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Group-velocity dispersion (GVD) places a fundamental limitation on the resolution possible when
measuring the propagation time of short optical pulses through dielectric media. We show that due to a
nonlocal, quantum-mechanical effect, a surprising cancellation can occur in fourth-order interference, al-
lowing the time interval between photons emitted in spontaneous parametric down-conversion to be
measured without significant degradation of the resolution due to the spreading of the individual photon
wave packets. This may also prove useful for measuring the higher-order contributions to GVD.

PACS number(s): 42.50.Dv, 42.25.Bs, 07.60.Ly

I. INTRODUCTION

In the process of spontaneous parametric down-
conversion, pairs of photons are emitted simultaneously.
Although each photon is broadband, energy conservation
requires that the frequencies of the two photons in each
pair must always sum to the same fixed value. It has been
shown that due to this anticorrelation, “the dispersion
experienced by one photon can exactly cancel the disper-
sion experienced by the other in such a way that their
coincidence is maintained,” [1] if the two photons travel
through separate media which are chosen to have disper-
sive constants equal in magnitude but opposite in sign.
We have found a related nonlocal effect in which lowest-
order dispersive effects also cancel out, but which does
not rely on any such careful choice of materials, and
works even if only one photon of each pair travels through
a dispersive medium. This effect should occur in Hong-
Ou-Mandel interference [2], which is known to offer sub-
picosecond resolution in the comparison of the arrival
times of conjugate photons at a beam splitter. We have
proposed to exploit it in an experiment to obtain high-
precision measurements of the photonic tunneling time
[3].

Classically, the propagation of a pulse of light through
a dispersive medium engenders a broadening of the tem-
poral profile of the pulse. The broader the bandwidth of
the pulse, the larger the effect. This results in a funda-
mental tradeoff as shorter pulses are produced, since they
require larger bandwidths and therefore broaden more
quickly under the influence of dispersion than do longer
pulses. For example, an optical pulse with a 40-nm band-
width could be as short as 5 fsec, but after propagating
through 1 cm of SF11 glass, it would broaden to over 100
fsec. This group-velocity dispersion (GVD) would seri-
ously degrade the maximum resolution of such time-
measurement techniques as direct coincidence detection,
standard white-light interferometry, or the use of non-
linear media to determine the overlap of short, intense
pulses. Our calculations show, however, that to first or-
der, it should lead to no degradation whatsoever in the
resolution of the measurement possible with the Hong-
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Ou-Mandel interferometer, which is pictured in Fig. 1.
(By first order, we mean the linear variation of the index
of refraction with wavelength, which is the dominant
source of dispersive broadening. The next largest order
typically contributes less than 10% of the broadening.
The cancellation of the first-order GVD may prove useful
for making precise measurements of the second-order
contributions, which are usually overshadowed.) This
effect is nonlocal and fundamentally quantum mechanical
in origin.

In this fourth-order interferometer (that is, one in
which the interference occurs in coincidence counting;
see Fig. 1), an ultraviolet pump photon is down-converted
in a y'¥ nonlinear crystal into two conjugate infrared
photons (conventionally denoted signal” and ‘idler”)
whose frequencies w; and w; are individually broadband,

