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Square-tiling model for the glass transition: Transfer-matrix approach for the competing energy
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%'e introduce the correlation length for the square-tiling model for the glass transition through the
transfer-matrix approach developed earlier [S. M. Bhattacharjee and E. Helfand, Phys. Rev. A 36, 3332
(1987)] for this model. We show that this transfer-matrix approach, in the limit when the competing
internal energy reduces the model to the hard-square gas problem with nearest- and next-nearest-
neighbor exclusion, is equivalent to the conventional row-to-row transfer matrix. Based on this, we pro-
pose that the transitions for other values of the coupling constant for the competing term are also
nonuniversal, as is known for the hard-square gas problem.

PACS number(s): 05.70.Fh, 64.70.Pf, 64.60.Cn, 05.20.—y

I. INTRODUCTION

The strange behavior of both thermodynamic (e.g. ,
specific heat) and dynamic (e.g. , diffusion, relaxation
time, viscosity, etc.} properties of a liquid as it undergoes
a glass transition has been known for a long time, but as
yet, no definite consensus has emerged as to whether
these are governed by any underlying thermodynamic
phase transition [1—4]. As expected, all the three possi-
bilities (yes, no, and maybe) have been proposed so far
and are under investigation [1—5]. In such a situation, it
seems necessary to study simple models that would mim-
ic some of the glassy behavior and would incorporate
what is believed to be the basic mechanism for the transi-
tion. The square-tiling model proposed by Stillinger and
Weber is such a simplified model [3,6—9].

The model is based on the hypothesis that near the
glass transition, clusters or domains of various types and
sizes appear, and it is the restructuring of these domains
that lead to the special glassy behavior. The domain-wall
energy is, therefore, taken to be the most important ener-

gy in the problem. In addition, the internal energy of the
domain can be difFerent. Such an energy would compete
with the domain-wall energy [10-12]. In the two-
dimensional model, the domains are taken to be squares
of all sizes which tile perfectly a square lattice ("space-
filling structure") [6,7]. The energy for a particular
configuration can be written in general as

E([n, ] )=2m yIn, +8y1 n, ,
j

where n, is the number of jXj tiles (to be called j-tiles).
The first term on the right-hand side is the domain-wall
energy with X/2 equal to the wall energy per unit length
(in units of the lattice spacing), the second term
represents the internal energy of the domains with a cou-
pling 8()0) (also called "frustration energy") [12]. The
index a() 2), for simplicity, will be taken to be 3. The
perfect tiling condition requires

(1.2)

One may consider further generalization that prefers tiles

of a particular (crystallization) size and, may be by incor-
porating a term controlling the total area covered. Such
generalizations will not be considered here.

Monte Carlo (MC} simulations with 8=0 showed a
glasslike dynamics of stretched exponential relaxation,
with "Vogel-Fulcher" law for the relaxation time, around
a temperature T, where the system undergoes a Prst-
order transition to an inactive low-temperature phase
(ground state for all T (T, ) [7, 8]. Furthermore, equili-

brating the system below T, turned out to be very
difficult as one might expect for a glass. The transition
was, therefore, taken as a glass transition. A rigorous ap-
proach for calculating bounds to T, was developed by
Bhattacharjee and Helfand [9], and by extrapolation, an
estimate of T, was found which agreed with the MC re-
sult.

By studying the ground-state structure and low-
temperature expansions of Eq. (1.1), around the special
values of

8=8/2A, = [j (j +1)]

with integral j, it was argued in Ref. [11] that the glass
transition point of this model is really a multiphase point,
where an infinite number of higher-order phase transition
lines meet [13]. To set the notation, we recast the argu-
ment for the multiphase point in a slightly different way
in the spirit of the Pirogov-Sinai theory [14]. The phase
diagram at T=O is obtained by minimizing the energy in

