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The similarity between the system of the plane rotator and that of the optical oscillator (mode) has

been exposed. In both the systems special states have been examined, which minimize the usual and

unusual uncertainty relations. Number-sine-cosine uncertainty relations for these systems have been de-

rived and the number-sine minimum-uncertainty states have been investigated in greater detail than in

the literature.

PACS number(s): 42.50.Dv

I. INTRODUCTION

The experimental proof of the squeezed states of light
has initiated an enhanced interest in special states of the
electromagnetic field. Since the dawn of quantum optics,
Glauber's coherent states [l] are known to be minimum-
uncertainty states. The experimentally proved squeezed
states are realizations of the two-photon coherent states
[2], which result as a natural generalization of the
coherent states minimizing the same uncertainty relation.
The squeezed states are known to possess decreased Quc-
tuations in one quadrature component at the cost of the
increased noise of the other quadrature component. Oth-
er uncertainty relations are associated with the definitions
of other minimizing states. The uncertainty relations and
the minimizing states illustrate well the phase problem in
the physical system of the optical oscillator and the easy
study of the rotation angle. In the past, the phase prob-
lem tended to the consideration of some uncertainty rela-
tions and led to so many definitions of new states that the
authors themselves doubted whether these states were
more than mathematical constructions. We approve this
attitude, but we confess that the beauty of the mathemat-
ical considerations is connected with their inconceivable
efficiency.

II. APPLICATIONS OF THE SCHWARTZ
INEQUALITY IN QUANTUM THEORY

In quantum theory we encounter physical quantities
that are named after the classical ones but have a
different meaning. This reinterpretation is underscored
by Heisenberg in his early paper [3]. The new meaning of
the quantities manifests itself in the fact that not all of
them are compatible, i.e., the measurement of one observ-
able may affect the precision of the other. This
phenomenon is described by the uncertainty relations. It
is marvelous that, in spite of the prominent physical role
of the uncertainty relations, their mathematical proof
rests upon the mere Schwartz inequality.

The phase problem is formulated for the phase of the
optical oscillator. Both past and recent work on this

problem comprise also the study of the rotation angle of
the plane rotator. Of many quantities, which can be con-
sidered in the physical systems, some are basic, for in-
stance the quadrature components in the harmonic and
anharmonic oscillator in quantum optics and the angular
momentum and the rotation angle in the plane rotator.
The quantum theory of these systems arises in the quan-
tum interpretation of these quantities as operators and of
the Poisson brackets as the commutators. Usually we
can discern whether an examined observable is basic or
not. In the second case it must be possible to express the
investigated observable in terms of basic ones. This pos-
sibility is yielded also by the quantum theory if we accept
the necessity of ordering quantum operators in some
cases.

The best known instance, perhaps, is the physical sys-
tem of an electron in the Coulombic field of a nucleus and
the bound motion of the electron. Considering only one
degree of freedom, we arrive at the linear (anharmonic)
oscillator. Here the basic observables are the position x
and the conjugate momentum p and it holds that

[x,P„]=i%1 .

Familiar are the formulas introducing the annihilation
operator 8 describing the harmonic motion in this physi-
cal system. The matter-field interaction has led to the
idea of the physical system of the optical oscillator,
which comprises also the annihilation operator 8. In the
system of a plane rotator we can arrive at the basic quan-
tities also when reducing the number of basic quantities
for a known motion of a particle. If x,y are the plane-
position operators and p,p their respective conjugate
momenta, this reduction is expressed by the formulas

J=ppz xpy

cosP&=(x 2+y )
'~ x,

singe=(x +y )
'~ y,

where J is the angular-momentum operator, cosP& and

singe are the cosine and sine operators, and 8 is the
minimum value of the measured angle.

