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The two-photon absorption by a pair of two-level atoms interacting with an incident field is examined.
If the laser field is weak, then the existence of the dipole-dipole interaction-induced two-photon reso-
nance follows from the higher-order Fermi golden rule. The effects of spontaneous emission and intense
fields on the dipole-dipole interaction-induced two-photon resonance is studied using density-matrix
methods. The presence of an intense field is shown to result in a significant enhancement of the two-
photon resonance. Numerical results for the probability of simultaneous excitation of two atoms, for the
atomic correlations, and for the radiated field intensity are presented.

PACS number(s): 42.50.Fx, 42.50.Hz

I. INTRODUCTION

The interaction of a laser field with an atomic system
consisting of a pair of atoms has been a subject of con-
tinuous interest mainly because it is a prototype model
for studying the dynamics of dense atomic systems. Re-
cently, however, there has been a renewal of interest in
this system due to the experimental progress made in
confining a few atoms or ions at small interatomic separa-
tions in ion and neutral-atom traps [1]. This setup facili-
tates the isolation of the single-atom effects from those
arising due to the correlations between the atoms. In
view of the above it is useful to consider the modifications
in the dynamics of the two-atom system arising due to
cooperative decay as well as the dipole-dipole interaction.
Pairs of two-level atoms have been extensively studied in
the past [2—-17]. Correlations between a pair of identical
atoms arising from the dipole-dipole (d-d) interaction
have been known to give rise to new resonances [6—10] in
the fluorescence spectrum. A correct interpretation for
the origin [8] of these resonances is possible by consider-
ing the dressed levels of the system consisting of two
atoms interacting with a laser field. The role of the d-d
interaction has also been examined in the quantum beats
produced in the intensity [11] and the intensity correla-
tions [12,13] of the spontaneous emission from a pair of
atoms. Recently the squeezing properties of the emitted
fluorescence [14] have also been shown to yield informa-
tion about the dynamical correlations between atoms.
Note that the system of two identical two-level atoms is
equivalent to a four-level atomic system. The four levels
can be described in terms of the eigenstates associated
with the collective spin operators S=S;+S,. One has
three symmetric states corresponding to S=1 and one
antisymmetric state corresponding to S =0. At small but
finite distances, the metastability of the antisymmetric
state gives rise to the phenomenon of macroscopic quan-
tum jumps whenever the system makes a transition from
the symmetric state to the antisymmetric state via the
cooperative decay process. At precisely the interatomic
distances where the antisymmetric state is metastable, the
d-d interaction also becomes important since it shifts the
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states away from resonance with the laser frequency and
thus affects the jump rates [15] and the photon statistics
[16] of the fluorescence produced by the system. The role
of the d-d interaction has also been studied in the context
of quantum jumps from a pair of three-level atoms [17].
Experimental investigations in the optical emission
[18-20] and absorption [21] process in dense media have
reported the observation of the d-d interaction-induced
novel resonances at the sum frequency of the atomic tran-
sitions. Cooperative single-photon absorption by a pair
of coupled atoms was first demonstrated by Varsanyi and
Dieke [22]. They observed that weak absorption occurs
at the sum of the transition frequencies of the coupled
atoms. This effect was qualitatively explained by Dexter
[23] using first-order perturbation theory. He showed
that d-d interaction between the atoms leads to the simul-
taneous excitation of atoms, which can be utilized for
pumping lasers [24]. A strong-field theory for calculating
the pair-emission and absorption transition probability
for weakly coupled atoms has been developed [25].
Simultaneous excitation of a pair of nonidentical atoms of
frequencies w; and w, interacting with a laser field of fre-
quency o; by a two-photon absorption process exhibits
[26] a new d-d interaction-induced resonance at
20;=w;+w, which is in addition to the usual peaks at
®; =, and w, for noninteracting atoms. For a pair of in-
dependent atoms the transition probability for simultane-
ous excitation is just the product of the transition proba-
bilities for finding each atom in the excited state. There-
fore, as the laser frequency is scanned, the peaks occur
whenever the laser is on resonance with the atomic fre-
quencies. Simultaneous excitation by absorption of two
photons occurs because one atom is resonantly excited by
one photon and the other atom is off resonantly excited
by the other photon. The emergence of an additional d-d
interaction-induced two-photon resonance is a clear indi-
cation of a totally different channel of excitation where
each of the atoms is off resonantly excited by absorption
of a photon, but an energy compensation occurs to over-
come this detuning. In the presence of the d-d interac-
tion the atom for which the laser is tuned above its tran-
sition frequency can transfer its excess energy to the
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second atom for which the laser is tuned below its transi-
tion frequency. This process thus shows the two-photon
resonance when the energy transfer exactly compensates
for the detuning, i.e., at w;—w;= —(w,—w;). Nayfeh
and Hillard [27] have shown that when the atoms are not
restricted to being two-level systems, the line shapes and
the resonance positions for the two-photon-absorption
process can change depending on whether only one atom
is radiatively active or both the atoms are. It is thus in-
teresting to study how this two-photon resonance gets
modified when the strength of the d-d interaction in-
creases (i.e., as the atoms come closer to each other) in
the presence of an intense exciting field. It is also neces-
sary to incorporate the effects of spontaneous emission
from the atoms. Thus the purpose of this paper is to ex-
tend the previous studies on the two-photon resonance to
get exact results for arbitrary strengths of the atom-atom
and atom-field interaction including the spontaneous-
decay effects. This has been achieved using the master-
equation techniques [28]. For simplicity we consider only
two two-level atoms. The density-matrix equation is
solved numerically. We show that the two-photon reso-
nance becomes more and more dominant as the atoms
come closer to each other. In addition, the presence of a
saturating field can enhance this resonance considerably.
The origin of this enhancement is attributed to the in-
creasing correlations between the atoms. In addition it is
also found that the radiated power reflects the behavior
of the transition probabilities.

