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An adiabatic approximation for the Liouville density-matrix equation which includes decay terms is

developed. The adiabatic approximation employs the eigenvectors of the non-normal Liouville operator.
The approximation is valid when there exists a complete set of eigenvectors of the non-normal Liouville

operator (i.e., the eigenvectors span the density-matrix space), the time rate of change of the Liouville

operator is small, and an auxiliary matrix is nonsingular. Numerical examples are presented involving

efficient population transfer in a molecule by stimulated Raman scattering, with the intermediate level of
the molecule decaying on a time scale that is fast compared with the pulse durations of the pump and
Stokes fields. The adiabatic density-matrix approximation can be simply used to determine the density
matrix for atomic or molecular systems interacting with cw electromagnetic fields when spontaneous
emission or other decay mechanisms prevail.

PACS number(s): 42.50.Md, 02.60.+y, 03.65.—w

I. INTRODUCTION

The object of this paper is to develop an adiabatic
density-matrix approximation (ADMA) for systems in
which the effects of decay are explicitly incorporated by
inclusion of a decay term into the Liouville equation
(sometimes called the Bloch equation}, which describes
the dynamics of the system. The present approximation
differs from the well-known adiabatic following approxi-
mation for density matrices [1], which treats the case
when a time-varying field (or fields) is tuned far from res-
onance. Here, the treatment is in terms of the slow varia-
tion of the eigenvectors of the Liouville operator, and is
similar to the treatment for slow variation of the eigen-
vectors of the Hamiltonian in the adiabatic Hamiltonian
approximation (AHA) [2].

After developing the ADMA we apply it to describe
the dynamics of population transfer in molecular systems
by stimulated Raman scattering with time-varying pump
and Stokes fields. We consider the case when the tem-
poral duration of the fields is long compared with the de-
cay time of the intermediate level of the Raman transi-
tion. One might expect that efficient population transfer
would not be possible, since decay out of the manifold of
levels can significantly reduce the population. Yet,
efficient population transfer to the terminal level of the
Raman transition would be possible if the intermediate
level were not populated during the course of the dynam-
ics. Recent interest in adiabatic approximations has been
rekindled in part by the experiments of Bergmann and
co-workers, which demonstrate that nearly complete
population transfer in atoms or molecules can be
achieved using Raman scattering with the fundamental
laser beam temporally delayed relative to the Stokes-
shifted laser beam, but partially overlapping it [3,4]. The
rationale for these experimental findings is given in terms
of the adiabatic approximation, wherein an electric-field-

dressed eigenstate evolves from the ground molecular
state to the terminal molecular state as a time-dependent
linear combination of the ground and terminal states with
zero amplitude of the intermediate excited state [5—9].
However, the adiabatic approximation that has been used
to explain these phenomena treats the system within the
context of an adiabatic Hamiltonian approximation [2]
without the explicit inclusion of decay of the intermedi-
ate excited state due to spontaneous emission (or other
nonradiative processes). One wonders whether an
ADMA yields results similar to the AHA. Here, we shall
use the ADMA that explicitly contains the effects of de-
cay to describe the observed phenomena. We demon-
strate that, without decay of the terminal state (or the ini-
tial state}, the results of the AHA are basically identical
to the ADMA results for the three-level problem dis-
cussed in the numerical example. However, the ADMA
is capable of describing a broader range of phenomena
than the AHA. For example, we use the ADMA to treat
a case with decay of the terminal state of the Raman
transition. Then, the electric-field-dressed eigenstate of
the Liouville operator (i.e., the adiabatic density-matrix
component} that evolves from the ground state develops a
decaying component. The AHA is not capable of treat-
ing this case. Another more trivial example is the case of
problems with atomic or molecular systems interacting
with cw electromagnetic fields when spontaneous emis-
sion or other decay mechanisms are included in the
description. In this case, the eigenstate of the Liouville
operator with zero eigenvalue is the desired cw density
matrix, so often used in describing optical resonance and
nonlinear optics [10]. Thus the regime of validity of the
ADMA is wider than the AHA because it can incorpo-
rate decay.

A density-matrix description of the dynamics is neces-
sary when incomplete information regarding a subsystem
results due to averaging over degrees of freedom associat-
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ed with the remainder of the system (i.e., the bath). The
averaging can result in a mixed state of the subsystem,
which cannot be described in terms of a wave function.
The quantum-mechanical description of such mixed
states is in terms of a density matrix [11]. The equation
of motion for the density matrix is called the
Liouville —von Neumann equation, or the Bloch density-
matrix equation. Reduction schemes for eliminating the
degrees of freedom of the bath have been studied by
many authors [12—15]. In the context of the interaction
of light with matter, optical Bloch equations have be-
come a standard method to determine the dynamics of a
system described by a finite number of states that under-
go interactions with degrees of freedom, such as the
modes of the radiation field participating in spontaneous
emission that have been reduced out of the problem [16].
The elimination of the bath degrees of freedom leads to
expressions for the lifetime of the excited states and the
line shape of the transitions between the states of the sub-
system [17].