At quantum applications of the Schwartz inequality we
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arrive as follows. Let us consider a concrete physical sys-
tern and two observables A, B therein. On the assump-
tion that the system is in the pure state il(j&, (

fig�&

=1,
the observables A, B have the expectations,

(4)

LA=A —(A &, »=B—(S& . (5)

respectively. The physical interpretation of the following
mathematical derivation is based on the mean squares of
the operators:

relation (11) and formula (17) simplify. In the optical os-
cillator system and for the case of basic observables

(i) A =Q, B=P, [Q,P]=2i1,
where Q, P are the quadrature operators,

Q =8+8, P= i—(& a—),

(19)

no states have the property (18). For the couples of
operators like (19), the problem (15) could not be derived
from the Schwartz inequality. Nevertheless, the choice

Introducing the vectors

i+&=sAi@&, iq&=»iy&

and considering the Schwartz inequality in the form

(6)
(ii) A =fi', B = —Q, [8', Q]= iP,—

where 6'= & & is the number operator

fi'= —'(Q +P —2),

(21)

1&@Ix&i' &pig &&mix&,

we obtain the inequality

i(b, A»&i'&((b, A)'&((») & .

(7)

(8)

ensures that the relation (C'& =(P & =0 is fulfilled by
some states.

Before we present case (iii) concerning the plane rota-
tor, we give relation (11)simplified using (18),

a A ~B= ,'( [SA, SB]+-[aA, SB])
=

—,'([b A, AS]+iC'),

where

(9)

C' = i [b, A, b B ]= —i [ A,—8 ] .

Then relation (8) becomes

(10)

On the right-hand side there is a product of variances.
To interpret the left-hand side more easily, we resolve the
constituent product

cov ( A, B ) &((b A ) & ((» ) &, (23)

which means only that the variances of operators and the
covariance between the operators obey the same relations
as the quantities in the classical theory of statistics. This
proves that they have been consistently defined. Equa-
tion (17) simplifies to the form

cov( A, B )I~=y, y = — ' = —sgn[cov( A, B ) ]((»)'& 6B

(24)

((b, A ) &((») ~cov (A,B)+—,'(C'&

where

(11) where

[ ( (g A )2
&

]1/2 gB [ ( (gB )2
&

]1/2 (25)

cov( A, B ) = —,
' ( [b A,» J & . (12)

»iq&=o,
or a suitable complex number ~ can be found that

(13)

(aA+~»)lq& =o . (14)

We rewrite this relation in the form

(A+~B)lq& =Xlq&,

where

(15)

Regardless of the above modifications, the equality in re-
lation (11) is attained on the assumption that either

From the properties of inequalities it follows that relation
(23) holds also regardless of condition (18). The equality
sign in relation (23) takes place when the correlation be-
tween the observables A, B is as maximal as possible. We
easily find that in case (ii) this occurs for the displaced
number state [4] and the shift in the phase space is real-
ized in the direction of the Q (real) axis. Quite perspicu-
ously we get Glauber's coherent state

i y & as a solution of
Eq. (15) for the state iP& with A, = —y . The correlation
between the number of photons and the quadrature Q is
maximal, i.e., in relation (23) the equality sign holds, for
the coherent state

i y &, contrary to the inequality for any
state derived by a small perturbation of the coherent
state. Relation (24) takes on the form in case (ii),

X=& A &+~(B & .

If the equality sign in relation (11)applies, then

(16) cov(h', Q )

&(~Q)'&
(26)

(aBSA" &

—cov( A, B ) +—( C'
&

2

&(»)'&
(17)

The plane rotator provides the case

(iii) A =N, B = —cosPti, [N, costs]= —i sing& .

For the states i' & fulfilling

&c'&=o, (18)
The operator N is related to the angular momentum J
defined in (2),
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N= —J, (28)
Pz, are canonically conjugate variables. The angle opera-
tor P~ does exist and its eigenkets fulfill the relations

(29)

Then relation (11) reads

where A is the reduced Planck constant.
So far we assumed condition (18), which unsatisfactori-

ly emphasizes the quantum nature of the relation for the
product of uncertainties. Now we restrict ourselves to
the states lg) fulfilling the condition

cov( A, B ) =0 .