In Sec. II we give the Hamiltonian for the system of
two two-level atoms interacting with each other via the
dipole-dipole interaction and interacting with an incident
laser field. In Sec. III we give the perturbative result for
the probability for two photon absorption using the Fer-
mi golden rule. We study the effect of a saturating field
on the two photon resonance using the master equation
approach in Sec. IV. We give the numerical results for
the transition probability for the simultaneous excitation
of atoms, atomic correlations and the far-zone radiated-
field intensity.
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II. THE HAMILTONIAN FOR THE MODEL

Consider a system of two two-level atoms of frequen-
cies w; and w,, which interact with a single laser field of
frequency ;. The incident monochromatic field is writ-
ten as

E(r,t)=e(r)le “'+c.c. , 2.1

where €(r) is the amplitude and o, is the frequency of the
field. Figure 1 shows the energy levels of the free atoms.
The levels |j) and |i ) represent, respectively, the ground
state and the excited state of the atom of frequency ;.
Similarly, the states IB) and |a) are, respectively, the
ground state and excited state of the second atom of fre-
quency ®,. The two two-level-atom system is equivalent
to a four-level atomic system obtained as a direct product
of the one-atom states. These states will be represented
as |k,n) with k=i or j and 7=a or B having energy
(0 +w,) (A=1). We denote by |jB) the state when
both the atoms are in the ground state. The state when
both the atoms are excited is denoted by |ia). The states
corresponding to the case when either one of the atoms is
excited is denoted as |i3) and |ja). The dipole moment
of each atom is given by

d,=d;(S"+S,7), i=12. (2.2)

Here S/, S7 are the spin-1 operators for each atom. In
what follows we work in a frame rotating with the fre-
quency of the external field. The Hamiltonian for the
system of two two-level atoms interacting with a laser of
frequency w; is given by

H=H0 +Hdd +Hext N (2.3)
where
2
Hy=3 ASE, A=~ i=1,2 (2.4)

i=1

is the unperturbed Hamiltonian of the two atoms and A;
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FIG. 1. Schematic diagram of the energy levels of the two two-level atoms of frequencies w; and o, interacting with the incident
laser field of frequency w;. These are shown in the frame rotating with the frequency w; of the field. The diagram also shows the en-
ergies of the direct-product states and the states obtained after the dipole-dipole interaction has been diagonalized.
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gives the detuning of the field. The second term in Eq.
(2.3) describes the dipole-dipole interaction between the
atoms and can be approximated by

Hy,=73 |VS*S; +H.c. |, i,j=1,2.
ij
i#j

(2.5)

In writing Eq. (2.5) non-energy-conserving terms like
SS; and ST S, have been dropped. The dipole-dipole
interaction cannot simultaneously excite or deexcite both
the atoms. The static form of the d-d interaction is given
by

1

|r12'3

V dl’d2_3

L3¥) I
d-— | |d)y— ) 2.6
1 |r12| ] [ ’ |r|2’ ] ] ( )

where r,, is the separation between the two atoms. The
last term in Eq. (2.3) describes the interaction of each
atom with the laser field, which in rotating-wave approxi-
mation is given by

