exact solutions of the NLSE describing pulse

propagation in monomode optical fibers in the normal
group-velocity dispersion region, i.e., for a= —1 in the
NLSE (1). By using the linear relationship (2) between

the unknown functions u (x, t ) and U (x, t ) we will con-
struct a certain dynamical system, the solutions of which
determine the exact solutions of the NLSE (1) with
a= —1. We obtain a three-parameter family of solutions
of the NLSE (1) which are expressed in terms of the Jaco-
bi elliptic functions and the incomplete elliptic integral of
the third kind. In the general case the solutions are dou-
ble periodic in the "time" variable t and periodic in the
"spatial" variable x.

In what follows we will use the same notation as in [35]
for the sake of any easy comparison of solutions corre-
sponding to a=1 and —1.

We introduce the new unknown functions Q(x, t ),
5(t), and tp(t) through ao(t)= cottp(t), bo(t)= 5(t)/—
sing( t ), and u (x, t ) =Q(x, t ) cosy( t ) o( t ) sing(t ), such—
that we have the following representation for the un-
known function 1(j(x,t ):
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1'(x, t)=[Q(x, t)+i5(t)]e'~"' . (3)

By introducing (3} in the NLSE with a = —1 and taking
the real and imaginary parts we are left with the follow-
ing system of differential equations:

Q„„+5,+y, g —25 Q —2Q =0,
Q, —

q), 5+25Q +25 =0 .

Here the differential equation (4) has a prime integral:

Q„—Q (25— y, —)Q +25,g=h(t),

(5)

(6)

where h(t} is a function which depends only on the
"time" variable t.

The condition of compatibility of the system of the
differential equations (4) and (5}, i.e., Q„,=Q,„gives the
following system of three ordinary differential equations:

q„+855,=0,
5„—45h+5y, 45 1p—, +45 =0,
h, —255,y, +45 5, =0 .

(7)

(8)

The dynamical system (7)—(9) corresponding to Eq. (1)
has the following three prime integrals:

p, +45 =8',
h —8'5 +35 =H,
5 + ( W 4H )5 8W5—+ 165 =—D .

(10)

(12)

z, = —64z +32Wz —4(W 4H)z +4Dz . —(13)

Now let a0=0, al, a2, and a3 be the roots of the poly-
nomial on the right-hand side (rhs) of Eq. (13). These
roots are connected with the prime integrals O', H, and D
via the Viete relations:

With the ansatz (3), the functions 1p, 5, and h depend
only on the "time" variable t, therefore 8' H, and D are
constants (x independent).

Next, with the help of the substitution z(t)=5 (t), we
obtain

—[(z —a, )'/2+(z —a2)'/ ] for a2 z a&

[(a,—z)'/ +(a2 —z)'/ ] for O~z~a1, (18)

where D+ corresponds to P, (Q ) and P2(Q ), respectively.
In the following we have two subcases to analyze: (a)

0 z a1and(b) 0 a2 z a3ora2 0 z a3.
(a) The solutions of Eq. (16) on the interval O~z ~a1

can be expressed in terms of Jacobi elliptic functions
[36—38]:

a1a&sn (pt, k)
z(t)=

a3 a,cn (pt,—k)
(19)

where p =4[a2(a2 —a, )]'/ and
k = [a1(a&—a2)]/[a2(a& —a, )] if the modulus of the el-
liptic functions.

The roots of the polynomial on the rhs of Eq. (15) are
(see [39],pp. 24)

g ( )1/2+( )1/2+(a z )1/2

Q = —(a, —z }' —(a —z )'/ +(a —z )'/2,

g (a z )1/2+(a )1/2 ( z )1/2

g —(a z )1/2 (a z )1/2 (a z }1/2

With the help of (20) the solutions of Eq. (15) are

(20)

The simplest solutions of Eq. (16) are the constant
functions z =0, a&, az, and a3 which give the stationary
solutions of Eq. (1}. Similarly, Eq. (15}has the solutions
Q=Q,.(t), i =1, . . . , 4. where Q;(t) are the roots of the
polynomial on the rhs of Eq. (15). For these particular
solutions the function 1t/ depends only on the "time" vari-
able t.

From Eq. (16) it is easy to see that at least one of the
roots a; is positive and in the following we suppose that
a3 ~0.