The Liouville (Bloch) equation with decay incorporat-
ed is given by

—p= ——[H(t),p] I'(t)p —.l

dt fi

Written explicitly in terms of components, this equation
takes the form

Xexp f z (t')dt' =0 . (7)

If the operator Z is normal, i.e.,
Z(t)[Z(t)] =[Z(t)] Z(t), where the dagger represents
Hermitian conjugation, there exists a unitary eigenvector
matrix, and the eigenvectors can be orthogonalized [18],

(p'(t)ip (t)) =fi,

Hence, upon taking the inner product of Eq. (7) with
p~(t), we obtain

d[a(t}]p d
dt

p~(t) —
p (t)

dt

Xexp f [z (t') z~(t—')]dt'

X [a(t)]

pj(t)=+[a(t)]~j(t)exp f z (t')dt'
CX

z

When this expansion is substituted into Eq. (2), we obtain

d[a (t)]
p,,(t)+a(t) p,,—(t)dt dt

l—
p; = — [H(t};„p„—p;„H(t)„] I—; „,(t—)p„, ,dt

(2)
Moreover, (p~(t)~(dldt)p (t) ) can be expressed in terms
of matrix elements of dZ(t)/dt, provided the eigenvalues
z are distinct [2]. Equation (9) then takes the form

where the summation convention is assumed, and
i,j,k, l =1,2, . . . , 1V. We develop an adiabatic approxi-
mation of this system of equations. The Liou ville
density-matrix equation can be viewed as a matrix
differential equation, with p; considered a vector and the
N xN linear operator Z;, kl(t),

Z„„,(t) = '[H(t},ku„——~,ka(t)„] I „«(t), (—3)

d [a (t)]p
dt z~(t) —z (t)

Xexp f [z (t') —z~(t'}]dt'

appearing on the right-hand side of the equation is a ma-
trix operating on the vector pkl. Hence Eq. (2) takes the
form

d
Pij ijkl ( )Pkl, (4)

The operator Z is often written as Z = —iL, and L is
called the generalized Liouville operator, which is the
generator of the solution of Eq. (1).

II. ADIABATIC APPROXIMATION

Let us express p, (t) as a sum over ""adiabatic" matrices

p j(t). We shall use matrices p,"(t) that are eigenvectors
of the linear operator Z,"kl(t). Here ij is taken as the first
index of the matrix Z(t), kl is taken as the second index,

p, (t) is an eigenvector of the matrix Z(t),

Zl kl(t)Pkl(t) =P,
~
(t)z (t), .

X [a(t)] (10)

~iinm g 7 ni ~nm
n&i

0 fori&n .

for i =n

For the decay terms appearing in the off-diagonal
density-matrix elements p;, (t) with i',

Without decay, i.e., when 1 kl„(t)=0, the Z operator is

normal. This is demonstrated in Appendix A. However,
for the case without decay, there is no reason to adopt a
density-matrix treatment since it is equivalent to the
much simpler wave-function treatment.

With decay included, our operator Z(t) is non-normal.
Specifically, we consider a decay matrix I with the fol-
lowing properties. Let y;„be the decay rate of state n

into state i. For the decay terms appearing in the equa-
tions for the population density-matrix elements p, ,-(t),

—y,-„5„ for i (n

and z (t) is an eigenvalue of Z(t) We choose to. expand
the density matrix p, (t) in terms of p, (t) i"n the form- ijnm gy„, + gy„, 2 6;„5,

n (i n&j
(12)
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With this type of decay matrix (which is often employed
in atomic and molecular applications involving spontane-
ous emission of excited-state levels), the Z(t) operator is
non-normal (see Appendix A). Moreover, generalizations
of the decay matrix, e.g., by inclusion of decay to states
outside the N levels under consideration [9], or inclusion
of proper dephasing terms [15] into the polarization de-

cay I,"„,also produce a Z(t) operator that is non-

normal.
Now, the eigenvectors of a non-normal operator can-

not be orthogonalized, but they may or may not form a

complete basis of states that span the density-matrix
space [17]. No general theorem regarding the linear
dependence or independence of the eigenvectors of non-
normal matrices exists. Hence a numerical check to
confirm whether the eigenvectors of Z(t) are linearly in-

dependent must be performed by evaluating the deter-
minant of the eigenvector matrix during the temporal
evolution (the determinant of the eigenvector matrix in
general varies throughout the course of the evolution). If
there exists a complete basis consisting of eigenvectors of
Z, we obtain the following equation instead of Eq. (9):

d [a (t)]
d

(p~(t]lp~[(}) ' p~(rt p [—t))e'xp J [z'(t'] z~(t')]dt—[a(t]]'
dt

(13)