dispersive
@ medium

X crystal {

translatable
mirror

FIG. 1. The Hong-Ou-Mandel interferometer, shown with a
dispersive medium inserted in one arm (BS denotes beam
splitter). In the absence of this medium, the coincidence rate
falls to zero when the path-length difference between the two
arms is short relative to the coherence length (determined by
the filters F1 and F2) of the infrared photons reaching detectors
D1 and D2. This has been shown elsewhere to offer subpi-
cosecond resolution in the comparison of the transit times of the
photons in the two arms. When the medium is inserted, we ex-
pect the dip to be shifted by the corresponding group-velocity
time delay for the photon which travels through it. One might
also expect group-velocity dispersion to broaden the dip, de-
creasing the time resolution possible with this interferometer.
Our calculations show that, while the dip should indeed be
shifted by the expected amount, the leading order of GVD
should not contribute any broadening.
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but must add up to the original sharp ultraviolet frequen-
Cy w, in order to conserve energy. The two photons are
emitted on opposite sides of a cone centered on the pump
beam, conserving momentum. Two conjugate beams in
the horizontal plane constitute the arms of the inter-
ferometer. By the use of mirrors, they are brought to-
gether on the surface of a beam splitter. Detectors are
placed at the two output ports of the beam splitter, and
whenever both detect photons within an electronically set
time known as a gate window, a coincidence count is
recorded. (The width of this window is generally on the
order of a nanosecond, which is orders of magnitude
larger than the other time scales under consideration.)
As the path-length difference between the two arms is
slowly scanned, there is no variation in the singles count-
ing rates at these detectors. In general, the coincidence
counting rate is also constant. It vanishes, however, as
the path-length difference goes to zero such that the two
photon wave packets overlap at the beam splitter. This is
due to destructive interference between the two Feynman
paths leading to coincidence detection, one in which both
photons are reflected at the beam splitter, and one in
which both photons are transmitted. The width of this
coincidence dip is determined by the coherence length of
the down-converted light, or loosely speaking, by the
width of the photon wave packets. (The coherence length
is generally fixed by filters placed either at the output of
the crystal or in front of the detectors.) We have already
used this effect to demonstrate the phenomenon of quan-
tum erasure [4,5], and Campos et al. have presented a
general treatment of such interference [6]. One might ex-
pect that if a dispersive material were placed in one arm
of the interferometer, the dip would be shifted by the re-
sulting time delay for the photon in that arm, and also
broadened through dispersion. We show that while the
dip is indeed shifted by the group-velocity time delay ex-
perienced by the photon traveling through the dielectric,
the terms responsible for first-order dispersive broadening
(and in general, all odd orders) cancel out due to the fre-
quency anticorrelation of the conjugate photons. We
give simple interpretations of this result relying on
Feynman’s picture of interference and on the collapse
viewpoint. We also perform a more general calculation
which relaxes the assumption of slow coincidence gating.
This leads to the counterintuitive result that the time
resolution can decrease if the detector system is too fast.

II. DISPERSION CANCELLATION

The center frequency of the infrared photon wave
packets is selected to be wy=w, /2, and since their band-
width (typically determined by filters placed at one or
both detectors) is relatively small, we can expand the
wave number k(w) in the dispersive medium in a Taylor
series about w, as follows:

k(w)=ko+a(o—w))+Bo—w))+ -, (1

where we have kept only the lowest order which contrib-
utes to broadening. The group velocity is then
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do
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For light of bandwidth Aw traveling through a length d
of this material, group-velocity dispersion contributes a
broadening AT=~2Awfd.

The state of the light emitted by the crystal can be
written as follows:

W)= [do'f()|wg+0')lo—a), , (3)

V(@) ~1/a—2B(w—wy)/a* . (2)

where f(w)=f(—w) is a bandwidth function describing
the spectrum of the down-converted light after the filters,
and s and i label the signal and idler modes corresponding
to the two arms of the interferometer (see Fig. 1). Let us
now place a length d of our dielectric in the signal arm,
and some adjustable optical path length 8/ in the other
arm (by simply translating the idler mirror, or by the use
of a trombone prism arm, for example). The annihilation
operators for the modes 1 and 2 corresponding to the two
output ports of the beam splitter are related to those for
the signal and idler modes,

i ik(w))d 1 iw8l/c
_— +—_ . N
a (o) 5 a,(w,)e v a;(w))e “
i iw,8l/c 1 ik(wy)d
az(wz)—‘-/ja[(coz)e +~ﬁas(w2)e ,

where the factors of i come from the phase shift upon
reflection at a beam splitter, and irrelevant overall phase
factors have been dropped. These operators obey the
canonical commutation relations

[aj(a)} ),ak(wk )]:O 5

[a](w;),a{(w)]1=0, (5)
[aj(a)j),az(cok )]=8ydlw; —wr) jk=12.