Because the functions Q(x, t ) and z(t ) are real we have
two cases to analyze: case A, a I a2 a3 are real num-
bers, and case B, a3 ~ 0, a2 and az are complex numbers.

(i) Case A. The discriminants D+ of the polynomials
P, 2(Q) are

W =2(a1+a2+ a3 ),

H =a, +a2+ a3 —2( a1a2+ a2a&+ a3a, ),
2 2 2

D = 16a,a2a3 .

Next Eqs. (6) and (13) become, respectively,

g„'=g' —( W —6z)g'
—3[(a,—z)(a2 —z)(a3 —z)]' Q

—(3z —Wz —h ),

(14)

(15)

(Q1(Q2 —Q4) —Q2(Q1 —Q. )sn'(px m }

(Q2 —Q4) —(Q1 —Q4)sn (px, m )

Q~Q «Q~Q.
Q3 ( Q2

—
Q4 ) —Q4 ( Q2

—
Q3 )sn (px, m )

(Q2 —Qz) —(Q2 —Q3)sn (px, m )

Q3 —Q ~Q2

z, = —64z(z —a, )(z —a2)(z —a3) . (16)

P1 2(Q ) =Q'+2(a, —z )' 'Q+ a, —a, —a, +z

+2[(a,—z )(a2 —z )]'/' .

The polynomial on the rhs of Eq. (15) has the form
P, (g)P2(Q) where

4a3
qr(t ) =2(a, +a2 —a3)t+ II(n;pt, k ),

p
(22)

where n =a1/(a, —a3} and II(n;pt, k } is the incomplete

where p =(a2 —a1)'/ and m =(a3—a2)/(a3 —a, ) is the
modulus of the elliptic function.

From Eqs. (10) and (19) we obtain the expression for
q)(t )
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az(a3 —a, ) —a, (a3 —az)sn (pt, k )zt =
(a, —a, ) —(a, —a, )sn'(pt, k )

(23)

From (17) and (18) we obtain the following roots Q; ( t ):

Q, =(a —z)' +i[(z—a, )' —(z —a )' ],
Q = —(a —z)'/+i[(z —a, )'/ —(z —a )'/ ] .

With the help of (24) the solution of Eq. (15) is

Q
—

( )1/2+ [( )1/2 ( )1/2]

X tan(1p+8, /2+82/2) for aIAO

(24)

(25)

elliptic integral of the third kind [36—38]. Now compar-
ing the solutions for z(t), Q(x, t), and q&(t } for a= 1 ob-
tained in [35] with the corresponding ones for a= —1

given by relations (19), (21), and (22), we arrive at the
conclusion that we have different analytical solutions for
Q(x, t } but exactly the same explicit forms for the func-
tions z(t ) and qr(t ). The explicit analytical solutions (19),
(21), and (22) are periodic in x and t so we obtain the re-
sult that the solution g(x, t) is double periodic with
respect to the "time" variable t and periodic with respect
to the "spatial" variable x.

(b) The solution of Eq. (16) on the interval az &z & a3
with z ~0 is

(a1=az =p+iri) and a3~0. Then the solution of Eq.
(16) can be written as

a3(1 —v)[1+en(2pt, k }]z(t}=
2[1—vcn(2pt, k)]

where

v=(f g)—/(f+g ), @=4(fg )' ',
f [ (a p )2 + Iiz ]

1 /2
g (p2 + Iiz )

1 /2

and

(29)

n'+p(p —a }
k =—1—

2

is the modulus of the Jacobi elliptic function.
We mention that the expression for z(t ) in [35] [see Eq.

(26) in [35]] and those obtained with the help of this for-
mula, e.g., Eqs. (30), (55), (56), (58), and (59) in [35], con-
tain errors. The correct form of the function z(t} for
a = 1, i.e., the case treated in [35], is given by the relation
(29). Thus the function z(t ) has the same expression for
both the normal-dispersion regime (a= —1) and the
anomalous-dispersion regime (a = 1).

