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Optical bistability in a dye-ring cavity
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The optical bistability in a dye-ring cavity has been investigated by using the derived Maxwell-Bloch

equations based on the band model. It is shown that the bistable conditions and behavior are closely re-

lated to the band structure of the dye molecules.
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I. INTRODUCTION

A dye laser which is easily tunable over a wide range of
frequencies has been of considerable experimental [1,2]
and theoretical [3—5] interest. Recently, Fu and Haken
proposed a band model of the dye molecules [3]. In this
model, an organic dye molecule is assumed to have an
effective electron and an energy-level diagram consisting
of a continuous bandlike ground state with many vibron-
ic sublevels and an excited singlet state (see Fig. 1). The
excited singlet state can interact with the vibronic sublev-
els of the ground state, but there is no interaction among
the vibronic sublevels themselves. This band-model
theory gives an acceptable explanation for the recent ex-
periments done by Hillman et al. [1].

Although the optical bistable behavior of dye systems
has been studied in some papers by using a two-level [6],
four-level [7], or six-level model [8], it is necessary to con-
duct further investigation according to the bandlike
feature of the dye molecular-energy structure.

In this paper, we investigate theoretically the optical

bistability in a unidirectional cavity (Fig. 2) in terms of
the band model. For simplicity, we assume that mirrors
3 and 4 have 100%%uo refiectivity, and call R and T (with
R +T= 1) the refiection and transmission coefficient of
mirrors 1 and 2. We describe the dynamics of the cou-
pled system (molecules plus radiation field) by the
Maxwell-Bloch equations. We obtain that the bistability
can be realized in a wide frequency range.

The paper is organized as follows. The Maxwell-Bloch
equations and the boundary conditions for the unidirec-
tional cavity are presented in Sec. II, the general bistabili-

ty is studied in Sec. III, the bistable behavior for some sit-
uations is analyzed in Sec. IV, and a summary and con-
clusions are given in Sec. V.

II. MAXWELL-BLOCH EQUATIONS

Let E (E„)and ~(t & ( ~P„& ) be the eigenvalue and eigen-
function of the single excited state (nth sublevel of the
ground state). The wave function ~4& of a dye molecule
can be expanded as

I@& =c(t)lg&+g c„(t)~P„& .

The Schrodinger equation for a molecule with an effective
election in an applied electric field F(z, t ) reads as

iA'c(t)=Ec(t )
—g c„(t)e„F(z,t),

4 y

FIG. 1. Relevant energy diagram for an ideal dye molecule.
E and E„represent, respectively, the singlet excited state and
sublevels of the ground state, A5 is the sublevel spacing, yd and
y, denote the decay rates.

FIG. 2. Ring cavity. Al and AT are the incident and
transmitted fields, respectively.
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itic„(t ) =E„c„(t) c—(t )8„*F(z,t ), (3) y„=v„cos(cut —kz ) + u„sin(rut —kz ),
where F(z, t ) is assumed to be quasi monochromatic, i.e.,

F(z, t ) = A (z, t )cos(tot —kz ), k =coIc, (4)

8 8'=f 8 (5)

where the positive number 8 stands for the typical ampli-
tude of the dipole matrix element, the distribution func-
tion f„ is assumed to be symmetric about the zeroth sub-
level (i.e., about the center of the band) [3], namely
f„=f „(n =0,+1, . . . , +M with 2M+1 being the total
number of the sublevels), and is monotonic,

in which A (z, t ) is the slowly varying amplitude of
F(z, t), 8„=—(P~ez~P„) is the transition dipole moment
from the nth sublevel to the excited state, and 0„* is its
complex conjugate. We can write [3]

N is the number density of dye molecules,
b,„=coo —ru„=(E„E—o)lfi is the detuning of the nth
sublevel from the central sublevel, 5=coo—co is the de-
tuning of the field-carrier frequency tu from coo, and p, y„
and yd are, respectively, the relaxation rates for u„(v„),
w„, and w. Here we have assumed that the dye molecules
are all in their ground state when the field is absent [i.e.,
we have written wo= —1 in Eq. (15)] and have assumed
the loss to occur only at the mirrors (i.e., the cavity decay
is negligible). In obtaining Eqs. (12) and (13), we have
used the relation c„(t)c"(t) (m&n ) =0, which has been
justified by Ref. [3].