Eq. (1.1) with a =3. First note that the ground state con-
sists of just 1-tiles if k&0 for all 6~0. The other ex-
treme case is e(0, when a single ¹ilewill cover the
whole lattice, irrespective of the sign of A, as shown in
Fig. 1(a). Nontrivial structure develops in the positive
quadrant for 8 & 0 and A, & 0, because the ground state
goes from all j-tiles to all (j+1)-tiles if
8(2A.[j(j+1)] ' [11,15]. The resultant T=O phase di-
agram is shown in Fig. 1(a). For very low temperatures,
the phase diagram is expected to be [being a two-
dimensional (2D) lattice problem] a small perturbation of
the T=O diagram [14]. Thanks to the existence [6—9] of
a phase transition for 0=0, and k & 0 and also the transi-
tion in a 1 X 1 and 2 X2-tiled system (hard-square lattice-
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gas problem) [16—18] the multiphase point at 8=)i,=O in
Fig .1(a) is expected to get shifted for T)0 to the right as
in Fig. 1(b). This was further supported by symmetry ar-
guments and finite-size effects [11]. The existence of a
multiphase point is attractive because, slightly away from
the glass transition point, a small change in the final tem-
perature in a cooling experiment may take the system
into different distinct thermodynamic phases. It is tempt-
ing to believe that this leads to the apparent diversity in
the structures observed during cooling in MC simula-
tions. Could such a sensitive dependence on temperature
be true for a real glass?

It is therefore important to understand the behavior of
the system with two competing terms as in Eq. (1.1). Ap-
proximate theories are of not much help as can be seen
from Ref. [12] where even the qualitative results depend
crucially on the level of approximation, like no phase
transition in the first order but a continuous one in the
second order. Mean-field theories are also of not much
help because of lack of knowledge of any suitable "unper-
turbed" Hamiltonian. It is possible to develop good ap-
proximation deep in the high-temperature region by
choosing &p A, gj jn, and d. etermining A.

' through the
variational principle. Since this &p does not respect the
ground-state structure, a mean-field theory based on this
will fail in the low-temperature region and therefore can-
not be used to study phase transitions.

Our aim in this paper is to develop a procedure
through phenomenological renormalization that can be
used to study this model. This is done by generalizing
the transfer-matrix approach of Ref. [9] for the model
with the competing term. We define a correlation length
in Sec. II and prove the equivalence of this approach with
the conventional row-row transfer matrix as used for
the hard-square gas problem [16,18]. In the low-
temperature limit when the model is equivalent to the
hard-square gas problem, we show that g defined here
agrees with the length defined in the conventional ap-
proach. The application to the other transitions of the
phase diagram is then discussed. A summary is given in
Sec. III. The Appendix contains an antiferromagnetic
spin Hamiltonian for the case for which only the 3X3
and 2 X2 tiles are required.

II. TRANSFER-MATRIX APPROACH

A. The matrix and the correlation length

A transfer-matrix method was developed by Bhatta-
charjee and Helfand in Ref. [9] to study the tiling model
with just the )i, term in Eq. (1.1). A more general form of
this matrix has also been discussed there, which can be
easily applied to the problem with the 6 term. This
transfer matrix V is different from the usual row-to-row
transfer matrix and the thermodynamic behavior is deter-
mined by the smallest zero of the determinant IV I~ a—s
opposed to the largest eigenvalue. The reason for this
difference is that V transfers between properly defined
basis states so that a finite number of transfers by V leads
to an ensemble of lattices of various sizes. In that sense,
V can be thought of as the transfer matrix for a grand
ensemble from whose partition function one can calculate
the partition function for a lattice of definite size. The
reader is referred to Ref. [9] for details and only the basic
steps of the procedure are outlined here.

We consider a lattice with N bonds in the horizontal
direction with periodic-boundary condition and M rows
in the vertical direction. For simplicity, we will choose
open boundary condition in the vertical direction and
take M~ oo. The lattice is tiled by sequentially placing
tiles of allowed sizes with the following rules: (i) tiles are
placed only on the lowest unoccupied row (LUR) of the
upper boundary (UB), (ii) all bonds of the LUR are to be
tiled, and (iii) removal of any tile that defines the upper
boundary must lower the position of the LUR.