(Note that the matrix (p~(t))pr(t)) is nonsingular if the
eigenvectors are linearly independent. ) Moreover, the
term (p~(t)~(d/dt)p (t)) is proportional to terms of the
form (pr(t)idZ(t)/dt~p (t)) and (pr(t)ip (t))dz (t)/dt
(see Appendix B). Hence, (p~(t)i(d/dt)p (t) ) is vanish-
ingly small if the matrix Z(t) varies sufficiently slowly,
provided the D matrix defined in Appendix B does not
become singular. Therefore, dar /dt =0 and

[a (t) lr = [a (0)]r .

Thus, if the system starts at t =0 in the state

piJ(0)=/[a(0)] p;, (0),

(14)

(15)

within the ADMA it evolves into

pl(t)=+[a(0)] pj(t)exp J z (t')dt'
a

(16)

This generalizes the Hamiltonian adiabatic theorem to
the adiabatic density-matrix theorem for systems with de-
cay incorporated via inclusion of a phenomenological de-
cay matrix I (t) into the Liouville equation, provided (a)
the eigenvectors p; (t) of the Z operator are linearly in-
dependent, and (b) the D matrix defined in Appendix B
does not become singular. The latter condition replaces
the condition that was necessary for the adiabatic Hamil-
tonian approximation, that eigenvalues are distinct. Here
D is a complex matrix; hence the condition should be
easier to meet since the real and imaginary parts of the
determinant of D must both vanish for D to be singular.

An alternative to Eq. (13) can be obtained if, instead of
taking the inner product of Eq. (7) with p~(t), we take the
inner product with the eigenvectors of Z [which is simi-
lar to taking the inner product with the left eigenvectors
of the operator Z (see Appendix B)].

(p(0,0) p(0, 0)
)

i(l,p,". " (co, c0.,———ir., )—p,". "+n,*p(,,'
~e( (0,0) (0,0)

)s paa pbb

i(),P ' =(0)& +(O —0), il (, )P((,
'—(1,—&) — (&, —1)

(17)

(18)

The ground- and excited-state levels g and a are optically
coupled by a time-dependent pump field that is in reso-
nance with the transition, or nearly in resonance, and the
excited and terminal levels a and b are optically coupled
by a time-dependent Stokes radiation field in resonance
with this transition, or nearly in resonance [3,9]. The
Liouville equation for the density matrix of the three-
level system interacting with the two optical
time-dependent pulses is given by Eq. (1)
where H =H0 E(t)p, F—(t)= A (t)exp[i(k, x to]t )]-
+8(t)exp[i(kzx t02t)]+c.c—., and (((, is the transition di-

pole moment matrix for the system. The Rabi frequen-
cies for the two transitions are given in terms of the tran-
sition dipole moments and field strengths by
Q~(t)=A(t)p, sly and Q, (t)=B(t)p,(,

/A'. The decay
matrix is taken to have only the following nonvanishing
elements, I s„(=ye, ), I (,(, „(=y(„),I,s,s, I („(,„
and the decay of state a to states not included in the
three-level system with decay rate y,„,, Thus, the full
decay rate of state a is (y, +y(„+y,„,, ) (=8.0X10
s '), and the decay rates of the polarizations are
I,s,s =I („(„=(ys,+y(„+y,„,, )/2. Upon expanding
the elements of the density matrix p," in slowly varying
envelopes that oscillate at Fourier frequencies lcm, +mes&
and p'. ' ' and making the rotating-wave approximation,
we obtain the following set of equations governing the dy-
namics of the system [19,9]:

III. NUMERICAL EXAMPLES

We consider a three-level (A configuration) system, g,
a, and b, interacting with a pump and a Stokes laser field.

