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Generation of highly squeezed states in a two-photon micromaser
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We consider a lossless two-photon micromaser with atomic polarization. %'e find that for particular
values of the atomic flight time, the field evolves to a pure state which can be made of a superposition of
even-photon-number states or odd-number states. These states approach to a perfectly squeezed state as

the upper limit of the "trap" increases.

PACS number(s): 42.50.—p, 42.52.+x

One-photon micromasers have been the subject of stud-
ies in recent years, both experimentally [1,2] and theoreti-
cally [3,4]. In particular, in the lossless case, so-called
trapping states were found, and if the injected atoms are
initially prepared in a coherent superposition of states,
the field may evolve to a pure state [5], even with a
moderate amount of cavity losses and at low temperature
[6]. Also, a value of 52% of squeezing was found in con-
nection with these trapped states [7]. On the other hand,
two-photon micromasers have also been studied both in
theory [8] and experiment [9].

In the present paper, we analyze a two-photon micro-
maser consisting of a single lossless-mode cavity into
which three-level atoms are injected at a low rate, so that,
on the average, there is at most one atom inside the cavi-
ty at a given time.

Consider the three-1evel atom as per Fig. l. We will as-
sume that the atoms enter the cavity in a coherent super-
position of the states ~a) and ~c), that is,
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where C'=(1 —e '~' ")(a a+aa ) ', and P—:rg /b, ,
6 being the detuning (Fig. 1), g the coupling constant,
and v the Qight time of the atom through the cavity. In
deriving Eq. (2) [9], we have made the approximation

b/g »~N, which corresponds to a truly two-photon
micromaser as opposed to a one-photon cascade system
[10].

The evolution of an arbitrary state is given by

~q&„=a~a &+y~c),

where the coefficients a and y are the same for all atoms.
In the absence of losses, the time-evolution operator of

the system is [10]

QSJv~N)(a~a )+y~c) )—+gSz a 1 2i —e "+'sinQ&+, ~N) 2iyG(N—)e " 'sinQ&, ~N —2) ~a )2%+3

+ 2i aG(N+2)e —"+' sinA&+ &
~N+2)

y 1 2i —e
' " 'sinQ&, ~N& ~c& (3)

Qz —1= ,'(2Nd —1)g=q~—(qinteger),

we have a downward trapping, and for N =IV„such that

QN +,= —,'(2N„+3)/=pe(p integer), .
Q

(5)

where 01= (2l+ 1)P/2 and G(l) =&l(l —1)/(21 —1).
The trapping states are immediate from Eq. (3). When

N=Xd and

we have an upward trapping and the Fock space is divid-
ed into isolated blocks, so that if our initial field distribu-
tion is within a given block, we have a closed dynamics
leading to pure states.

If, in a steady state, the field evolves to a pure state as a
superposition of number states, restricted between a
lower and an upper bound, Xd and X„,respectively, and
if one more atom crossed the cavity, the state of the
atom-field system would be modified only by a global
phase factor and a different atomic superposition [5], that
1s,
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FIG. 1. Energy levels relevant to the two photon laser with
atomic polarization.

(10b}

where So and S, are normalization constants.
We define as usual the two Hermitian quadratures of

the field.

a, =
—,'(a+a ),

a2= —,', (a —a ) .
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From these definitions and making use of the f &,„,„
states (10a},with Nd =0, we readily get

Ã yp '2N
Q a 2N 1!!—
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where P, u' and y' are independent of N. By comparing
the right-hand side of Eqs. (3) and (6), we readily get
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It is simple to see that for Eqs. (7a) and (7b) to be con-
sistent, it is necessary that

a =a'e'~,

and we have chosen a relative phase between a and y
equal to m.

We can calculate M approximately as follows. The
sum appearing in Eq. (13) can be split as

N„ /2
g~ —p

=P~ —0 gN —~+~ . The first term can be readi-
0/2

ly done, and the second one can be approximated by the
Stirling formula. The result is
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If the above conditions are satisfied, then the two re-
cursion relations (7a) and (7b) become a single one, name-

ly,

1/2
a N+1

N 2 N+2 N (9)

From the recursion relation (9}, we can readily gen-
erate an even or odd superposition of N states:

where x= la/yl. We can find the extremum of M that
would minimize (b,az), which occurs in the neighbor-
hood of x = 1 (from below) for large N„. In a simple cal-
culation, one finds that x min=1 —e, for e=k/N„, and
also (b,az) =k'/N„, k and k' being constants of the or-
der of 1.