The states that define the transfer matrix are the
configurations of the upper boundary that one may get
using the above rules. These states can be uniquely
specified by a sequence of N integers (n„n2, . . . , n~),
n E [O, N —1], where n would give the height of the ith
bond of the UB as measured from its LUR (for which
n=O) Each time. a new UB is created, LUR is redefined
as 0.

If going from a state ~[n ] ) to ~[n'„] ) requires p~ of
j-tiles (with weight zj. for each j-tile), covering completely
w rows in the process, then the transfer matrix is defined
as

T=0

FID. 1. (a) Phase diagram at T=O. The numbers 1,2, . . . , %represent the size of the tile in the ground state. (b) The phase dia-
gram at 1)0.
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(In' ]lvl[n
allowed tilings j

(2.1)

where the sum is over all possible tilings that can take the
unprimed state to the primed one, and t is the weight for
each completely covered row. Note that such tilings may
have not only different [p ] but also different w.

For the NXM lattice under consideration, the parti-
tion function would come as

Z~M= .f, (Ol(V —I) 'l0)dt,
277l t M+1 (2.2)

where I is the identity matrix and l0) denotes the state
with perfectly horizontal boundary as the first and the
last row of the lattice and the contour encloses the origin
of the complex t plane without enclosing any singularities
of (V I) '.—The singularities of (V I) ' a—re just poles
at the zeros of

(2.3)

The contour can be deformed into small circles around
the above zeros only, such that, in the limit M~ ~, the
smallest zero t p contributes giving

1
lim InZ&~=lntp .M-~ M

For finite M,
L

ZNM X Ci
i=0

(2.4)

(2.5)

where L is the number of zeros. The approach to the
thermodynamic limit is, therefore, given by ( l t, l Ito ), t,
being the second smallest root. A correlation length can,
therefore, be defined as

g= ln (2.6)
tp

This is reminiscent of the definition of the correlation
length in the conventional transfer-matrix approach.

Once the correlation length is defined, the transition
point can be estimated by using phenomenological renor-
malization [19]. In this approach, if gM is the correlation
length for an M X ao lattice, then the transition point cor-
responds to the "temperature" at which

definition from the row-row transfer matrix. We follow
Runnels and Combs [16] in constructing the conventional
ROWTM. Incidentally, the hard-square gas problem
arises in the low-temperature limit of the tiling model
around 0=8/A, =

—,'. The fugacity for the 2X2 tiles on
the 1X1 tile background is given by z =exp( —4Pl, e),
where @=0——,', in the double limit @~0,P~ OD, with z
finite.

The conventional ROWTM is most easily described in
the lattice-gas language. Since the 1-tiles can be placed in
one and only one way, once the 2-tiles are in place, one
can altogether ignore them. The lattice-gas variable (0 or
1) would then tell us whether a site on a row has a 2-tile
which is being replaced by an occupied central site with
vacant NN and NNN sites (0). The ROWTM is, there-
fore, defined with respect to the states of the rows and
these states can be represented by sequences of 0 and 01,
the maximum number of 1 being [N/2], the integer part
of N/2. Since 1 must have 0 as its NN, it follows that the
number of states d„ for a row of N sites is related to the
numbers for smaller N's as d~ =d~, +dz z (Fibonacci
sequence).

For the STATM, the states are again described by 0
and 1, and V completes one row at each operation unless
it is placing all 2-tiles on the 0) state (see Fig. 2.).
Thanks to this row-by-row buildup by V at each step, the
configuration of UB can as well be represented by the
state of the completed row, except for the all 2-tile case
with even N. There are two such configurations which
are to be counted in l0) as opposed to the (010101.. . )

and (101010.. . ) states for RTM. Therefore if dz is the
number of basis states for STATM, then dz =dz —2.

