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Inertia and break of self-organized criticality in sandpile cellular-automata models
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We present a sandpile cellular-automata model that includes the effects of inertia. The model is stud-

ied in both one and two dimensions. We find that the model changes the normal self-organized critical
behavior, creating a dominance of big events in the system and leading to very large fluctuations in the
mass of the system. We show that those changes of behavior can only be noticed in large sandpiles,
which is in accord with previous experimental results.

PACS number(s): 05.40.+j, 64.60.Ht

I. INTRODUCTION

In a series of papers Bak, Tang, and Wiesenfeld [l] in-
troduced the concept of self-organized criticality (SOC).
Some extended dynamical systems can evolve into a sta-
tistically stationary state where events, i.e., avalanches of
all sizes are observed with no spatial and temporal corre-
lations between them. The distribution functions of those
events display a power-law behavior. This so-called criti-
cal state is an attractor of the dynamics of the system.
This discovery suggests a rather general dynamical mech-
anism for the emergence of scaling and fractal behavior
in nature.

The prototypic example of SOC has been the sandpile
cellular-automata model [l]. Consider a sandpile, in
which grains of sand are added one by one. Topplings
will happen when the local slope reaches a critical value.
If we begin with a flat surface, initially the grains of sand
will simply accumulate on the surface. However, after
some time, the sandpile will evolve to a steady state in
which its slope fluctuates around an average value. In
this statistically stationary state the amount of sand add-
ed to the system is balanced, on average, by the amount
of sand that falls out of the edge, and the fluctuations ob-
served in the total mass of the sandpile are extremely
small relative to its total mass. Once the sandpile is in
this state, the addition of a single grain of sand can
trigger an avalanche of any size. The distribution func-
tions of the size and duration of those avalanches obey a
power law.

In the real world this theory has been successful in ex-
plaining the behavior of earthquakes [2]. It provides a
simple explanation for the observed Gutenberg-Richter
power-law distribution of earthquake sizes. However, in
experiments on real sandpiles this behavior was not fully
observed [3,4]. At least one experiment tried to repro-
duce the features of the sandpile model in detail [4]. Sin-
gle grains of sand were dropped in the center of the pile
only after a full relaxation of previous avalanches. The
drop-number distribution function was measured. For
small sandpiles the drop-distribution functions obeyed

the scaling laws observed in the cellular-automata sand-
pile model. However, as the size of the system grew
larger, there was a transition in the behavior of the pile.
Big events became dominant and the relaxation of the
system was done through those big events, leading to a
fluctuation pattern of the total mass which was quite
similar to the time histograms observed by Jaeger, Liu,
and Nagel [3]. They also observed that the profile of the
sandpile, after those big avalanches, became concave.

We argue that the reason for this is probably the effect
of inertia and energy dissipation present in real sandpiles.
Real sandpiles are driven by gravitational forces. Be-
cause of inertia, large avalanches cannot be stopped. If
they become large enough, they can only be stopped at
the boundary. This would lead to avalanches that in-
clude a significant fraction of the size of the sandpiles and
would lead to the introduction of a system-size-
independent length scale which is the minimal size of
those large avalanches.

In this paper we make an attempt to introduce a model
to simulate this behavior. We developed a sandpile
cellular-automata model in which those effects are taken
into account. We observe that when modeling small
sandpile models those effects can hardly be seen, leading
to the excepted-scaling SOC behavior. However, as the
size of the systems grows larger, the behavior changes
drastically. The global features of our model as well as
its drop-number distribution functions present features
that are similar to the observed experimental results.

This paper is organized as follows: in Sec. II we
present our model in both one and two dimensions; in
Sec. III we organize the results of our simulations and
compare them with previous experimental observations.
In Sec. IV we summarize the conclusions.