—n*p""+n p"-"
s Pag ppba

i(),p' '= —[Q*p, (p," ') —c.c. ]+iys(,p((,
' '

+jyp(0 0)

(19)

(20)
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(0,0) (0, —1)
SQQ =[&,(S».' '~ bPbb'

(0,0)
ba aa

(0,0) ~ (0,0) ~ (0,0) ~ (0,0)
t gg tPbb ~ Pout, aPaa

(21)

(22)

Here, the Rabi frequencies are function
s ow y in time with a

form
s a Gaussian functional

1.4 1O'

1.2 1O'—

1.O1O'—

4I
C

S.O 1O'—
cr
Cl

6.0 10
cd

CC

ht=-2. 5 a
20 10

(a)

0 (t)= A(t)p, slft=ft Oexpp, o

ft, t) =B(t)p,Q lfi=0, Oexpi

(t t—)'—
P

20

[t —(t, +—b, t )]'
20

(23)

(24)

4.O 1O'—

2.0 108—

0 I I I I

O.O 1O' S.O

I I I I

j
I I I I

[
I I I I II I

f

I I I I

/

I

1O-' 1.O 1O-' 1.5 10 2.0 10 2.5 10

time (s)

I I

)
I I I I

3010 3510

Equations (17)—(22) are of the form
Tll b o1 dso ve using the adiabati
given in Eq. (6) i, in terms of the ei enve

'
batic approximation

ob i dbine y setting the derivativ
to time in Eqs. (17)—(2

ives with respect

out the adiabatic d
2) equal to zero.ero. We shall carry

a a ic ensity approximation
h h i 1 1

'
a so ution of the full Li

a d ith th diabati H ilto
'

erent sets of parameters.

d th oth
e ecay rates, the transition di

parameters emplo ed in
di Rf [in e . 9], with the exce

c are increased by a factor

—1

re a en ere to be 12.9X10s, respectively. The
'

and 8.7X10

the criteria for validit
e increased Rabi fre uequencies make

il hi bl
va i ity o the adiabatic a

'
va e, as iscussed below.

e adiabatic Hamiltonian a roxim
f h de ressed-state basis

)
p oo

-s ate amiltonian in th' bis asis is given by

Q, (t) o

[H(t)]„„,= Q, (t) b, 0
0 Q, (t) b,,

0

(25)

where the constant diagonal matrixmatrix corresponding to th
g, ( ),N, (t),E +N ( ficoo t e state

I
N

cu, as been removed. This Ham'

diagonalized t bo o tain the ei envect
is amiltonian can be

of the Hamilto
'g ctors and eigenvalues

i onian as a function of time.
We first consider the on-re on-resonance case 4 =4 =0
en t= —2. 5cr (i.e., the Stokes

P s 7

field precedes th
e y .5 pulse durations). Fi ur

Rbi f i 0('t) and Q, (t) and t
h Ho e amiltonian. There

1 oof hh po w ic are smm
, an one that is equal to zeq o o o

e amiltonian adiabatic t
at egins in an ei envect

h. ."----1
Hamiltonian adiabatic th

or as ong as the criteria for v

eigenvector correspond' h
ia atic theorem remains valid

1 t t}1 11 th
on ing to the zero ei

i a t e population in state g [actually,

15 10
(b)

1.O 1O'—

5.0 10

be=-2.5 o
+ b,x

20 10

Ch

CO

Cg
4I
OD

0—

-5.0 10

-1.O1O'—

-1.5 1O' I I I
(

I I I I

/

I I

5.0 10 1.0 10 1.5 10 2.0 10
time (s)

I I
j

I I I I

J

I

2.5 10 30 10 35 10

to be mormore precise we should sa in
Ig, X~(t),N, (t) ) ], and d

'
h

+
, an en s with all the o

t t [I N(t) —1 N
, t+1 ] with no

evolution. The
,(t) ] throu hog out the course of the

e population of levels b
tion of time as bt

'
d

g, , and a as a func-
s o ained from the adia

'
n, is virtually identical t tho ose shown in

I I I I I I I I I I I I I I I I I I I I I I

2.5 o
1.5: h,t=-

20 1

P 1 —CKQDOODOOOQOQOOOODQOODQQQQOOOOOOQOOQD

terminal state

41

0

ooo
0&&

CJ

IOI

o & —
&&0

0 ———--*-~ *
0

CC

~ X ~ ~ 11S 1X X ~~ XIXXX~ XXS% S X X X SUA

V
~ ~ ~ ~ %%0%4~5 ~ 8 It

e~

S~ S ~ ~ $$ ~ D ~ S~ S ~ S

~ ~-0.5:
C4

~ 0 ~ $$ ~ $$ ~INR::::::

a state

I I I I I I I I

5 0 10-7 1 0 10-6 -6 -6

time (s)
1.5 10 2.0 10 2.5 10 3 0 10

FIG. 2. Po ulp ations (diagonal elements
matrices, p. .(t) h

e ements) of the "adiabatic"
wit eigenvalue z (t) =0 vs

resonance case 5 =5 =0
vs time for the off-

, =0, when ht = —2.5o..