If our coincidence gate window accepts counts for a time
T, then the rate of coincidences P, between detectors 1
and 2 is proportional to

fOTdt,fOszZW\E;(tl)E;(12>E,+(t1>E;(t2>|w> :
(©)

Omitting irrelevant normalization constants, which can
always be absorbed into the definition of the bandwidth
function, the positive- and negative-frequency field opera-
tors at detector j are defined by
—iot,
Ef(tj):fda);raj(a)f)e 5 ,
o (7
— — lw; 1.
E; (t)= [dojaf(w])e 7.
These introduce into Eq. (6) four frequency integrals,
which can be pulled outside the angle brackets and the
time integrals. Since the gate window T is typically much
larger than the reciprocal bandwidth of the light or the
expected dispersive broadening, the time-integrals yield
effective & functions in ot —w ™,

), (8)

. T it (0 —o)) _
lim f dtie !’ 7 7 «<bw; —o
o & j J

T-—>
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lifting two of the frequency-integrals and causing all
cross-terms between creation and annihilation operators
at different frequencies at the same detector to vanish.
The meaning of this is that all interference between
different frequency modes washes out over sufficiently
large time scales [7]; in the last section of this paper, we
will consider the limit where this assumption is no longer

|
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valid. Equation (6) reduces to
Pc‘x fdwlfd&)2<w*a¥(w1)a;(wz)al((l)l)az(wz)“y) .
9)

Defining o' =w,—w,=wy,—®,, and using Egs. (4), (3),
and (1), we evaluate the integrand

(Wlal(w)al(w,)a,(w;)ay(w,)|¥) = (¥lal(w)ai(wy)n ) nla,(0)a,(w,)|¥)

n

=(‘I/IaJ{(wl)a;(wz)IO)(Olal(ml)az(w2)|‘1’)

=[|{0la;(w)ay(w,)¥)|?

=|1(0l[a;(w;)a,(w,)e

iw151/1.‘+ik(mz)d__

i,81 /c+ik(w))d

1|2

a,(w))a;(w,)e

iwydl/c+ik,d_ . . Ca 2 . . , ,2
— ia(w —wl—wz)f(a)’)e (4} 0 [eta)ﬁl/c-Hd( aw' + P )_e iw'8l/c+id(aw' +Bw )] 2.
2 4

The factor in brackets on the last line represents the sum
of the Feynman amplitudes for the two indistinguishable
paths leading to a coincidence event, and we will see that
the interference term depends only on the phase
difference between these two amplitudes. The essence of
the physics is that the requirement that o, and w; add up
to w, causes both paths to acquire exactly the same phase
from the B(w—w,)* term, which is normally responsible
for dispersive broadening. The absolute square evaluates
to

(\IJIaJ{a;alazl‘P>=%|8(wl,—w,—wz)lef(w'”z
X[2_2Re(eZiw’Sl/c—Ziaw'd)] , (11)

which when we substitute into Eq. (9) and drop overall
numerical factors yields the final coincidence rate

! 1 L2

LIS ad
c

It is apparent that 3, the term responsible for group-
velocity dispersion, has canceled out in going from (10) to
(11), and does not appear in this expression. The dip is
centered at 8/ /c =ad, as expected from the group veloci-
ty v, =1/a. It has 100% visibility, and its width is deter-
mined entirely from the form of f(w), corresponding to
the coherence times of the photons emitted from the
crystal, as if there had not been any dispersive medium
present. This is the central result of our paper. Extended
to the general case, it says that all GVD due to variation
of the index with odd powers of the frequency cancels out
exactly. Even orders, on the other hand, persist. If an
identical dielectric is placed in the other arm, dispersive
effects will cancel out to all orders (odd and even).

It is worth remarking that the integral over the slow-
coincidence gate windows was a crucial step in this
derivation. Generally, the higher the time resolution
available for coincidence counting, the more accurate an

20"

P fdw'|f(a)’)[2 [l—cos

(10)

experiment can be. In this case, it turns out that as
T —0, one can no longer neglect the cross-terms we have
thrown away, and the full integral yields a complicated
function including beat notes between the different fre-
quency components of the photons. The envelope of this
function does not show the same sharp behavior as the
archetypical Hong-Ou-Mandel dip, but instead has a
large width on the order of the classical GVD prediction.
Thus, it is essential that the coincidence counter operate
on a slower time scale than the envelopes of the
broadened photon wave packets in order for the broaden-
ing not to manifest itself in the width of the coincidence
dip. (As pointed out earlier, this is always true in prac-
tice.) The reasons for this become clear with a more in-
tuitive discussion of the phenomenon.