2
H.,=3 [g,»Sf +H.c.

i=1

, &=—d;€; , (2.7)

where g; is the coupling constant of each atom to the field
and ¢; is the field at the position of the ith atom. The un-
perturbed energy levels for the four atomic states ob-
tained as a direct product of the single-atom states are
shown in Fig. 1. Various detunings shown in the figure
are defined as

Al——_(l)l—(ﬂl, Azzﬂ)z—(ol ,

8=A1 '—'A2=wl —w, .
In the basis of the four direct-product states

li,a),li,B),lj,a),|j,B), the matrix representation of the
Hamiltonian is

A
7 0 g &
A
o - gl &
H= 5 (2.9)
*
— vV
g2 8 2
o)
* y* -2
g1 g2 2

We first diagonalize Eq. (2.9) in the absence of the laser
field. The new eigenstates and the corresponding eigen-
values are given by

<ia'HextI¢+ )<¢+!HextljB> +
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Y, )=lia) , A/2
[ )=S7'1iB)+S5!ja) , A
- . (2.10)
lp_)=S7'liBY+Sp' lja), —A
|¢gg>=|jﬁ> > '—A/Z
where
172
82
A= T+|V12 , .11)
and the diagonalization matrix S is given by
1 —1
2 172 2 1172
) o)
- —+A
1+ V2 1+ 72
5= ) )
e =+
> AV ) AV
5 1172 2 1172
5 o)
.|
1+ 7 1+ 72
(2.12)

It is evident from Eq. (2.10) that dipole-dipole interaction
mixes up the intermediate levels |{8) and |ja) only. The
new energy levels lead to a resonant cooperative absorp-
tion of light which results in a two-photon resonance,
which cannot occur for free atoms. This is because in the
absence of dipole-dipole interaction the destructive in-
terference between the two channels of two photon ab-
sorption |jB)—|ja)—lia) and |jB)—|iB)—lia) is
complete.

ITII. THE DIPOLE-DIPOLE INTERACTION-INDUCED
TWO-PHOTON RESONANCE —A PERTURBATIVE
ANALYSIS

We now calculate the transition probability for simul-
taneous excitation of atoms by a two-photon absorption
process when both the atoms are initially in the ground
state. We work in the basis [Eq. (2.10)] that diagonalizes
the unperturbed Hamiltonian and the dipole-dipole in-
teraction. For weak fields, the probability for the two-
photon absorption process can be calculated using
second-order time-dependent perturbation theory. The
Fermi golden rule for the rate R, for transition from

(e ) — |1, ) gives

(il Hop |9 Y(_|HooliB) |*

R12=27T
A

l ’2—+7\.

A
t[zh

8w, +w,—20,) , (3.1)
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where the intermediate states |1, ) and |1/_) are the new
states given in Eq. (2.10), and H,,, is the atom-field in-
teraction defined by Eq. (2.7). The paths
|iB) =¥, ) —lia) and |jB) —|¢¥_)—|ia) are the two
excitation channels. Simultaneous excitation of atoms
occurs along either of these two channels. As long as the
matrix elements in Eq. (3.1) are nonzero, R,, shows a
two-photon resonance at 2w;=w;+®,. In terms of the
exact eigenstates given by Eq. (2.10), R, is found to be

2 2

1+ [2-a| 2| v+ 24
12
1614 A
2
2 l
2 2
[1+ Sl V+§—k]
+
A
2

X8(w,+w,—2w;), (3.2)

where for simplicity we have set g, =g, =g.

For the case when the dipole-dipole coupling is also
weak, the corrections to the states can be obtained by us-
ing first-order perturbation theory, which implies that
there are no corrections to the energy eigenvalues. Then

lja) (jalHyliB)

Y )=1iB)— e ’
W) =lja)— liBYCiBlHyylja) (3.3)
Y_)=lja Ey—E, ,

with E;,=E;+E,, E;z=E;+Eg. Putting in the exact
form of H,,; from Eq. (2.5)

v =lip)+ 5 lja)

- (3.4
1¢_)=|ja)—§liﬁ) ,
and
81820 tw,—2w;) Vigi+e3)
R12=27T -
(0;— 0 wy—w;) (0~ )@~ o))
X 8w, +w,—2w;) . 3.5)