P, Iq), =ply), , o~y&0+2~,

, &q lq'&, =2~fi(q —g') .

(36)

(37)

These angular kets cannot be normalized. It holds that

(38)

which unfortunately differs by the projector I8), , (HI
from the established picture of this commutator, but

or equivalently

(30)
[J,cosPz] = —i fi sings,

[J,singe] = i A—cosine,
(39)

~A~B ~-,'I& C'&I, (31)

i.e., the Heisenberg uncertainty relation. But the
pioneers of the quantum theory restricted themselves first
to the case C =fil. Relation (17) becomes, under condi-
tion (29),

as can be expected. If the angle operator Pa plays the
role of the argument of cosine and sine functions, the in-
dex 0 can be omitted. The stationary states of the free ro-
tator, IN), are simultaneously the eigenstates of the
operator J,

& C')~=iy, y=, =sgn(C ) )2(b, )
(32)

~IN ) =AN IN ), (NI N') =fi„„,
N, N'=0, +1,+2, . . . , (40)

The uncertainty relations (30) and (31) hold generally re-
gardless of condition (29).

In the system of the optical oscillator in case (i), as-
sumption (29) can be fulfilled and the equality sign in re-
lation (30) is achieved for the standard squeezed states
[5], if the axis of squeezing is parallel with the Q (real) or
P (imaginary) axis in the phase space. With respect to the
equality attained in relation (30), we speak of the
minimum-uncertainty states.

The solution of the eigenproblem (15) for the case

(iv) A =O', B=P, [6',P] =iQ, (33)

is of slightly different character [6]. Here, (P) =0. No
similar constraint occurs in case (i). Nevertheless, this
constraint is identical with the assumption
( C' ) = (P ) =0 in case (ii), which has been deliberately
adjusted to case (iv). The problem (iv) issued in the study
of the optical phase as a linearization result.

A similar parallel occurs between cases (iii) and (v),

(v) A =N, B =sings, [S',singe]=i cosmos . (34)

III. UNCERTAINTY RELATIONS
IN THE PLANE ROTATOR

This case will be studied in greater detail in Sec. III.
Cases (iv) and (v} illustrate the possibility that (C )

may depend on which state realizing the equality in (30)
is considered. The uncertainty product b, A 4B =

—,
'

I ( C ) I

is state dependent, and so some authors speak of intelli-
gent states in place of minimum-uncertainty ones [7].

and it is valid that

(NIq), =exp(iNy) . (41)

(8' —} cosy)lq&, =sly&, . (42)

We easily find that

+= —oo

where A. is an integer expressed by the formula

(43)

If we restrict ourselves to the states Ig)„which are
the superposition of only the states of the positive angu-
lar momentum, then the free plane rotator identifies,
from the mathematical viewpoint, with the anharmonic
oscillator in quantum optics. Therefore, the index e is
affixed because the Hilbert space of the plane rotator
represents an extension of the Hilbert space of the optical
oscillator.

In terms of classical variables, the phase space of the
optical oscillator is a plane, whereas the phase space of
the plane rotator is a cylinder extending to infinity in
both directions. Restricting ourselves to the positive an-
gular momentum, we manage with half this cylinder, and
using the polar coordinates we can prove the canonical
equivalence with the phase space of the optical oscillator.

Respecting the relationship of the free plane rotator
and the anharmonic oscillator, we treat cases (iii) and (v)

in greater detail. In case (iii) the eigenvalue problem (15)
reads

The free plane rotator is described by the Hamiltonian k= (8') —
y (cosP & (44)

0= J
2I

(35)

where I is the moment of inertia. The angular-
rnomenturn operator and the rotation angle of the body,

and J~ z is the Bessel function of the integral order.
From the expression for the wave function
(2') '~, (pig), of the state (43}it follows that the phase
distribution is uniform as if it were in any eigenstate of
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the angular-momentum operator. The distribution of the
angular momentum exhibits oscillations.