Labeling the row states for the ROWTM as

l

1 ) =101010,l2)—:010101 l3 ~ =00000. . . , etc,
the ROWTM will have (3lRl 1)=(3lRl2) =z,
( llRl3) =(2lRl3) =-z, ( llRlany other) =(any other
lRll)=(2lRlany other)=(any otherlRl2)=0. The ei-
genvalue equation lR —AIl =0 can be written as
R —1

l

=0, where

kM M

4 (2.7)

We use this to locate the transition temperatures in the
low-temperature limit.

B. Hard-square gas: equivalence

We now show the equivalence of the state-state
transfer matrix (STATM) introduced in the preceding
section with the conventional row-row transfer matrix
(ROWTM), for a problem where both can be used, name-

ly, the hard-square lattice-gas problem with nearest-
neighbor (NN) and next-nearest-neighbor (NNN) ex-
clusion. This will also show that the correlation length
defined by Eq. (2.7) is consistent with the conventional

FIG. 2. 2-tiles and 3-tiles on the lattice. For clarity only a
few tiles are shown. Dashed lines represent the dual lattice, X
indicates sites on the real lattice, and o sites are the first- and
second-shell neighbors enclosing site a on the dual lattice.
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R J for i'
R,, /)I, for diagonal elements .

Trivial transformation, then, reduces this dz Xd„deter-
minant to d& Xdz eliminating the first and second row
and columns. The new ( 3

~
R

~
3 ) element is

'+2z A,
—1 which is also the (O~V —I~O) element if

we use A, '=t. All other elements of R —I and V —I are
the same, showing that the two are equivalent.

The above equivalence establishes that the correlation
length defined by Eq. (2.6) agrees, in this case, with the
conventional definition of this length [16]. It was noted
by Kinzel et al. that in the ROWTM formalism the two
largest eigenvalues determining correlation length g for
the hard-square gas problem belong to the block of the
matrix that transforms like the identity (under the 2D ro-
tation group) [18,16]. This leads to the nonuniversal be-
havior unlike the hard-square gas with only nearest-
neighbor interaction [17]. The latter problem has an
Ising-type critical behavior, and it can easily be verified
that no STATM can be constructed for it.

In the STATM procedure, it is easy to check that the
relevant zeros should come from the identitylike block
that transforms because for the 2X oo lattice, the transfer
matrix is just a 1 X 1 scalar. Since the symmetry property
is not expected to change with the lattice size, hence for
any E, the two zeros will always come from these identi-
tylike blocks. As is well known [16], this block is ob-
tained by considering only those states which are not
translationally related. Our numerical calculations, using
the phenomenological renormalization as discussed in
Sec. II A, agree with the results of Ref. [18].

We therefore hypothesize that if, in the STATM ap-
proach, there is one lattice for which the transfer matrix
is a 1 X 1 scalar, then the correlation length will be deter-
mined by the zeros coming from the identitylike block,
and the transition will be nonuniversal.

C. 3-tiles and 2-tiles

In order to study the phase diagram near 0= —,
' at

which the ground state changes from 2-tiles to 3-tiles, we
consider the low-temperature limit, such that only 3X3
excitations over the 2X2 background need to be con-
sidered. With 19=—,'+e, the fugacity for the 3-tiles is
z =exp( —18@PA,) which is to be held fixed in the double
limit @~0and T~0. Note that the 3-tiles occur in com-
binations of 4 replacing nine 2-tiles.