The coherent field AI enters into the cavity from the
left and drives the dye molecules. For a perfectly tuned
cavity, the relations between AI, and the transmitted
field A r, and the fields A (0) and A (L) are [9]

fo fi- '—' ~f &0 (6)

The electric field F(z, t) satisfies the Maxwell wave
equation

A (L ) = A r I'tIT,

A(0)=+T At+RA(L ),

(19)

(20)

VF 1 BF 4 BP
c2 gt~ c2 cjt2

x„=c(t)c„'(t )8„"+c "(t )c„(t)8„,
y„=i [c(t )c„'(t )8„* c'(t )c„(t)8„—],
z„=c„(t)c„*(t)8„8„*,

w=c(t)c*(t) .

(9)

(10)

From Eqs. (2)—(4) and ( ' —(ll), by using the slowly-

varying-envelope assumption and by taking into account
phenomenologically the molecular relaxation, we obtain
the following Maxwell-Bloch equations

u„= —pu„+ (6„—5 )u„,

f„8 A
u„= —pu„—(b,„—A)u„+ (w —w„),

(12)

(13)

where P is the polarization (dipole moment per unit
volume) which is determined by the Schrodinger equa-
tion. Thus the light-matter-interaction problem can be
solved self-consistently by combining the Schrodinger
equation [Eqs. (2) and (3)] and the Maxwell equation [Eq.
(7)].

In order to facilitate the following study, we define the
modified Bloch variables:

where L is the length of the molecular sample, and the
second contribution on the right-hand side of Eq. (20) de-
scribes a feedback mechanisms due to the mirror which is
essential to give rise to bistability, namely, there will be
no bistability if R =0.

III. STEADY-STATE BEHAVIOR

We assume for simplicity that the sublevels have equal
spacing A5, then 6„=n 5. Now we consider here the situ-
ation

~
b,

~

~ M5, i.e., the field frequency co is resonant with
the molecular transition frequency from some nth sublev-
el to the excited singlet state.

Setting all time derivatives in Eqs. (12)—(16) equal to
zero for the steady state, after simple calculations, we ob-
tain the normalized field amplitude A ' as follows:

dA'
dz

A'= —a g A =
1+—,

'A' g

0

ep), )'" (21)

(22)

where a =2vrNk 8 IAp is a typical linear absorption
coefficient per unit length, g is the resonant factor defined

by

Aw„= —y, w„+ v„,
2A

iu = —y„(1+w )
— g v„,A

n

A = —c +2irNru g u„,
~ aA

az

(14)

(15)

(16)

I+(5'„5') + ,'yf„A'——
which depends on both the field frequency detuning (b, ')
and field intensity ( A

'
) and is a monotonically decreas-

ing function of A' and b, ' (in proving this fact, we have
used the monotonic property of f„[Eq. (6)]). Here we

have introduced the notation

x„=u„cos(rut —kz ) —v„sin(cut —kz ), (17)

where w„=c„(t)c„'(t)=z„lf„8,u„and v„are the slow-

ly varying amplitudes given by

(23)

In the mean-field limit [9] A'(z) is assumed to depend
slowly on z so that
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A '(z )g(b, ', A '(z ) )
dz

1+—,
' A'(z)g(&', A'(z))

A'(L)g(b, ', A'(L))
1+ & A'(L)g(b, ', A'(L))

(24)

200.D

150.0

Using the boundary conditions (19) and (20), we obtain
the mean-field state equation

+ 2Cxg(b, ', x )y=x+
1+—,'x g(h', x)

1DO.O

OA z. 0AI aL
$(pyd 7 )1i2 '

g(pyd 7.)1/ 2' 2T

(25)

We can see from Eq. (25) that this optical system can lead
to bistability. Generally, the bistable behavior relates to
the band structure.

Equation (25) can be rewritten as

5P 10.0

frequency detun|ng

15.0
I

20.0

Y=X[1+Cf(b', X)]

where Y=y, X=x, and

2g (b, ',X)
1+—,'Xg(h', X)

(26)

(27)

FIG. 3. The plot of C (:—aL/2T) vs 6' (frequency detuning)
for the band parameters I =20.0 and (=10.0. This set of pa-
rarneters is used for Figs. 3 and 4. Curve a corresponds to the
band model, and curve b to the two-level model.