Note that Eq. (3.5) is a sixth-order perturbative result for
R,,. It is obtained to second order in dipole-dipole cou-
pling and to fourth order in external field amplitudes. It
is clear that in the absence of dipole-dipole coupling
(V=0), R;;=0, since (0;+w,—20;)(w,tw,
—2w,;)=0. The process in which two free nonidentical
atoms are simultaneously excited by the absorption of
two photons of frequency w,;, such that 2w, =w;+w, is
not allowed because of exact destructive interference be-
tween the two excitation channels [jB8)—|ja)—lia)
and |jB)—|iB)—l|ia). If the interaction with the com-
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plete radiation field (including the vacuum degrees of
freedom) is included, however, the resulting shifts,
widths, and mixing of the single-excitation states |i3)
and [ja) allows the transition to occur. In the presence
of the coupling, R, shows a resonance at v, +w,=2w;.
Thus this two-photon resonance is a dipole-dipole
interaction-induced extra resonance. We also note that it
would not be possible to take the limit of Eq. (3.5) for the
case of identical atoms as the two-photon resonance con-
dition would reduce to the single-photon resonance con-
dition w;=w;, whereas the validity of the second-order
perturbation theory demands that the intermediate reso-
nances should be avoided. Thus one has to use Eq. (3.2)
which holds to all orders in d-d interaction. In fact Eq.
(3.2) for identical atoms reduces to

_ 8mg*

Rp==73 (3.6)

5(A) .

Note, however, that Eq. (3.6) ignores the width of the in-
termediate states ¥, which should, in principle, be in-
cluded. Thus Eq. (3.6) holds in the limit that the strength
of the dipole-dipole interaction is much bigger than the
width of the intermediate states ¥,. Note further that
the widths of the intermediate states i, can be obtained
from equations in the Appendix.

IV. NONPERTURBATIVE ANALYSIS OF THE EXTRA
TWO-PHOTON RESONANCE — EFFECTS OF INTENSE
FIELDS

The perturbative analysis [Eq. (3.5)] shows the ex-
istence of a new resonance at 20, =+, for coupled
atoms, the strength of which depends on the dipole-
dipole interaction V. The width of the resonance can be
obtained from considerations involving the spontaneous
emission of photons. For treating spontaneous emission
we need to consider the interaction of the atoms with a
large number of vacuum modes of the radiation field. We
work in the transverse gauge. It is also desirable to ex-
amine the effects of an intense electromagnetic field on
the two-photon resonance. One thus needs a formulation
which can account for both spontaneous-emission effects
as well as intense-field effects. This can be done within
the framework of master equations [28]. This has the ad-
vantage that even the dipole-dipole interaction can be
handled to all orders. The master equation for the evolu-
tion of the atomic density-matrix operator obtained by
tracing over the radiation field variables is given by [28]

2
L=—i[Hpl— 3 v,(S7S p—28pS +pSS),

ij=1
4.1)

where H is the total Hamiltonian defined by Eq. (2.3)
with the static dipole-dipole interaction now replaced by
the retarded dipole-dipole interaction
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3 sinx | cosx cosx _ @ Dy
Q=% |[d;-d;—3(d; 1;)(dye1p))] <2 + 3 —[d;-dy—(d; rp)(dyeryy)] I * =kora, koz’c—“' P
4.2)
In Eq. (4.1) y;; is the collective decay constant of the atomic system given by
A A A A 1 A A A A si
vy =3r |[@8) =@ 1)@ 1)) + (@8 —3(@rp)(dyrg)] | <55 =20 ] . x=kory “.3)

where ?1,., i =1,2 are unit vectors along the electric dipole
moments. In the limit when r;,—0 we can write

Y12=Y, Qp=V, (4.4)

where V is given by Eq. (2.6). We will work at distances
such that Eq. (4.4) is indeed a good approximation. Note
that the master equation (4.1) treats the external field and
the dipole-dipole interaction to all orders and thus multi-
photon processes induced by the external field are au-
tomatically included. Only the spontaneous-emission
events are considered to be single-photon processes.
Note further that if the retardation effects are completely
ignored, i.e., if one formally sets the velocity of light
equal to infinity, then ;;—V and y;;—0.

The two two-level-atom system is equivalent to a four-
level atomic system. On using the normalization condi-
tion Trp=1, these reduce to the set of 15 coupled equa-
tions given in the Appendix. In the matrix notation these
equations are given as

ialb_ =

2t My+I,
where ¢ is the 15X 1 column matrix of the mean atomic
operators defined in Eq. (A1), and M is the 15X 15 matrix
of the coefficients which can be easily constructed from
Eq. (Al). The only nonzero matrix elements of 15X1
column matrix I are

(4.5)

I3=—'}’1, 16=—'}’2. (4.6)

Equation (4.5) allows us to easily study the long-time be-
havior of the atomic system. Of particular interest is the
behavior of the transition probability for simultaneous
excitation of atoms, the characteristics of the radiated
power, and the correlations between the atoms.