The construction of the STATM is now straightfor-
ward. For a 6X ~ lattice that can accommodate both 3-
and 2-tiles, it is a 1 X 1 matrix so that

iV Ii=3t z +2t —1. — (2.8)

The next lattice to be considered is 12X ao, for which the
identitylike block of the matrix is 6X6, the relevant
equation being

12t z +12t z +3t z (z 4) 10t'z- —

+3t z 2t (2z 1)—2t —t+1—=0 . —(2.9)

As a check for z=0 both the equations reproduce, as they

should, the correct entropy —,
' ln2 per row. Similarly the

correct entropy is also reproduced in the z —+~ limit.
The occurrence of the pair +I/&2 of zeros requires that
the length of the strip be even. No conclusion regarding
the transition point can, however, be drawn from these
two lattices because phenomenological renormalization
gives two solutions. This is not surprising because the
smallest allowed lattice generally does not help in phe-
nomenological renorrnalization, as is well known for the
Ising model [19]. Unfortunately, the rapid growth of the
size of the matrix (next relevant width of the lattice is 18)
forbids us from extending this to bigger lattices. Howev-
er, the use of the hypothesis tells us that the phase transi-
tion will also be a nonuniversal one similar to the hard-
square gas problem.

III. CONCLUSION

We proved the equivalence of the transfer matrix
developed in Ref. [9] with the conventional row-row
transfer matrix for the hard-square gas problem to which
the square-tiling model reduces in the low-temperature
region around 8=6/2A, =

—,'. We then argued that the
transition for the 3 X 3—2X2 around 8= —,

' is nonuniver-
sal as is known for the hard-square gas problem. The
small lattices studied could not locate the transition
point, calling for studies of larger lattices.
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APPENDIX: A SPIN REPRESENTATION
FOR THE 3- AND 2-TILE PROBLEM

It is known that the hard-square problem with NN and
NNN exclusion can be obtained as an extreme limit of an
Ising antiferromagnet, which has been studied extensively
using various techniques [18]. In this appendix, we show
that the 3-tile and 2-tile problem that occurs near
8=8/2A, =—,

' can also be described by a suitable antifer-
romagnet, though it will be a little bit more complicated
because it requires spins both on the real lattice and on
the dual lattice.

An inspection of Fig. 2 wi11 show that any
configuration of the 2-tiles and 3-tiles lattice can, as well,
be represented by lattice-gas variables (0 or 1) sitting on
the real lattice for the 2X2 tiles and on the dual lattice
for the 3X3 tiles. We will use greek indices to represent
the lattice sites and the variables on the dual lattice while
roman letters for the real lattice.

Let ~0 and t, be the lattice-gas variables sitting at the
dual site a and the real site i. The partition function, tak-
ing into account the hard-core restriction, can now be
written as

&. & [&Pli2[t~llg

[Vll

where s = g r and the factors would be zero if both the
involved sites are occupied. The product is over the a,P
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pairs, if they are first- and second-shell neighbors as ex-
plained in Fig. 2. P lies on the first or the second enclos-
ing square on the dual lattice. This comes from the
hard-core restriction of the 3-tiles. Similarly the 2-tile re-
striction translates into a single shell exclusion for ij
pairs. However, an occupied i site on the real lattice ex-
cludes lattice-gas particles from the neighboring two
shells of the dual lattice. Similar is the case for an occu-
pied dual site. The last factor is the weight factor for the
3-tiles, z for each one of them. The partition function re-
quires a summation over all the lattice-gas variables with
the perfect tiling condition:

4+t, +9+r =N'.

The above partition function can be represented by a
spin Hamiltonian. Using s;=2t; —1 and o. =2~ —l, the
mutual exclusion can be represented by an antiferromag-

netic interaction, so that for each type of bond that ap-
pears in the partition function we will have an antiferro-
magnetic coupling. For simplicity we choose all the cou-
plings to be the same. The tiling problem will be
recovered in the limit when this coupling goes to infinity.
The resultant Hamiltonian, incorporating the perfect til-

ing condition, is

H =J g s;s +J g cr oi)+J g s;r pg—r
[I jj, [a P]„

where the sums are over pairs which are mutually on the
excluded shell, the last term is the chemical potential for
the 3-tiles controlling its concentration. As we already
said, one can consider a more general Hamiltonian with
different couplings for different types of pairs. It is easy
to generalize spin representations for j- and (j+1)-tiles at
a cost of distant-neighbor interactions.
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