Case (v) is more familiar. The eigenvalue problem (15)
can be written as follows:

0.40

0.35

(k+iy sing) ~q&, =X~q&, . (45)
M

In [8) the eigenvalue problem (45) is solved in terms of
the modified Bessel functions of the first kind of order
(N —

A, ),

lg&, =[I,(2y)] '" & I — (y)IN&, (Pig&, =1
N= —co

(46)

0.25
0.0 0.2

I

0.4
V

I

0.6
I

0.8 1.0

((bP) &((hsing) &
~

—,'(cosP& (47)

where I,= (8'& is an integer. The appropriate wave func-
tion is easily found in the angular representation and the
angular distribution can be identified with the von Mises
distribution [9]. The uncertainty relation (30) reads in
this case

FIG. 1. The uncertainty product M, =—M, (y) vs the phase
dispersion V, (y) for the (A', i sing) state (curve al and the
(P, —exp( iP) ) —state (curve b}.

of von Mises [9].
The uncertainty product (49) for state (46) and state

(53) reads
Following [8], we have considered a symmetric form of
the uncertainty relation and —unlike [8]—we have ar-
rived at relation [10],

I, (2y)
M (y)= ~ +— 1—

2 Ie(2y) 4

I, (2y)

Ic(2y )
(54)

) 1M, 4', (48) and

where

M, = [((hP ) &+-,' ][1—
~
(exp(iP) & ('] . (49)

M, (y)= y 1— I, (2y)

Io(2y)
1+—. 1—
4

Ii(2y)
Ic(2y )

cov(P, cosP ) =cov( 8', sing )=0,
formally rewritten

(50)

Because of this symmetry, the hope of attaining the
equality in (48) is lost, since it would require the
fulfillment of both the conditions

(55)

respectively. The absence of A. in these formulas is not
only convenient for drawing graphs but also a result of an
interplay between bN in formula (49) and the A, shift in
formulas (46) and (53). The product M, (y) is plotted
versus the quantity V„

cov(A', exp(i P) )=0 . (51)
V, =—V, (y) = 1 —

~ (exp(i(b) &
~

(56)

Compared with the ordinary uncertainty relation, the —,
'

in the first factor is striking, a correction for the discrete-
ness of the variable k The second factor is the angular
dispersion, free of variances as recommended in the sta-
tistical studies of directional data [9]. The uncertainty
product (49) is useful [10,11] and open for further numer-
ical analysis since no minimizing states of relation (48)
are likely to exist.

Combining problems (42) and (45), we arrive at the ei-
genvalue problem

(52)

which is not connected with any uncertainty relation, but
is expected on the basis of symmetry. This problem has
the solution

which is, for both states,

I)(2y)
V, (y)=1-

ID(2y)
(57)

IV. UNCERTAINTY RELATIONS
IN THE OPTICAL OSCILLATOR

The optical oscillator is described by the Hamiltonian
either in terms of the quadrature operators

'fico(Q +P )—

in Fig. 1. In this picture we can see that the former state
(46) is of better quality than the latter state (53), not only
for the uncertainty relation (47) but also for (48).

oo N —A,

N=A,
(53) or in terms of the number operator

@=A'co(R'+ —,') . (59)

The steady states of the harmonic oscillator ~n & are
eigenstates of the operator 8',

where A, is an integer. The wave function of this eigen-
state is easily expressed in the angular representation. It
determines the angular probability distribution to be that
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R'ln ) =n ln ), & n ln') =5„„,n, n'=0, 1,2, . . . . (60) [R,y ]=i(l—l()&&i)l), (69)

To explain our remark on the analogy between the free
plane rotator and the optical anharmonic oscillator, we
present the Hamiltonian of the latter system,

H =HO+H;„, ,

where

Ho=fico(R'+ —,'), H;„,=A'yR2 .