II. THE INERTIA VERSION
OF THE SANDPILE MODEL

When we look at a stone rolling down a mountain, it
becomes obvious that there is a strong effect of inertia.
We can argue that in a sequence of topplings of sand
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grains something similar also happens. As an avalanche
evolves, potential energy is transformed into kinetic ener-

gy, the avalanching grains of sand gain momentum, and
the whole mass of sand is accelerated. If the process lasts
long enough it eventually can only be stopped at the
boundary of the system. We introduce this "snowba11
effect" by making the critical slope Z, (the threshold
value to trigger a single event) a decreasing function of
the energy or the momentum, accumulated by a grain of
sand during a sequence of topples.

Models in both one and two dimensions driven ran-
domly or deterministically were studied. In one dimen-
sion we considered the simplest model that does not
present a trivia1 dynamics. This model was first suggest-
ed by Kadanoff et al. [5]. In each site of a one-
dimensional lattice of size n the height of the pile of sand
is given by h, . We define the slope at site i as

z=h —h
1 j —1

The system is perturbed by adding one grain of sand at
a randomly chosen site i. Whenever the slope of the
sandpile at this site exceeds a threshold value Z„an
avalanche is triggered. Two grains of sand would topple
from site i into its two forward nearest neighbors, more
precisely, if

z, ~Z,

then

h;~h; —2,
~;+i ~ +i+&

~;+2~h;+2+1 .

The grains of sand that reach the sites i + 1 and i +2
have already toppled once, therefore, it will be a little
harder to stop them. We make the critical slope at those
sites a little smaller than Z„ that is

Z, ;=Z, —an;
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FIG. 2. The size distribution function for different lattice
sizes. The value of a was held constant (a=0.3). The distribu-
tion functions were smoothed as described in Fig. 1.
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where n; is the number of topplings a given grain of sand
has done before reaching the site i and Z, ; is the critical
value at this site. If new backward falls start we would
begin to count the number of topples for those particles
again. In any real process the velocity of the falling sand
cannot grow forever. So a minimum value Zo for Z, was
introduced.

In two dimensions we used the original model of Bak,
Tang, and Wiesenfeld [l], with directional flow of the en-

ergy. At any toppling the energy is transmitted in equal
parts to the fall positions and so on. The critical slope
will depend on the energy which is accumulated at a site.
We transfer the energy only in the forward direction
since that is the direction of the How in this system.

The energy is conserved; however, if there is no
avalanche in a given site all the energy in this position is
dissipated. We define an energy matrix e; . which is up-
dated together with a matrix Z; that defines the sandpile
slopes at each step of the avalanching process. Those
rules can be summarized as follows: if
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FIG. 1. The size distribution function for different values of
a. The size of the system was held constant (L =100). All dis-

tribution functions were smoothed according to the procedure
described in Ref. [6]. The values were averaged over intervals
of 10%.
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FIG. 3. The number of events as a function of time for the
one-dimensional system, L =50 and a =0.5.
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also clear from Fig. 2 that no significant change in be-
havior can be seen in small lattices. If we hold a constant
and vary the size of the lattice there will be a critical size
L, below which there is a power-law behavior. After that
point, however, we see a continuous change in F(s), as
observed experimentally by Held et al. [4] and in exactly
the same way we have already described. The critical
size L, depends on a according to the simple law

L, = A /n. Notice that this size does not scale with the
size of the system as is the usual case in the simple SOC
cases. The inertia creates a size-independent scale above
which it is very hard to stop an avalanche. This behavior
is even clearer if we look at the graph of F(r ), the distri-
bution function of the duration of the avalanches (see
Fig. 3). Those results are in agreement with experimental
results found in Ref. [3], where the absence of short-
duration avalanches is probably due to the fact that they
were able to register only avalanches that were big
enough to cause some particles to fall off the edge of the
system.

The interpretation is simple: In small avalanches there
is not enough accumulation of inertia (i.e., energy) and
there is no visible effect of the inertia. But eventually, if

the system is big enough, there will be a big avalanche
with the long sequence of topplings. This avalanche can
only be stopped at the boundary. It will take more sand
out of the system than it otherwise would, causing, as is
observed experimentally, a flow of sand in deeper layers
of the sandpile. After a set of such big avalanches, the
profile of the sandpile looks quite concave, as shown in
Fig. 4, where in most of the sandpile the slope is well
below the critical value. The system then starts to re-
build. Most of the sand added to it will not cause an
avalanche. The mass of the system grown almost con-
stantly in a linear manner. Once rebuilt, it will experi-
ence again a sequence of a few big devastating
avalanches.