III. INTERPRETATION

A simplified explanation of the Hong-Ou-Mandel dip is
that destructive interference occurs only when the two
photons overlap at the beam splitter. This picture needs
to be modified when frequency-dependent dispersion
comes into play. Specifically, the two photons are not in-
terfering with each other, and therefore need not overlap
in time. The interference takes place between the alter-
nate Feynman paths which lead to the same final state,
i.e., the same coincidence detection event. (In this case,
the term “event” must be taken in a strict sense to refer
to in principle indistinguishable outcomes only. A slow
coincidence counter cannot render two nonoverlapping
photoelectrons indistinguishable in the quantum-
mechanical sense.) What is necessary in order for in-
terference to occur is that the different Feynman paths
both lead to the same pair of detections. Thus, interfer-
ence between two paths will occur only if both paths
make detector 1 go off at a unique time ¢, and detector 2
go off at a unique time #,, such that while ¢; —¢, need not
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be zero, it is the same for both paths.

The photon which has propagated through the disper-
sive medium can be pictured as spread out into a
frequency-chirped wave packet. Under normal disper-
sion, for example, the redder part of the wave packet
would lead and the bluer part of the wave packet would
trail. We can then speak loosely of whether the redder
part or the bluer part of the photon wave packet excited
a given detector, knowing that for energy conservation to
hold, the conjugate part of the other wave packet must
excite its detector. Energy conservation must also hold
locally, so that as long as there is no uncontrollable dis-
turbance (for example, resulting from rapid shutters in
front of the detector), the energy of the photoelectron is
in principle a means of distinguishing different-frequency
photons. For this reason, a path in which detector 1 is
excited by a “blue” photon will interfere only with other
paths in which detector 1 is excited by “blue” photons.
(We use quotation marks because, in practice, all of the
photons are infrared.) In the Feynman path where both
photons are transmitted, the idler photon reaches detec-
tor 1 at a time determined by free-space propagation,
which we will consider our reference point. Suppose that
detector 1 absorbs the “blue” part of this photon wave
packet. Then the “red” part of the signal-photon wave
packet, which reaches detector 2 sooner than the center
of the pulse, excites detector 2. (See Fig. 2.) In the alter-

(a) Transmission-transmission

(b) Reflection-reflection

FIG. 2. The two Feynman paths leading to coincidence
detection of a “blue” photon at D1 and a “red” photon at D2.
The letters #, g, and b label different frequency components of
the photon wave packets; the photon which has traveled
through the dispersive medium exhibits a positive frequency
chirp. In (a), both photons are transmitted at the beam splitter.
In (b), both photons are reflected. Despite the dispersive
broadening in the signal arm, these two paths are fundamentally
indistinguishable since in both cases, the detection event at D1
lags the detection event at D2 by the same amount 5.

nate Feynman path, where both photons are reflected at
the beam splitter, it is the idler photon which reaches
detector 2, with no delay, but it is the “red” part which
must be registered in order for there to be interference.
The “blue” part of the signal travels through the dielec-
tric, and reaches detector 1 a little later than the center of
the pulse. Thus our two paths are as follows: one in
which detector 2 is excited a little bit early, and one in
which detector 1 is excited a little bit late. In both cases,
the time lag is exactly the same. As the time of emission
of the photon pairs is fundamentally unknowable [8],
these two final states are equivalent, and can interfere.
The meaning of this is that even though only one photon
travels through the dielectric at a time, which photon
does so is undetermined. Hence the effect is a nonlocal
one. For this reason, two photons can sample two

uv x

(a) Transmission-transmission

(b) Reflection—-reflection

FIG. 3. The collapse picture applied to the two component
product states present in the output of the interferometer which
lead to nonzero amplitudes for coincidence detection. We use
D1 as our trigger, projecting the state of the light incident on it
onto a minimum-uncertainty wave packet. We can now deter-
mine our coincidence rates simply by considering what the fields
are at D2 contingent upon this trigger detection event. In (a),
where both photons are transmitted at the beam splitter, this
leaves the light incident on D2 in a wave packet which displays
positive frequency chirp, such that the “blue” trails the “red.”
In (b), both photons are reflected, but as explained in the text,
the light incident on D2 still collapses onto a state with positive
frequency chirp. The wave packets from (a) and (b) have total
overlap when the optical path-lengths are properly balanced,
and interfere destructively because of the phase shift at the
beam-splitter. We show that this overlap should fall to zero
when the path-length imbalance is of the order of the coherence
length of the photons, regardless of the amount of first-order
GVD.
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different values of a frequency-dependent index simul-
taneously, in such a way that any linear dependence on
frequency (or more generally, any odd order) has no effect
on their relative times of arrival, nor consequently on
their ability to interfere upon coincidence detection.