(61)

(62)

ly) = g exp(iny)ln ),
n=0

(63)

The interaction representation depends only on 8;„„
which clears up the analogy.

In classical physics the mathematics of the system of
the optical oscillator is very similar to that of the plane
rotator, which leads us nearly to the concept of physical
analogy. But in the quantum theory the mathematics of
the former system is rather different from the mathemat-
ics of the latter system. Although the operator 8 corre-
sponds well to the operator A' of the plane rotator, the
phase of the optical oscillator does not resemble the rota-
tion angle of the plane rotator very well. In fact, the
definition of the phase states

l y ),

V= 1 —
l &e@(iy) & l', (70)

represents a suitable phase dispersion.
In analogy to (48) we can derive the uncertainty rela-

tion

(71)

where

M= [&(bR)')+-,'][1—
l & e@(iy) ) l'] . (72)

We tested this inequality with the aid of the Jackiw state,
(see [8] and references therein), which we investigated
more thoroughly than it is usual in the literature [15,8].
Jackiw formulated and solved the eigenvalue problem
[15]

does exist [11],it only joins the set of mutually incompa-
tible operators defined by relation (64). Starting from the
correspondence (65) and regarding the theory of operator
ordering, we have derived the quantum analog of the
measure of the phase dispersion in the classical theory of
statistics. Consistent with the Barnett-Pegg procedure
[14],we have found that the quantity V,

is as good as possible, but there is no simple relation
analogous to relation (37). In [11]it is shown that the re-
quirement of working with a unitary phase operator can
be fulfilled algebraically by adopting a type of antinormal
ordering of the operators (8+1) '~

&, d (8+1)
This leads to the classical quantum correspondence
defined in the following way. To each phase function
M(y) there corresponds a phase operator,

(R'+iy st'ny)lg) =A, lg) .

Because the sine operator can be expressed simply as

siny= —[e@(iy)—H. c.],
2L

egp( iy ) = g l
n ) & n + 1 l,

n=0

we get the solution in the form

(73)

(74)

M = ' f "'"M(y)ly &&yldy, (64)
lg& =Z g I„„(y)ln),

n=0
(75)

cosy= f cosyly) &yldy,
2& 0

siny= f sinyly) &yldy,2' 0

which were brought out in [13],and

e@(iy)= f exp(iy)ly&&yldy .
277 0

(65)

(66)

A part of the mathematics is shared with the plane ro-
tator

[R,cosy] = i siny, —

[ Rs tny]=i cosy,

(67)

(68)

compared to (27) and (34), respectively. The rest of the
mathematics is more complicated; the operators cosy and
sing do not commute, as they are incompatible. Al-
though the operator Pg, fulfilling the relation

which does not depend on 8 provided that M(y) is 2'
periodic. The choice M(y)—:1 results in Q = 1 and turns
(64) into a resolution of the identity [12]. Particularly,
using relation (64), we obtain the operators

where n is a real number from the interval (N, N+ 1) for
N even or from the interval (N 1,N) for N o—dd and
Z &0 is the normalization constant; let us compare for-
mula (46) for an analogy. The eigenvalue n is to be con-
sidered a multivalued function of the parameter y,

n=n(y) . (76)

At the cost of a more complicated denotation, we will

consider a set of single-valued functions

n =n(N, y), (77)

n(N, y) O=N, (78)

i.e., the eigenvalues of the number operator, namely

0, 1,2, . . . , ~. The graph of (77) versus y in Fig. 2

comprises pairs of nearly horizontal line segments, which
are on the right-hand side closed by nearly parabolic arcs,
starting from the ordinates N.

Jackiw [15] considered the constraint &siny) =0 when

where N is the number of the single-valued branch of the
multivalued function (76). This index was chosen so that
it is valid,
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