The separation between the buildup and devastation of
the pile has profound effects on the global statistics of
avalanches. The average slope fluctuates in a very strong
manner unlike the average slope in simple SOC systems
which is almost uniform. This has a very profound effect
on the correlations between events. In such a model the
big avalanches are quite correlated. Those effects can be
clearly seen in Fig. 5, which describes the mass of the sys-
tem as a function of time.

For the two-dimensional models, we analyzed the dis-
tribution functions for the drop number F(d) and the size
of avalavches for 50000 events. The results are presented
in Figs. 6—8.

As a is increased there is a dramatic change in F(d).
Even when there is no visible change in the size distribu-
tion function (see Fig. 5), F(d) develops a large tail of
large drops (see Fig. 7). As a increases further the larger
drops become more and more dominant as can also be
seen in Fig. 6. At a value a=0.8 a continuous change in
F(s) begins. The bigger avalanches become more dom-
inant. However, as in the one-dimensional case one can
see that the initial power law is still present and corre-
sponds to the buildup process as we have already stated.

As can be seen in Fig. 8, when the system becomes
larger a transition occurs in the form of F(d ). As we en-
large the system, F(d) develops a peaked structure at a
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FIG. 6. The size distribution function for the two-
dimensional model for a size L =20 and for (a) a=0.5 and (b)
1.0. Notice that for a =0.5 the original power law is still seen.
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FIG. 7. The drop-distribution function for a=0.0 (open tri-
angles), a=0.5 (closed squares), and a=1.0 (closed circles),
where L =20 in all cases.
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FIG. 8. The drop-distribution functions for different system
sizes L =10 (open triangles) and 40 (closed triangles). The pa-
rameter a was held constant: a=0.5.

IV. CONCLUSIONS

We have shown that most of the features of experi-
ments dealing with sandpiles are reproduced by our mod-

high drop number (Fig. 8). Notice that a size of about 20
seems to be a critical size for this case (a =0.5).

Above this size the effect is well seen in the size distri-
bution function. Actually it is well seen in the drop-
distribution function even before it. Our algorithm
affects the drop-distribution function even before it des-
troys the criticality in F(s). Notice that, like in the one-
dimensional case, there is a separation between the build-
up and the collapse of the system.

All those basic features were experimentally observed
in Ref. [4]. When the system becomes larger, events with
big drop numbers become dominant. For intermediate
sizes a tail of large events is seen. However, we notice
that the maximal drop number is the size of the boundary
as it is in a simple SOC model, unlike what was observed
in the experiments.

el. The size-dependent behavior observed in [4] can be
understood as an effect of the accumulation of energy (or
momentum) in big avalanches, which results in the intro-
duction of a system-size-independent scale length. In our
model the system*s mass fluctuates very strongly unlike
what will happen in a SOC model, but like what is seen in
experiments. This has a very strong effect on the statis-
tics of such systems and on the size of the avalanches.
Such models might be proper in describing the behavior
of snow, earth, or rock avalanches where after some criti-
cal stage the avalanches will go on until the boundary is
reached.

The results of our simulations should be seen in a more
general context. The scaling results observed for the
SOC models are a result of the precise balance between
branching and killing probabilities inherent in the
cellular-automata model. If this balance is destroyed ei-
ther by introducing inertia or by some kind of nonconser-
vation, the power-law behavior will be destroyed above
some scale which is associated with the relevant laws.

In other words, the power-law behavior observed in the
SOC systems is a result of the constant branching proba-
bilities that are present in those models. Our laws change
dramatically the probabilities associated with this pro-
cess. In our model the average number of topplings in-
creases with the size of the avalanche. As the event
grows larger its probability to continue will grow larger.
So, if the system is big enough, the avalanching process
mill finally explode and big avalanches mill become dom-
inant. Since the system is 6nite, this process will destroy
the system at least partially and this description will not
be valid any longer.
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