An alternative description of the same phenomenon in-
volves the collapse picture. Frequently, coincidence-
counting experiments can be simply understood by postu-
lating a collapse of the wave function upon detection of
the ‘“trigger” photon, and then calculating the singles
rate at the other detector, contingent upon this first event
[9]. In this way, fourth-order interference reduces to the
more familiar second-order problem. The system under
consideration is linear. Therefore we can postulate a von
Neumann projection of the state of the system onto one
in which the photon is in a minimum-uncertainty wave
packet just prior to detection. Furthermore, since we are
dealing with an entangled state, we can perform this pro-
jection separately on each of the component product
states and then form the superposition of their separate
detection amplitudes at the second detector.

Let us use detector 1 as our trigger. (See Fig. 3.) Then
in the first of the two interfering paths (“transmission-
transmission”), an idler photon arrives without having
traveled through the dielectric. Projecting this photon
onto a minimum-uncertainty packet collapses the system
into a state in which the photons were both emitted in
minimum-uncertainty wave packets from the crystal.
The signal photon, having traveled through the dielec-
tric, will thus have developed a positive frequency chirp
by the time it reaches detector 2, such that the blue trails
the red. In the second of the two paths (“reflection-
reflection’), on the other hand, it is the signal photon
which triggers detector 1, after having traveled through
the dispersive medium. However, we still collapse the
state onto a minimum-uncertainty wave packet. Since
the dielectric contributes a positive frequency chirp, this
involves collapsing the state onto one where the signal

photon was emitted from the crystal with a negative fre-
J

6663

quency chirp which exactly compensates the dispersive
broadening. (We can see this by considering the time-
reversed path of the photon’s propagation through the
dielectric.) The conjugate idler photon must then have
been emitted with a positive chirp (such that the sum of
the signal and idler frequencies is constant, and equal to
the pump frequency). It retains this chirp upon propa-
gating to detector 2. Thus, when it arrives at the detec-
tor, it has perfect overlap with the signal photon from the
first Feynman path, allowing complete destructive in-
terference to occur, undiminished by the spreading of the
wave packets. By perfect overlap, we mean that each fre-
quency component of one wave packet coincides in time
with the corresponding frequency component of the other
wave packet. This overlap falls to zero when the chirped
wave packets are displaced relative to one another by an
amount comparable to the coherence length. This is be-
cause the portions of the wave packets which coincide in
time no longer coincide in frequency. For this reason,
the width of the interference dip is still determined by the
coherence length, regardless of the amount of dispersion.

IV. INFINITELY FAST DETECTORS

Let us now reexamine Eq. (6), making the assumption
that we have access to detectors and a coincidence box
which are fast relative to the other time scales in the
problem. (At present, this is experimentally unrealistic.)
A coincidence event is then labeled by two times ¢, and
t, corresponding to the detection times at each detector,

P.(ty,t5) = |[{OIE{ (1) )E S (1,)|W)]* . (13)
We write this matrix element M
[ [dodoe "7 2 (0a,(0))ay ()W) . (14)

Without loss of generality, let us set £, =0 and drop the
subscript on ¢,. As before, we define 0’ =w,—w, and in-
stead of Eq. (10), we find

M« fdwre wiwztf(w, )eiwoal/c+ik0d(eiw'51/c+id(—aw'+B¢o’z)__e ~iw'51/c+id(aa)’+ﬁ(u'2))

iwgdl /c—iwgt +io't —ikyd +ifde
sin

S —Zifda)'f(m’)e

We define the path-length difference
7=08l/c—ad (16)

. oGl /e —iogt—ikyd
and neglect the overall phase factor —ie ° @0t o,

In addition, let us assume the spectrum to be a Gaussian
shape with rms width o so that

f(Cz)')OCe_w'2/402 ' -
Substituting Eq. (17) into Eq. (15) and integrating, we find