We first examine the transition probability for simul-
taneous excitation of atoms by a two-photon absorption
process. This is given by

P12=pia,ia=<srsl‘s;—sg )
=((L+Si)L1+5%))

=14+1(SI)+1(S5)+(Si83) . @47

The first three terms in Eq. (4.7) are the contributions to
P,, arising from each atom independently. If one ignores
the dipole-dipole interaction and if one ignores the

cooperative decay, i.e., if one sets ;=0 in Eq. (4.1), then
the atoms are not correlated and P, is the product of the

I
probabilities of finding each atom in the excited state.
This is given by

lg 1 |2 |g 2 |2

PL,=(S{S7 )88, )= .
12 121 292 ‘}/%+A% ')’%+A%

(4.8)

Each term of the product in the above equation is the
transition probability for the excitation of a single atom
by a one-photon absorption process. P;, thus shows res-
onance at A;=0 and A,=0, i.e., at w;=w; and w;=w,.
The last term in Eq. (4.7) gives the cooperative contribu-
tion, which is nonzero only in the presence of the d-d in-
teraction. This term is responsible for the origin of the
two-photon resonance at w;+,=2w;. A perturbative
solution for the steady-state transition probability P, for
simultaneous excitation of the two atoms can be obtained
using Eq. (4.5). The perturbative solution to first order in
the dipole-dipole coupling and fourth order in the field
coupling, in the limit when the detunings A, and A, are
large, is given by

_ lgl*
N

4lg|*AV
A2A2(4y2+A?)

" 0, 4.9)

where we have assumed that g, =g, =g and y,=y,=7.
In this expression we have retained only those terms
which contribute to the two-photon resonance. Note
that since Eq. (4.9) is a perturbative result, the second
term is smaller than the first term, so that P,, remains
positive. This shows the presence of the dipole-dipole
coupling-induced resonance at A=A ;+A,=0. It is evi-
dent that the extra resonance vanishes in the absence of
the dipole-dipole interaction (¥ =0). Equation (4.9) pre-
dicts a dispersionlike line shape proportional to the
dipole-dipole interaction strength V. The situation would
be different if the ¥? term dominates (cf. Fig. 2). Note
that the sixth-order perturbative result given in Eq. (3.5)
gives the rate for exciting both atoms, whereas the per-
turbative result given in Eq. (4.9) gives the actual steady-
state probability for exciting both atoms by a two-photon
absorption process.

We will next show how the two results, Egs. (3.5) and
(4.9), can be connected. For this purpose we need to in-
troduce the width of the state |icz). Equations (4.7) and
(A1) show that the state |ia) decays at the rate 4y. The
rate R |, [Eq. (3.5)] does not account for the width of the
final state. The width of the intermediate state is not im-
portant as w,; is greatly detuned. The result Eq. (3.5)
upon accounting for the width (4y) of the final state, is
modified to [8(x)=(2y /7)/(4y?+x?)]
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g’A  2vg? 2

A4, AL,

dy 4.10)

Ry= :
2 4y2+4?

where we have set g, =g, =g. The pumping of the state
lia) at the rate R, and its decay at the rate 4y would
result in the steady-state population of the state |ia) be-
ing given by

R,
Pia,ia™ 47_ , 4.11)
which on combining with Eq. (4.10) reduces to
2 2 )?
_ | g°A 2Vg 1
iaia - . (412)
Piwia™ | AN, T AA, | 42+ A2

Note that here the term to lowest order in V is the same
as Eq. (4.9), assuming that the terms of order ¥ are still
smaller. Note further that the V-independent term in Eq.
(4.12) is the same as the corresponding term in Eq. (4.9).
To see this explicitly we recall that the denominators
w,—o; and w,—w, in Eq. (3.5) should in principle have
the damping of the corresponding state, i.e.,
o,—w;—o;—w;—iy and w,—w;—>w,—w;—iy, and
thus the terms

1 1
+
(0,—w;)  (0y—w))

2

gZ

should be replaced by

2
2

1 + 1

g (wl—a),—‘ly) (wz_wl_l')/)

(A—2iy)
(wl_CUI-i'}/ )((1)2”‘(1)1_17/)

=g2

ot (A%+4y2)
NN

To study the behavior of the two-photon resonance for
arbitrary strengths of the d-d interaction and the atom-
field interaction it is necessary to obtain the exact solu-
tions of Eq. (4.5). The steady-state solution is