From (20) and (29) we obtain the roots of the polyno-
mial on the rhs of Eq. (15):

Q, 2= b+d, —
Q3 ~=b+ic,

where

tan01=
z —a1

a3 z

sin1p =sn(px, rn )

with

1/2

tan02=—
z a2

a3 z

1/2

[r —cn(2px, m )]
[1 rcn(2—px, m )]

for Q & Qz or Q ~ Q„where

(30)

where b =(a3—z)'/; d, c = [2[(p—z)2+Iiz]I/2+2(p
/

The function Q(x, t ) can be written as

m =1— (a3 —a, )' +(a3—az)'

(a3 —a, )' —(a,—az)'

4(a a )1/2(a a )1/2

[(a a )1/2 (a a )1/2]2

(a a )1/2 (a )1/2

(az —a1)[(a3—a1)'/ +(a3 —az)'/ ]

From Eqs. (10) and (23) we obtain for 1p(t )

1p(t ) =2(a1+az+a3)t 4paIt-
+4(a, —az)II(n; pt, k ),

where n =(a3—az)/(a3 —a1).
In the case z =a3 we have

1/2 )1/2] CII(px, m

sn(px, m )

where p = [(a3—a, )' —(a3 —az)' ]

1/2

(26)

(27)

and

p
—[(p a )2+~2]1/4

(p +b —bd )
/ +(p +b+bd )1/2

(p'+b bd)' ' (p—'+b+bd)—'

a3 —
p

m =—1+
2 p

2

is the modulus of the Jacobi elliptic function.
We note that the function Q(x, t) has the same expres-

sion for both situations (a=+1) but the solution (30) is
valid for a = 1 only in the interval Qz & Q & Q, . For
a= —1, the explicit solution (30) is valid outside this in-

terval, i.e., for Q Qz or Q & Q, .
From (10) and (29) we finally find the correct expres-

sion for Ip(t) which is valid for both a= 1 and a= —1

[the expression (30) for 1p(t ) given in [35] being wrong]:

Ip(t ) =2(2p+a3)t

+ [(1—n, )II(n, ;pt, k)4g

p
and for the function qp(t ) we obtain

p(t) =12(a, +az —a3)t . (28}

(ii) Case 8. Let a„az be complex conjugate numbers

+(n —1)II(n;pt, k )],
andwhere n1=2fk /(f g+a3)—

(f—g —a3).
nz=2fk /
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In the following we will find from the general solutions
obtained above the dark-soliton solution. This particular
solution is obtained for a, =az=O and z =O. In this case
we have the following expressions for functions Q and y:

u(x, t)=R(t) cos4(x, t),

v(x, t)=R(t) sin@(x, t) .

The Jacobian of the transformation (36) is given by

(36)

Q(x ) =a3 tanh(a3~ x ), (32)

y(t)=2a, t .
Thus we obtained the standard form for the fundamen-

tal dark-soliton solution:

(33)

gd (x, t ) =q tanh(qx ) exp(2iq t ),

g(x, t)=R(t) exp[i@(x,t)], (35)

where the relationships between u(x, t), v(x, t) and
R (t ),4(x, t ) are the following:

where q =a3 is a form factor that determines the pulse
amplitude and width.

In order to obtain other classes of solutions of NLSE
(1) we can impose more generally that the functions
u (x, t ) and v (x, t ) obey the following relationship:

P„[u(x,t), v(x, t)]=0,
where P„ is a polynomial of degree n in the variables u
and v with coeScients which depend only on the "time"
variable t. By using the method described above we can
construct in principle the dynamical system correspond-
ing to Eq. (1). In what follows we give an example for the
case n=2 and for Pz[u(x, t), v(x, t)]=u (x, t)
+ v (x, t )

—R (t ). We observe that the solution g(x, t )

can be put in the form

B(u, v)
B(R,4) (37)

After rather simple calculations we are left with the
following solution of NLSE (1) with a = —1:

P(x, t)= exp i — +2C lnt
C . x z

t 1/2 4t
(38)

One of the authors (D.M.) is grateful to Dr. N. N.
Akhmediev for a helpful discussion.

This solution is singular in t=O and 00 because the
Jacobian (37) is singular in t =0 and ao. We note that the
corresponding solution of the NLSE (1) for a = 1 was
given in [34] by the Darboux-transformation method.

In conclusion the method developed in this paper al-
lows us to obtain a class of solutions of the NLSE
describing the propagation of picosecond light pulses in
optical fibers in the normal group-velocity dispersion re-
gion. The class of general solutions contains as particular
cases, important from the physical point of view, the
dark-soliton and stationary solutions. Finally we men-
tion that this method may be applied to the study of soli-
tons formed in the femtosecond region, a research field of
recent interest due to possible applications to ultrafast
optical switching and optical computing.
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