The critical point (at the onset of bistability) is given by
d Y/dX=d Y/dX =0 [10],hence the bistable threshold
can be solved as follows:

3f'(XC )+2XCf"(Xc) =0,
C„;,= [f(XC)+2X—,f'(Xc)] (29)

The optical bistability exists when C) C„;,. Equations
(28) and (29) can be numerically solved and lead to the re-
sults for the critical threshold as a function of 6' and of
the band-structure parameters (f„,b,„). In the next sec-
tion, we will discuss a typical situation of the system.

const

I+cr /I
(33)

ly than its counterpart in a two-level system (i.e.,
I/(I+6, '

)), hence for a given C (&4), Eq. (32) can be
satisfied in a much larger domain of 6'. In other words,
bistability in a dye-ring system can be realized in a much
wider frequency range.

In the following numerical analysis, we assume that the
band is continuous, and that the distribution of dipole
moments f, as a function of o, be a Lorentzian function
of width I, i.e.,

IV. THE BISTABLE BEHAVIOR FOR 7 (( 1

2Cxg ( b, ')y=x+
1+—,'x g(h')

(30)

g(&') =
1+(6'„—5') (31)

It is shown that g(b, ')=1 as b, '=0, and g(b, ') &1 as
b, '%0 [3].

Using Eqs. (28) and (29), we obtain

C„;,g(b, ') =4 . (32)

This is the bistable threshold condition for the dye-ring
cavity. From Eqs. (31) and (32), we can see that bistabili-
ty is impossible for C (4; for a fixed value of C )4, bista-
bility exists in a finite domain of 6 . Equation (31) shows
that when b, ' increases, g(b, ') decreases much more slow-

Now we consider the situation for y &(1, which means
that the population of the sublevels decays much faster
than that of the excited singlet state [3,5]. In this case w„
are much smaller than w, u„, v„, and A in Eqs. (12)—(16)
and can be ignored. Equations (25) and (22) then become

where const is to be determined by the normalization
condition g(0) =1. Equation (32) then becomes

(34)

where g is the half-width of the band.
Setting the band parameter I =20.0, (=10.0, we ob-

tain the plot of C versus 5' as shown in Fig. 3. In this
figure, curve a corresponds to Eq. (34) (for the band mod-
el), whereas curve b is the counterpart in the two-level
model [corresponding to f(o ) =5(o ) in Eq. (33)]. These
two curves coincide at the point 6'=0, C =4. Since for a
given C ()4), bistability can be realized when ~b, '~ & b,, ',
we can see clearly from the figure that the frequency
range for the realization of bistability in the band model
is much wider than that of the two-level model. For ex-
arnple, if we set C=10.0, the bistability can occur within
the whole half-width ( ~b, '~ & 10.0) in the band model, but
in the two-level model, ~6'~ & 1.2.

Setting the same band parameters as for Fig. 3, we ob-
tain the plot of transmitted light versus incident light as
shown in Fig. 4, in which curve a represents the bistable
curve based on Eq. (30) for C = 150.0, b, '=5.0; curve b is
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bistable curve in the band model are identical with that of
the two-level system; but when 6'WO, in the two-level
system the bistable threshold value C„;, strongly depends
on 6' and the range of transmitted light in the hysteresis
cycle is very narrow (curve b in Fig. 3), whereas in the
case of the band model, within the limit ~b, '~ ~ 10.0, the
threshold value C,„;, is nearly a constant (curve a in Fig.
3), and the bistable hysteresis curve is very close to the
largest cycle (corresponding to b, '=0) as shown by curve
c in Fig. 4.

V. CONCLUSION

0.000 100.D )50.0 200.0

FIG. 4. The plot of transmitted light vs incident light; (curve
a) for the band model with C=150.0 and 5'=5.0, and (curve b)
for the two-level model with the same C and 6'. Curve c is the
bistable curve for both models with C =150.0 5'=0.0.

In this paper, we have derived the Maxwell-81och
equations for a dye optical system based on the band
model. By using these equations, we have described the
optical bistability in the framework of the mean-Aeld lim-
it, and have shown that, in the case of 6' smaller than the
half-width of the band, the bistable threshold value C„;,
is nearly a constant and the hysteresis is very close to the
largest cycle, so we can see clearly that the bistability can
be realized in a wide frequency range.

the counterpart for the two-level model with the same C
and 5', and curve c is the bistable curve for both models
with 6'=0.0, C=150.0. Figures 3 and 4 clearly show
that when 6'=0, the bistable threshold condition and the
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