We performed a numerical calculation of the fluctua-
tions of az using the

l f &,„,„states given in Eq. (7a). Fig-
ure 2 shows (ba2) and (ba& )(baz) as a function of a/y
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FIG. 2. Variance of (ha2)' and (ha, |(ha2) vs la/yl for
N„=6 (dot-dashed line), 40 (short-dashed line), 100 (long-
dashed line), and 1000 (solid line). We note that for N„=1000
and la/yl =I—e, we get a nearly perfect squeezed state, which

is not a minimum-uncertainty state.

for various values of N„.
We note the dramatic reduction of (ha2) for large

values of N„and a/y in the neighborhood of 1 (from
below). It can be also observed that at the minimum of
each curve the product (bai)(ha2) acquires a value

larger than 1/4, implying that we are generating, in this

system, perfectly squeezed states which are not
minimum-uncertainty states (MUS's).

To summarize the results presented in this paper, we
find from both numerical and analytical results that in a
two-photon micromaser without electromagnetic losses,
one can approach a perfectly squeezed state, when one
approaches x ~1 from below and N„ is large. So far, we

have calculated the properties of the even states, without
actually proving their existence. We present here a nu-

merical proof.
The master equation for the reduced field density, after

k atoms pass through the cavity, is given by

pf =Tr,„( Up& 'p„U ), and it leads to a steady state that
is an even state [Eq. (10a)], if the initial state of the field is
a superposition of even n-states in the corresponding
block. As a matter of fact, the initial state of the field
does not have to be a pure state. We only require that
the density matrix elements pzz should be nonzero only
for N even within the corresponding block.

If we define the entropy as

Sl = —Trpf"lnpf

where l is the label for the lth atom. If when l ~ oo, we
approach S~O, then we have a pure state as a steady
state for the field.

In Fig. 3 we show (b,a2) and S vs I (or time) for the
pure initial vacuum state of the field. We note that after
4500 atoms have passed through the cavity, S=O, and
therefore the steady state of the field is a pure state (even
state) and the above arguments are correct. On the other
hand, (b,ai) converges to 0.0194, which agrees with the

FIG. 3. (Aa2) (solid line) and S (dashed line) vs the number
of injected atoms 1. For 1)4500, S vanishes and

(ha&) =0.0194. The initial state of the field is the vacuum
state, and Xd =0, N„=40, and la/yl =0.88.
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FIG. 4. (ba2) (solid line) and S (dashed line) vs the number
of injected atoms l. For 1)4500, S vanishes and
(ha2) =0.0194. The initial state of the field is a mixed state
with pNM p(5N05MO+5N25M2) +d =0,&.=4o, »d l«yl
=0.88.

steady even-state value of Fig. 2.
In Fig. 4 we show basically the same result, but when

the initial state of the field is in a mixed state, namely,

p&M
=

2 (5+o5Mo+ 5iv25sr2). The other parameters are the

same as in Fig. 3.
We end this paper with five observations.
(1) Although a model with a lossless cavity might seem

academic, actual experiments in micromasers have been
performed with extremely high Q values, and so this
model might not be unrealistic [2].

(2) It has been numerically observed that for
la/yl (1, the maximum photon distribution occurs for
N=O. However, this maximum moves abrupt1y to a
nonzero value as we cross the lu/y =1 line. Therefore
la/yl =1 is a "critical point. " As a matter of fact, for
N„—+ ~, (b,a2 ) suffers a sudden jump, at x =1, from 0 to
0.25.

(3) A valid question is, how can we generate one of
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these states? For example, in order to generate an even
state first, we have to prepare an initial state of the field
in the corresponding block. This could be done by send-
ing first a beam of atoms excited in the upper state with
an appropriate speed as to generate a pure even- n state
(N, ). The second beam will have atomic polarization and
an interaction time (or P ) that will correspond to a pair
of integers N„and N„, such that Nd N, (N„. As for
the odd states, the procedure could be same, except that
the initial preparation of ~N; ), N, = odd integer number,
could be done with a different atom with the same level
separation and a one-photon transition.

(4) An experimental verification of these results, as in
the one-photon case, requires an extremely low tempera-
ture, such that the number of thermal photons is much
less than 1, which can be achieved experimentally [1,2].
On the other hand, one would expect, as in the one-

photon case, these states to be robust to cavity damping
[5]. In any event, with present-day technology, very-
high-g cavities are available [1,2] (Q =10"). The ex-
istence of the trapping states does not seem to be very
sensitive to small velocity fiuctuations in the beam [11].

(5) From Eq. (5) we see that P/2m=kg . /27rb,

p/(2N„+3), and so the trapping condition implies that
P/2' is a rational number. The limit where the large
squeezing occurs (N„ large) does not imply that the cou-
pling constant or ~ has to be very small or 6 very large.
It may simply imply that P/2m. approaches an irrational
number. This suggests a connection between this prob-
lern and number theory and chaos [3].
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