Y=(—M)"'I . (4.13)
The exact solution requires the inversion of the 15X 15 M
matrix. We do this numerically. We present the numeri-
cal results for the transition probability P, for simul-
taneous excitation of atoms as a function of the detuning
A=w;+w,—2w,;. For simplicity we choose the coupling
constants g, and g, and the decay constants ¥, and v,
for each atom to be equal, so that g,=g,=g and
Y1=7,=7. 2y is the rate at which excited state of a sin-
gle atom decays. We normalize all frequency parameters
with respect to 2y. Figure 2 shows the behavior of P,
when the driving field is weak (g/2y=2), for two
different values of the dipole-dipole coupling strength. It
shows the presence of the dipole-dipole interaction-
induced two-photon resonance at 20; =w;+ ;. As com-
pared to the peak value for ¥V /2y =S5, the two-photon
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"-80 -60 -40 -20 00 2.0 4.0 6.0
(w1+w,—2w, ) /2y

FIG. 2. Transition probability P, for simultaneous excita-
tion of a pair of nonidentical atoms (0,7 w,) as a function of the
detuning (@,+w,—2w;)/2y, for two different values of the
dipole-dipole coupling ¥ /2y. The laser field is assumed to be
weak. The atom-field coupling parameter is chosen to be the
same for each of the two atoms, g /2y =2. The difference in
atomic frequencies is chosen as (@, — ;) /2y =200, and the col-
lective decay parameter is chosen to be ¥;;/2y=0.5. The
curves are labeled by the dipole-dipole coupling parameter:
curve a, V/2y=>5, and curve b, V/2y=20. The actual values
of Py, for a and b are, respectively, 107° and 10™* times smaller
than those shown in the figure.

resonance increases by one order of magnitude for
V /2y =20. The dipole-dipole interaction between the
atoms determines the relative size of the two-photon res-
onance. Thus as the atoms come nearer to each other,
the two-photon resonance becomes more and more prom-
inent. At optical frequencies w~3X 10" Hz and dipole
moments of =1 D, dipole-dipole coupling of V /2y =35
corresponds to interatomic distance ~292 nm and
V /2y =20 to a distance ~184 nm between the atoms.
The resonance line shapes have an asymmetric shape.
This arises because of the partial interference between the
two excitation channels, via the |4, ) and |¢_) inter-
mediate states [Eq. (3.3)]. Figure 2 does not show the
dispersive feature of Eq. (4.9) as the dipole-dipole interac-
tion is large enough so that the ¥? term dominates. We
next consider two-photon excitation of two atoms by in-
tense fields (g /2y =20). This result is shown in Fig. 3.
For large dipole-dipole coupling of ¥ /2y =20, the strong
field leads to an enhancement of the two-photon reso-
nance by three orders of magnitude as compared to the
weak-field case shown in Fig. 2.

The power emitted by the two-atom system into a unit
solid angle around a point R, per unit time, is obtained
from the normal component of the Poynting vector

I(R,1)=R*R-§

2
—R”(ExB)R
41
2
=%<E<"(R,t)5‘+>(n,z>> , @.14)

where :: are the normal ordered products. The operators
E'") (E'7)) denote the positive-(negative-) frequency
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FIG. 3. Transition probability P, when the incident field is
assumed to be strong, g/2y=20. All other parameters are
same as in Fig. 2. The two curves are labeled by the dipole-
dipole coupling parameter: curve a, ¥V /2y=S5 and curve b,
V /2y =20.

components of the electromagnetic field. In the far zone
kR >>1 and k,R >>1, where k; and k, are given by
k;=w;/c, i =1,2. The positive-frequency part E* of the
fluorescence-field operator is given by

ET(R,)=E{"(R,1)

2 R X(R;Xd) IR|
_ 2 N MR - IR
zkl |R,l i [t

i=1 ¢

X exp(—ik,R-t;) . (4.15)

Here r; is the position vector of each atom and
R;=R—r;-E{ (R,?) denotes the free field. The second
term in Eq. (4.15) depends directly on the atomic opera-
tors and represents the radiation field emitted by the
atom. Substituting (4.15) in (4.14), I(R,?) is evaluated
under the assumption that in the far zone k;R ~k,R
leading to

3yw, ikoﬁ'r

2
sin?6 > e
hj=1

I(R,)= (SHnST(1), (4.16)

T

where 6 is the angle between d and R, and we have ig-
nored retardation effects. Integrating over the solid angle
around R, the total radiation rate is

1= [IR,0dQg =200 3 (ST (S7(1), @17
Lj

where it is assumed that interatomic distance r, is much
smaller than the optical wavelengths so that
explikoRer;;)=1.