FIG. 1. (a) Rabi frequencies 0 (t an~ t) and Q, (t) vs time wh
. o", eigenvalues of the on-reson

en

Eq. (25), h 6 = —2.~ ~



45 ADIABATIC APPROXIMATION FOR THE DENSITY MATRIX 6647

Fig. 2 (actually, this figure was calculated using the
ADMA as discussed below, but the populations obtained
with the adiabatic Hamiltonian approximation are indis-

tinguishable from those in Fig. 2 on the scale of the
figure).

We now proceed to the ADMA for the on-resonance
case and for ht= —2.5o.. At early times, but times at
which the Rabi frequencies 0 (t) and Q, (t) are not van-

ishingly small (i.e., not too early), the adiabatic matrix

pj(t) with eigenvalue z (t) =0 has all of the population in

the ground state. At the end of the dynamical process,
this matrix has all of the population in the terminal state.
Figure 2 shows the diagonal elements of the "adiabatic"
matrices pa~(t) with eigenvalue z (t)=0 as a function of
time. For times t, 4.0X10 s&t &2.5X10 s, only one
such eigenvector p~. (t) exists. However, at the very be-

ginning and at the very end of the process, more than one
eigenvector has zero eigenvalue, as shown in the figure.
When the laser intensities vanish, the Z operator is not
only non-normal but the eigenvectors of the Z(t) opera-
tor do not span the space, and a spectral decomposition
of the operator is no longer possible. Fortunately, the
eigenvectors of Z(t) in this case are linearly independent
once the Rabi frequencies become finite.

We also numerically calculated the density-matrix
equations (17)—(22) to obtain the populations. The popu-
lation of levels g, b, and a as a function of time is virtually
identical to those shown in Fig. 2 (i.e., the smooth curves
in the temporal region 4.0X10 s&t &2.5X10 s, see
Ref. I9]), so we shall not reproduce the results here. Note
that the excited-state population remains zero
throughout the dynamics and therefore complete popula-
tion transfer without loss occurs.

Calculations for off-resonance fields 5 =6, =400
MHz (the overall transition g~a is still on resonance,
but the g~b and the b —+a transitions are both off-
resonance by 400 MHz) and for ht = —2. 5cr yield results
virtually identical to the on-resonant results. This is be-
cause these detunings are small compared with the Rabi
frequencies. However, the structure of the "spurious
eigenvectors" at early and late times is considerably
different, as shown in Fig. 3. These eigenvectors are not
truly eigenvectors and therefore we have called them
spurious.
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FIG. 4. Eigenvalues of the on-resonance Hamiltonian Eq.
(25), when ht =0.

When the temporal shift of the Stokes field and the
pump field is varied but kept negative, ht &0, similarly
high transfer efficiencies result provided the Stokes field
and the pump field overlap somewhat. As long as ht &0,
the eigenvector corresponding to the zero eigenvalue be-
gins with all the population in state g and evolves so that
all the population is in the terminal state at the com-
pletion of the dynamics.

