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Phase from Q function via linear amplification
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We relate the phase distribution of a quantum state obtained by integrating its corresponding Q func-
tion over radius {1) to a specific measurement scheme using a linear amplifier and {2) to a particular
phase operator. A simple relation between the P distribution of the amplified macroscopic state and the

Q function of the initial unamplified microscopic state allows us to prove the identity of the phase distri-
butions obtained by integrating the corresponding distributions.

PACS number{s): 42.50.Dv, 42.50.Ar

To find the phase distribution of a quantum state is a
nontrivial task. The reason for this is that Hermitian
phase operators are rare [1]. However, one approach
that is free of any such problems immediately offers itself:
Express the Wigner function of this state that is ordinari-
ly given in the (dimensionless) variables, coordinate x and
momentum p, in polar coordinates, radius r and angle cp,

and integrate over the radius [2]. The resulting distribu-
tion W' ' is periodic in the "phase angle" y and, for
various examples of states, it satisfies all properties re-
quired by a proper phase distribution. What prevents us
from subjecting the Glauber P distribution [3,4] or the Q
function [5] to this very procedure? Is it the fact that the
resulting phase distributions W„' ' or W ~' are different
from the Wigner-function —borne curve 8" '? Which of
the three curves, if any, is the true phase distribution.

In the present article we address these questions and
show that the curve WP' obtained from the Q function

by integration over the radius corresponds to a specific
experimental scheme [3, 4] for measuring the phase: We
amplify the original quantum state depicted in Fig. 1

schematically by a "blob" located in the neighborhood of
the origin of phase space by a phase-insensitive linear
amplifier to a state whose average number of photons is
so large that our conventional notions of phase apply.
Hence the Glauber P distribution P(t;ct) of the final, that
is, the amplified state, is that of a classical state, and in-
tegration over the radius shown in the lower right magni-
fying glass yields the phase distribution W '. We show
that this distribution is identical to that obtained by in-
tegrating the Q function of the original state over the ra-
dius. This corresponds to probing the internal structure
of the Glauber P distribution of the original state by
coherent states of identical phase aligned along a ray, as
indicated by the lower left magnifying glass of Fig. 1.
This example also demonstrates most clearly the
inhuence of the measuring device —the amplifier —on
the investigated quantum system. This is reminiscent of
the idea of Refs. [6] and [7] of probing a quantum state

described by the Wigner function with a measuring de-
vice in a coherent state. Here we carry this concept over
to the Glauber P distribution. We conclude by relating
the calculated phase distribution W'~' to a phase opera-
tor [4].

Our goal is to connect the phase distribution

W' '=— da czPt;ae'+ (1)

obtained by integrating the P distribution of the amplifted
state over radius la l, to

W'~'—:J dla allQ(t c= 0; alel'~), (2)

that is, to the curve obtained by integrating the Q func
tion of the initial, unamplified state

The amplification process forces the density matrix
p(0) of this state, expressed in the coherent-state repre-
sentation [8]

p(0)= I d a OP(t 0=0;a 0) alo)(az l, (3)

to evolve to

Here P(to=0;uc) denotes the Glauber P distribution in-

dicated schematically by the blob in Fig. 1 and

P(t;a)= I d acP(t;alto=0;ac)P(to=0;ac),

where P(t;alt Oo;a )isothe conditional quasiprobabili-
ty.

The relation between W' ' and S'~' becomes immedi-

ately apparent when we model the linear amplification
process by an inverted harmonic oscillator coupled to a
heat bath consisting of ordinary harmonic oscillators [9].
In this case the conditioned quasiprobability in an ap-
propriately rotating frame reduces [9,10] to
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P(t;alto=0;ao)=m 'N(t) 'exp( N—'la —aoe"' ),
(6a)

Q function of the initial, unamplified state following from
Eq. (3},

where

N( t) =(1+& n & )(e "'—1) . (6b)

Q(t =0;a)=sr '&alp(0) la &

=sr ' f d aol&alao&l P(to=0;ao) .

P( t;a l to =0;ao) =—(n e ") 'exp( —e "la—aoe"'l ) .