The nature of the intensity of the radiation emitted by
the two-atom system in the far-zone region is shown in
Figs. 4 and 5. The radiated power reflects the behavior of
P,,. For weak fields (Fig. 4) the two-photon resonance
becomes more and more prominent as the atoms come
closer. This effect is enhanced in the presence of the in-
tense driving field (Fig. 5). Thus the two-photon reso-
nance induced by the dipole-dipole interaction can be
probed by fluorescent-intensity measurements.
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(01 +w,—2w, ) /2y

FIG. 4. Radiated field intensity I as a function of the detun-
ing (0, +w,—2w,;)/2y, for two different values of the dipole-
dipole coupling constant ¥ /2y when the incident field is weak
(g /2y =2). All other parameters are the same as in Fig. 2. The
curves are labeled by the dipole-dipole coupling parameter:
curve a, V /2y =S5, and curve b, ¥V /2y =20. The actual values
of I for a and b are, respectively, 10™* and 1073 times smaller
than those shown in the figure.

The spontaneous emission in general leads to correla-
tions among atoms and thus the absorption and emission
characteristics of the two-atom system differ from those
of independent atoms. An idea of atomic correlations in-
duced by spontaneous emission can be obtained by study-
ing the quantity

G=(S{S;)—(SFXs;). (4.18)
This represents correlations between the dipole moments
of two atoms and becomes zero as the distance between
the atoms becomes large, i.e., as kR;; >>1. The behavior
of ReG and ImG is plotted in Figs. 6 and 7, respectively.
The real part of G shows a dispersive structure and the
imaginary part an absorptionlike structure. The atoms
are strongly correlated for large dipole-dipole coupling
strength and strong fields.

g/2y=20
0.8 b
0.8
I
0.4
a
0.2
R0 ST YA P IR Y A AR

(1 +we—2w, ) /27

FIG. 5. Radiated field intensity I when the incident field is
assumed to be strong, (g/2y =20). All other parameters are
same as in Fig. 2. The curves are labeled by the dipole-dipole
coupling parameter: curve a, ¥V /2y =35, and curve b, V /2y =20.
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(w1+w2—2w, ) /2y

FIG. 6. Real part of the atomic-correlation function G as a
function of the detuning (w;+®,—2w,;)/2y. Different curves
are labeled by the values of the atom-field coupling parameter
g /2y and the dipole-dipole coupling parameter ¥ /2y. All oth-
er parameters are the same as in Fig. 2. Curves a and b corre-
spond to the weak-field case: curve a, g /2y =2, V /2y =5, and
curve b, g/2y=2, V/2y=20. Curves ¢ and d, correspond to
the strong-field case: curve ¢, g/2y =20, V /2y =S5, and curve
d, g/2y =20, V /2y =20. The actual values for a, b, ¢, and d
are, respectively, 0.2X 1074 0.2X 1074, 1072, and 1072 times
smaller than those shown in the figure.

In conclusion, we have examined the phenomenon of
cooperative excitation of two two-level atoms by a two-
photon absorption process. The transition probability for
simultaneous excitation of atoms shows a dipole-dipole
coupling-induced two-photon resonance.  Master-
equation formalism is adopted to include the effects of
spontaneous emission and intense external fields. We find
that the extra resonance is significantly enhanced in the
presence of an intense driving field. The intensity of the
emitted fluorescence reflects the behavior of the pairwise
excitation of atoms. Measurement of the fluorescence in-