We now consider the on-resonance case 6 =5, =0,
when b, t =0 (the Stokes and the pump pulses are coin-
cident). Note that for this case, the Hamiltonian can be
written as a constant matrix time, with a time-dependent
scale factor multiplying it (but this is not true of the Z
operator, which also contains the decay contribution).
Figure 4 shows the calculated eigenfunctions of the Harn-
iltonian. Again, two eigenvalues are symmetrically dis-
placed about zero, and one is equal to zero for all time.
In this case, the eigenfunctions of the Hamiltonian do not
vary in time. For the eigenvector with zero eigenvalue,
the terminal-state population equals 0.687, the ground-
state population is 0.313, and the excited-state population
equals 0. It is possible to take a linear combination of
eigenvectors of the Hamiltonian that starts in the ground
state, but this linear combination will stay in the ground
state within the context of the Hamiltonian adiabatic ap-
proximation, since the eigenvectors do not change with
time for this case. Figure 5 shows the diagonal elements
of the adiabatic matrices p,j(t) with eigenvector z (t) =0.
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matrices, p;J(t) with eigenvalue z (t)=0 vs time for the on-
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FIG. 5. Populations (diagonal elements) of the "adiabatic"
matrices, p;,.(t) with eigenvalue z (t)=0 vs time for the on-
resonance case h~ =5,=0, when At =0.
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Once again, for times t, 4.0X10 s&t &2.5X10 s,
only one such eigenvector p, (t") exists, and the numerical
value of the populations in this eigenvalue is equal to the
populations obtained from the adiabatic Hamiltonian ap-
proximation. Figure 5 shows that at the beginning of
time and at the end of the evolution, more than one
eigenvector has zero eigenvalue. These eigenvectors are
spurious. In these temporal regions, an expansion of the
Z operator in the adiabatic eigenvectors p,"(t) is not com-
plete. Figure 6 shows the numerical solution of Eqs.
(17)—(22) for this case. Here neither the Hamiltonian nor
the Liouville adiabatic approximations is adequate to de-
scribe the dynamics. The asymptotic populations of the
levels is given by p (t large) =0.114, p„(t large) =0.252,
pbb(t large) =0. The system behaves very nonadiabatical-
ly. For finite detuning 6 =5,=400 MHz and Et=0,
the adiabatic Hamiltonian and adiabatic Liouville solu-
tions are very similar to that shown in Fig. 5 for the on-
resonance case (the detuning is very small compared to
the Rabi frequencies), but the full numerical solution of
Eqs. (17)—(22) is quite different from that of the full nu-
merical solution in the on-resonance case, as shown in
Fig. 7. The time dependence of the process is sensitive to
small changes in the diagonal elements of the Hamiltoni-
an. The asymptotic populations of the levels is given by

psg ( t large) =0.140, p„(t large) =0.230, and pbb ( t
large) =0.

For b, t )0, the eigenvector (of the Hamiltonian or of
the Z operator) with zero eigenvalue starts off with all the
population in the terminal level and evolves to large
times with all the population in the ground state. To be-
gin at an early time with all the population in the ground
state, a linear combination of eigenvectors with nonzero
eigenvalues is necessary. Such an eigenvector of the Z
operator decays, i.e., the eigenvalue is complex and the
real part of the eigenvalue indicates the decay rate.
Hence, for pulse durations large compared with the de-

cay rate, the loss due to decay precludes efficient popula-
tion transfer to the terminal level. We shall not under-
take the analysis of these cases here.

It is of interest to consider the case when the Rabi fre-
quencies are decreased to the point that they become
comparable to or smaller than the decay rates y. Intrigu-
ingly, the nature of the eigenvector with zero eigenvalue
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FIG. 7. Numerical solution of the Liouville equations
(17)—(22) for A~ =5,=400 MHz, when At =0.

p,, (t)=p,', (t)exp J z'(t')dt' (26)

A~I~A, J~L I0 I I I I I I I I I I I

ht=-2. 5 o

hardly changes if both Rabi frequencies Q~(t) and Q, (t)
are simultaneously multiplied by the small factor. For
example, reducing the Rabi frequencies Q~(t) and Q, (t)
by a factor of 10 (Q o=12.9X10 and Q, o=8.7X10
s ) and recalculating the probabilities for on-resonance
and off-resonance ht &0 cases shown in Figs. 2 and 3
yields results that are almost identical to those in the
figures. Now, however, the criteria for validity of the
adiabatic approximation are not met, and the numerical
calculation looks nothing like the ADMA results.

We now introduce decay of state b, the terminal state
of the Raman transition, and redo the off-resonance
At = —2.5' case shown in Fig. 3. We let level b decay
out of the three-level manifold with decay rate
y,„,b=1.0X10 s '. The ADMA results now decay in
time. The eigenvalue z'(t) of the eigenstate of the Liou-
ville operator that evolves from the ground state p,'~(t).
develops a decaying component; the real part of the ei-
genvalue becomes negative as the admixture of state b in
the eigenstate becomes significant, as shown in Fig. 8, but
the imaginary part remains zero. The diagonal elements
of the adiabatic matrix p;;(t) is shown in Fig. 9. The full
adiabatic density matrix is given by

1.2

g 0.8
O

~ 0.6
~ 0.4

C4

0.2

I I I I I I I I I I I I I I I I I I I I I I I I I I I I

d state

h, t=0
20 10

terminal state

CC

C4

O

L
C5

C4

-2.0 10

-4.0 10

-6.0 10

-8.0 10

-1.0 10'—

-1.2 106

2o ~io+~t

400 MHz off-resonance
decay of terminal state

0
0 oooooooooooooooo—

-0.2
a state

I I I

I

I I I I

I

I I I I

I

I I I I I ( I I

I

I I

0 5.0 10 1.0 10 1.5 10 2.0 10 2.5 10 3.0 10
time (s}

FIG. 6. Numerical solution of the Liou ville equations
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FIG. 8. Real part of the eigenvalue z'(t) of the eigenstate of
the Liouville operator that evolves from the ground state vs

time for 5~=5, =400 MHz, when bt= —2.50. and state b de-

cays outs of the three-level manifold.
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FIG. 9. Populations (diagonal elements) of the adiabatic den-

sity matrix evolving from the ground state for h~=b, =400
MHz, when ht= —2.50. and state b decays out of the three-

level manifold. The circles, squares, and diamonds indicate the

populations p;;(t), and the solid curve indicates the full adiabat-

ic population p»(t).