(7)

When we substitute Eq. (7) into Eq. (5) the Glauber P dis-
tribution of the amplifie state reads

P(t;a)= (~e "')—' f d aoexp( —lae "—aol )

XP(to=0;ao} . (8)

This expression we now compare with and contrast to the

Here Ic and &n & denote the amplification constant and
the mean number of photons of the heat bath, respective-
ly. We now focus on the limit of strong as well as most-
quiet amplification, that is, ~t))1 and &n &=0. These
conditions simplify Eq. (6) to

Comparison between Eqs. (8) and (9) yields the relation

P(t;a)=e"'—Q(to=0;ae "), (10)

which is valid in the limit of strong amplification, that is,
a t ))1 and & n &

=0.
We have thus found a rather simple description of the

amplification process: We obtain the Glauber P function
for the amplified field by first calculating the Q function
for the initial field and then displacing this distribution
toward higher photon numbers. Hence we can formally
divide the amplification process into two steps. The first
step accounts, once and for all, for the amplifier noise
(note that the Q function is the most strongly smeared-
out quasiprobability distribution, compared to Glauber s
P function and Wigner's W function), while the second
step describes noiseless amplification [11].

When we substitute Eq. (10) into Eq. (1), that is,

IIr' '= f dial lale ""'Q(to=0;lale' e "),
and introduce the new integration variable

a= lale—

With the help of the nonorthogonality relation of the
coherent states

f&alao&l =exp( —la —aol ),
we arrive at the familiar expression

Q(to=0;a)=n. ' f d aoexp( —la aol —)P(to=0;ao) .

(9)

FIG. 1. We amplify a quantum state, depicted here by the
"blob"—a pictorial representation of its P distribution. Initial-
ly this state rests close to the origin of the Rea-Ima phase
space. The quanta of energy fed into the state from the
amplifier displace the blob from the origin. Moreover, the
amplification process introduces quantum noise, which causes
the blob to grow in size, as if to bury all singularities and nega-
tivities; that is, a11 abnormalities the initial P distribution might
have had. The P distribution of the amplified state is always
positive and classical. Integration of this distribution over the
radius, that is, the overlap of this state with the divergent but
infinitesimal thin beam, as indicated in the lower right magnify-
ing glass, provides the phase distribution W' '(p(t) ) of the
amplified state. To probe the onginal, unamplified state p(0)
with coherent states aligned along the ray at angle y, that is, to
calculate the overlap of this P distribution with this finite-sized
"one-way street" shown in the lower left magnifying glass, cor-
responds to the phase distribution W~~'(p(0)). The latter re-
sults from integrating the Q function of the original state over
the radius. In the limit of strong but quiet amplification the two
areas of overlap in the lower magnifying glasses are identical,
that is, W~ '(p(t ) ) —= W'~'(p(0) ).

we arrive at

II","=f "dial lalQ«o=0, ale") .

According to Eq. (2), we then find the interesting proper-
ty

w'" = w'~'

that is, the phase distribution obtained by integrating the
Q function of the initial state is identical to that found by
integrating the P distribution of the final state

Hence we have connected the abstract idea of obtain-
ing a phase distribution of a quantum state by integrating
its Q function over the radius with a specific experiment:
We first amplify the quantum state of interest to a classi-
cal state and then find its phase-probability distribution.
We may also interpret this result in the spirit of the left
magnifying glass of Fig. 1: Our measuring device —the
linear amplifier —is not an infinitely thin divergent beam,
but it has a finite width corresponding to the aligned
coherent states.

We are now able to relate the phase distribution 8"~'
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of Eq. (11) to the distribution associated with the opera-
tor [4,12]

1(e'"q'), —:—f dy e'"~
77 —7r

X f "dial lal I
lale'&)(lale'&I . (12)

0

Its expectation value in a quantum state described by a
density matrix p= p( t) reads

((e'"~), ) = f dipe'"~a

X f d al lal( lale'+lp(t)llale'~)
0

or

((einy) ) — d einyW(Q)
OP

Hence

8" '=m ' d a a ae'~p t ae'+

= f "dial lalQ«;lale'),
0

that is, the phase distribution obtained by integrating the
Q function of this state over the radius does indeed allow
us to calculate the expectation value of the phase opera-
tor equation (12).

We conclude by summarizing our main results, shown
schematically in Fig. 1. In the limit of strong but quiet
amplification, the P distribution of the final amplified
state is identical to the Q function of the original
unamplified state displaced by the numbers of photons
fed in by the amplifier, as expressed by Eq. (10). Conse-
quently, the phase distributions W& '(p(t)) and
WP'(p(0) ), obtained by integrating the two distributions
over the radius, are identical. When we first amplify a
quantum state to a macroscopic state and then homodyne
it with a classical field, we measure the phase distribution
[13], which corresponds to measuring the integrated Q
function of the initial quantum state. The phase operator
equation (12) describes such a phase measurement.

We can also state these results slightly differently: An
experiment that reads out the phase distribution of a
quantum state with a coherent-state —phase-space strip of
finite width such as a laser state rather than with an
infinitely thin phase-space beam, measures the integrated
Q function rather than the integrated Wigner distribu-
tion.
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