P(0,t) < || M||? < e 22 +1? 4, —2alt—1)
—2e —2a;2e—2a#cos(4bt¢) , (18)

where we have defined

S all. (15)
c
[
a=Re 1 1 =[o0 " 2+(40Bd)*]"",
— —4ipd
i 1 (19)
b=Im I =(40Bd)a .
— —4ipd
o
The width w’ of the Gaussian functions is just
2 172
= 1 = L 2
w v o +(20Bd) ] , (20)

which is exactly what one expects for a wave packet of
bandwidth o which at first has a minimum-uncertainty
width and then undergoes GVD broadening. Note that b
is greater than a by the ratio of the GVD broadening to
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FIG. 4. These graphs show the predicted coincidence rate P, as a function of the electrical delay setting ¢ of the coincidence box,
for several different values of the optical path-length difference 7 inside the interferometer. (As explained in the text, they can equally
well be seen as graphs of P, vs 7 for several values of z.) All times are in units of the coherence length w, of the infrared photons, and
the count rates are in arbitrary units. In (a), there is no GVD and the “broadened width” w’ of the photon wave packets is equal to
wy. We see that the temporal width of the coincidence distribution is unity, as expected, and that the overall coincidence rate falls to
zero for small 7. In (b) and (c), the GVD is equal to and 5 times greater than the coherence length, respectively. The patterns
broaden, but also show temporal beating. It is less obvious, but the integrated coincidence rates still fall to zero as sharply as in (a).
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FIG. 5. These eight graphs are of the coincidence rate P, in
arbitrary units vs the optical delay 7, integrated over several
different hypothetical electronic gate windows. They are nu-
merically integrated from the formula graphed in Fig. 4. The
left-hand column shows the usual Hong-Ou-Mandel dip, in the
absence of dispersion, and the right-hand column shows the cor-
responding curves for strong GVD (“broadened width” w'=5,
in units of the coherence length w,=1). Notice that once the
gate window T is long compared to the width of the broadened
photon wave packets, the sharp behavior of P, is regained.

the unbroadened width.

The meaning of Eq. (18) is that broadened wave pack-
ets are visible at # == and that when they begin to over-
lap each other (i.e., when ¢ and 7 are both near 0), in-
terference terms show up. Figures 4 and 5 demonstrate
this. The frequency of the interference terms is deter-
mined by 7 and by the group-velocity dispersion. In
essence, the time delay between the two chirped pulses
translates into a frequency shift and thus a beat note. It
is interesting to observe that the equations are entirely
symmetric under exchange of ¢ and 7, that is, of the delay
setting of the coincidence box and of the optical path-
length difference inside the interferometer. One simple
consequence of this is that in analogy with the original
Hong-Ou-Mandel experiments, infinitely fast detectors
would never register perfect coincidences at zero elec-

6665

tronic delay, regardless of the path-length difference.

Because of this mathematical similarity, Fig. 4 can ei-
ther represent the coincidence rate versus electrical delay
for several values of the path-length difference, or the
coincidence rate versus path-length difference for several
different values of the electrical delay. In general, these
plots all show broadening from GVD. When a real ex-
periment is carried out, however, using relatively slow
detectors, the data taken at each value of the path-length
difference corresponds to the integral of one of these
curves. The surprising cancellation effect is less obvious
from these curves than from the simplified calculation,
but for T — «, the integral yields

PC(Il_e—2a72e—(4br)2/8a:l_e_#/zwtz) , 21)
where wy,=1/20 is the unbroadened width of the photon
wave packets. This is exactly the same result we get by
substituting Eq. (17) into Eq. (12). For values of T other
than O and o, the integral must be evaluated numerical-
ly, and in Fig. 5 we show that once T is large compared
to the GVD broadening the coincidence rate does in fact
show an unbroadened dip at zero path-length difference,
and remains constant once 7 is greater than the coher-
ence length, regardless of the amount of dispersion.

V. CONCLUSION

We have shown that even with only one dispersive
medium, the Hong-Ou-Mandel interferometer should al-
low a peculiar cancellation effect to take place between
the dispersion experienced by different photons with an-
ticorrelated frequencies. This is a fundamentally
quantum-mechanical effect with no classical analog, de-
pending as it does on nonlocal correlations. This
phenomenon makes the use of such interferometers even
more promising for carrying out high-precision measure-
ments of the time intervals between photons traveling
through various media, regardless of the classical group-
velocity dispersion of the materials in question. It also
appears to offer a way of measuring the higher-order con-
tributions to GVD.

Note added in proof. Since the original submission, this
prediction has been experimentally verified [A. M. Stein-
berg, P. G. Kwiat, and R. Y. Chiao, Phys. Rev. Lett. (to
be published)].
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