FIG. 10. Numerical solution of the Liouville equations
(17)—(22) for 5~=6, =400 MHz, when ht= —2.5' and state b

decays out of the three-level manifold.

and the population of state b decays in time due to the ex-
ponential factor, as shown by the solid curve in Fig. 9,
i.e., the reduction of p„(t) in obtaining p„(t) is due to
the exponential factor in Eq. (26). Figure 10 shows the
populations versus time obtained from the full numerical
solution of the density-matrix equations (17)—(22). Clear-
ly, the comparison of the ADMA and the numerical re-
sults is very good (note the different time scales of Figs. 9
and 10). The numerical results do have a feature that is
not present in the ADMA for times larger than 2X10
s. The ground state is somewhat repopulated for times
2 X 10 s & t & 3 X 10 s by the optical coupling of the a
state and the g state, and the repopulation terminates for
times larger than 3 X 10 s because the optical fields are
too small beyond this time. This repopulation does not
occur in the ADMA results; it constitutes a nonadiabatic
process. Nevertheless, the ADMA accounts for most of
the dynamics in this case.

We should mention that the ADMA can be used to ob-
tain the density matrix for problems involving cw elec-
tromagnetic fields coupled with atomic and molecular
states when spontaneous emission or other decay mecha-
nisms are included in the description. In this case, the
eigenstate of the Liouville operator with zero eigenvalue
is the desired cw density matrix. An algorithm to obtain
only this eigenstate of the Liouville operator is easily im-
plemented, and this is a simple method for numerically
obtaining the cw density matrix.

rate of change of the coeScients of the adiabatic matrices
appearing in the expansion of the density matrix. The
linear independence (or dependence) of the eigenvectors
of the Liouville operator may vary during the temporal
evolution of the problem. Hence, no guarantee of meet-
ing the conditions for validity of the ADMA exists, just
as no guarantee of meeting the conditions for validity of
the adiabatic Hamiltonian approximation exists. In the
examples presented, the eigenvectors of the Liouville
operator are linearly independent once the Rabi frequen-
cies become nonvanishing. Asymptotically, when the
Rabi frequencies vanish, the eigenvectors are no longer
linearly independent. Nevertheless, the ADMA was suc-
cessfully used to determine the dynamics for the case in
which the Stokes pulse preceded the pump pulse. The re-
sults for the case of simultaneous Stokes and pump pulses
ht =0 indicate that caution should be used in attempting
to apply the ADMA. For this case, the adiabatic Hamil-
tonian approximation and the ADMA both fail to de-
scribe the dynamics. Hence, even when the eigenvectors
of the Liouville operator are linearly independent, the
ADMA may fail to describe the dynamics correctly.
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IV. SUMMARY AND CONCLUSION

The Liouville operator with decay is non-normal.
Hence, there is no general theorem that ensures that the
eigenvalues of the Liouville operator will be linearly in-
dependent and span the space of the density matrix. If
the eigenvectors of the Liouville operator are linearly in-
dependent, the time rate of change of the Liouville opera-
tor is small, and the D matrix of Appendix B is nonsingu-
lar, the ADMA [Eq. (16)] can be used to calculate the

APPENDIX A

We show that the Z(t) matrix is normal when the de-
cay matrix vanishes, and is non-normal when a decay ma-
trix with the conditions specified in Eqs. (13) and (14) is
included. We consider a real Harniltonian matrix.
Hence, the Hermitian condition H=H yields H; =H;. .
We form ZZ:
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LZ ",kl Zkl, g [ [H ( t ) ];k5(, —5;, [H ( t }]i, j
—rijkl —[[H(t}].k5l 5 k[H(t)ll j r kl

1 1, [[H(t)]„„[H(t)],„5, —[H(t)],„[H(t)], j —,[[H(t)] [H(t)]„,—5„,[H(t)],, [H(t)], j

—
g [r,k [H(t)].k —r J.l[H(t)ll j+—[[H(t}lkr. k,

—[H(t}]l,r. I j+r,klr. kl (A 1)

l
Zljk/Z, g [[H«)]k;5j( 5k'[H«)]'(j r—ki, ~[[K(t}]k5 I 5k. [H(t)] ij rkl.