0.4

0.0

-1.6

0 0.0 S,

. ) 10,0
(w1 +we—2w; ) /27

FIG. 7. Imaginary part of the atomic correlation function G
as a function of (w, +w,—2w;)/2y for the same parameters as
in Fig. 6. Different curves are labeled by the coupling parame-
ters: curve a, g/y=2, V/2y=5; curve b,
g/2y=2,V /2y =20; curve c, g /2y =20, V /2y =5; and curve d,
g/2y =20, V /2y =20. The actual values for a, b, c, and d are,
respectively, 107° 107% 1073 and 107 times smaller than
those shown in the figure.
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tensity from a pair of trapped atoms can thus be a possi-
ble means for probing pair interactions. In addition, the
dipole-dipole interaction introduces nonzero correlations
between the atoms which increase significantly as the
atoms come closer and closer to each other as expected.
The intensity of the external field also affects the intera-
tomic correlations significantly. Resonant enhancement
of the correlations between the atoms and the presence of
the extra two-photon resonance in the absorption spec-
trum suggests that the fluorescence spectrum of the radi-
ation scattered from a pair of coupled atoms will be
modified from the three-peaked Mollow spectrum [29] of
isolated atoms. The case of identical atoms is discussed
in Refs. [6-8] and the case of nonidentical atoms will be
reported in a future work. The frequencies of emission
are given by w;+(A;—A;), where A;’s (i=1,2,3,4) are
the eigenvalues of Eq. (2.9). In general, these eigenvalues
are to be obtained numerically. For example, for the case
when the detunings are such that the two-photon reso-
nance condition is satisfied, i.e., A;+A,=0, and
A,=20y, V=40y, and g =40y, the atomic system is
found to emit radiation at the frequencies w;, w,+52.1,
w0;—18.03, and w;—34.07. It is also expected that the
dipole-dipole interaction will give rise to new effects in
the nonlinear response of dense atomic systems which
would also be the subject of a future study.

ACKNOWLEDGMENT

We would like to thank the Department of Science and
Technology, Government of India, for financial support.

APPENDIX

In this appendix we present explicitly the coupled
equations for various mean values involving the single-
atom operators and atomic correlations. These follow
from the master equation (4.1):

(ST Y=th,=(—y,+iA (ST Y +2y,(S38; )
—2iV(SiSy ) —2igt(Si),
(ST )=t =(—y,—iA){S] ) +2y,(5i85 )
+2iV(SiS, ) +2ig,(S?),
(S'zl>='/.’3:—‘_27/1(S€>—7’1_7’12<S1+Sz_>
—y (ST Sy ) —iV{(S{S;)
+iV{(S;S; )—ig,{(S{ )+igr(S7 ),
(ST )=ty =(—y,+ir){(ST ) +2y,(S35,)
—2iV(S3iS| ) —2ig3(S3),
(S‘;>=¢"5=(—y2—iA2)(S2—)+2y12(S§Sf)
+2iV{(S3iS| ) +2ig,{(S3),
<S§>=¢6=_272<S§_>_7’2_7’12<S1+S;>
—y {878y Y +iV{(S{S;)
—iV{(S{SS )—ig,(SF ) +ig3(S; ),
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(STSF Y=d=[—(y, +y)+iAlS{S]

—2igt(SiSS ) —2igs(S3iS{ ),

(ST85 Y=vg=[—(y,+y,)—iAKSTS; )
+2ig, {838, ) +2ig,{S357 ),

(5183) =dhy=—2(y, +7,)(SIS3) —7,(53)

— {83 +y (5] S5)
+y,(STST ) —ig,{S3S{ ) —ig,{(Sis;})
+ig} (S3S7 ) +igs (SiS; ),
<'S”LSZ> l/'10 [— 7’1+7’2)+15](S+Sz )+7’12<S>
+y1,(S3) +4y,,(S25%)
—iV({87)—(S8%))+2ig,(Si8])
—2igt(Sis; ),

(STSF ) =dy=[— (71+y2)—i8(STS) ) +v,(S%)
+7v12(83) +47,,(8353)
+iV({S])—(S3))—2ig¥(S3iS; )
+2ig, {8385 ),

(8385 ) =v,=—7 (S} ) +[— 2y, + 7)) +iA[(Si5F )

?’
T2y -2y a(sisT >—z-7”<s,+>

—ig (S8 ) +igt(S7S;)
—2ig;(Sis3) ,
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(8357 Y =t;3=—7(S7 ) —[27,+7,+i4,](S3i87 )

7"2(5 ) =2y ,{SiST >+12<s )

+igt(S7S; )—ig,{(S{S;)

+2ig,(Si83) ,

(SIS Y =thu=—7,(S} ) +[— Ry, +y ) +iA 1{S35])

— T8 (s )~y u(sisT ) —it (st
—ig,(S{S; ) +ig3 (S{S;)

—2ig} (S3is3),

(S387 ) =tys=—7,(ST ) —[27,+7,+iA [{S35T )

7’12

—=(S5 )27 ,{Si8; Y +i— <S2 )

+ig3(S7S; )—ig,{S{S;)

+2ig,{S3S3) .

The interdependence of the dynamical evolution of one
atom on the other through the dipole-dipole coupling is
evident in these equations. When V' =0, these equations
reduce to the optical Bloch equations for each single
atom.
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