1 1[[H(t)]k, [H(t)]k„5 —[H(t)„;[H(t)] j
— [[H(t)]/ [H(t)]t„—5.„([H(t)]j/[H(t)]m(j

+
g [ rk;, [H ( t ) ]k. —r.l;, [H ( t ) ] ( j

——
[ [H ( t) ]k' rkj —[H ( t) ],(r '(„j+ rk(;, r/(/,

Using the Hermitivity of the Hamiltonian, Eq. (A2) yields

Z; „,Z„,„= [[H(t)]„„[H(t)];„5 —[H(t)];„[H(t)] j
— [[K(t)] [H(t)]„;—5„;[H(t)];[H(t)],

1 1

(A2)

+ '[r„—,, [H(t)]„„—r„„,[H(t)], j
——'[[H(t)],„r„,„—[H(t)],,r„„j+r„„,r„,„ (A3)

If the I matrix vanishes, it is clear that ZZ~ =Z~Z, as is
readily seen by comparing (Al) with (A3). Otherwise, us-
ing the relationships (11} and (12) and performing the
necessary algebra, it is easily demonstrated that the Z
matrix is non-normal.

APPENDIX B

We calculate the quantity (p~(t)~(dldt)p (t) ) in terms
of (p~(t}~dZ(t)ldt ~p (t) ) and dz Idt To do. so we take
the time derivative of Eq. (5) to obtain

dZijkl(t) d
dt pk((t }+Zijk((t) pk((t)—dt

dz (t) d
p J(t)+z (t) p((t), (—Bl)

dt dt

or, upon rearranging,

[Z~va(t) 5k(5(jz (t}] P—k((t)
dt

dz (t) dZ(jk((t)
P /(t} d Pkl(t}dt dt

Taking the inner product of this equation with p~(t) we
obtain

(
pz(t) [Z(t) lz (t)] —p'—(t))'

dt

&Z(t)] pp(tt p (t) —z'('t) pp(tt p (t))'d d
dt dt

&pz(t)lp'(t)& =—pp(t) p (t)) . 'dz (t) dZ(t)
dt dt

(B4)

Now, [Z(t) ] p~(t) can be written in terms of the eigenvec-
tors of the Z operator, provided the eigenvectors are
linearly independent, and therefore

[Z(t)] p&(t)=C//, (t)p'(t) . (B5)

Upon substituting this into Eq. (B4) we obtain

[]Czt(t)] —z (tl()ztf(p "(tl p lt))t
dt

&p'(t)lp (t)&=—p'(t) p (t)) .dz (t) dZ(t)
dt dt

(B6)

Upon using the definition of Hermitian transpose and
rearranging, we find

=&pzlt&lp (t)& —'pzltl p'(t&) .
dz (t) dZ(t)

dt dt

Defining the D matrix,

Dt/~(a;t)= [[C// (t)]* z(t)5//yj, —(87)

(B3) we find that
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(
p'(t) p (t) =[D &(a;t)]

dt y

(B8)

provided that the inverse of the D matrix exists. This
proviso is similar to the proviso mentioned after Eq. (9) in
connection with the adiabatic Hamiltonian approxima-
tion, that the eigenvalues are distinct.

As mentioned in the text, an alternative to Eq. (13) can
be obtained if instead of taking the inner product of Eq.
(7) with p~(t), we take the inner product with the eigen-
vectors of Z to obtain

d[a(t)]r d a ' a
dt

(ri~(t)~pr(t)) ' ri~(t) p (t) exp J [z (t') zr(—t')]dt' [a(t)]
dt

(B9)

where rP(t) is an eigenvector of Zt,

[Z(t)] rl~(t) =p(t)rl~(t) . (B10)

To calculate the quantity t, ri~(t)i(d/dt)p (t)), we take
the inner product of Eq. (B2) with ri~(t) to obtain

f (t~(((]" i'( (((q~(( ((p'((()d
dt

=(vgp(((lp (t& ( '—
my~(t& p (((), 'dz (t) dZ(t)

dt dt

and hence,

X &q (t)IP (t)) ' '
dt

p
dZ(t)

dt

where Drtt(a;t)=[[(~(t)]' z(t)—]5 & The .proviso is
now much more similar in form to that of the adiabatic
Hamiltonian approximation. Of course, one must now
calculate the eigenvectors of Z and Z~ to test the validity
of the approximation.
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