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Multiphoton ionization in circularly polarized standing waves
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We derive the wave functions for an electron moving in a quantized circularly polarized standing-
wave radiation field. By applying these solutions as the final states, we derive multiphoton ionization
transition-rate formulas according to Keldysh-Faisal-Reiss (KFR) theory. Numerical calculations and
theoretical analysis show that in the case of two light beams with the same angular momentum, KFR
theory does not predict the peak splittings in the photoelectron angular distributions that were observed
in an experiment by Bucksbaum, Schumacher, and Bashkansky (BSB) [Phys. Rev. Lett. 61, 1162 (1988)).
A transition-rate formula from a scattering theory developed for the case of single-mode multiphoton
ionization by Guo, Aberg, and Crasemann [Phys. Rev. A 40, 4997 (1989)] is extended to the standing-
wave case. The theory predicts the peak splitting observed by BSB. Numerical results of the splitting
angle from the theory show good agreement with experimental measurements. We also prove that the
sine function of the half splitting angle is inversely proportional to the square root of the photoelectron
kinetic energy E, i.e., sin(~/2 —0,„)cc 1/E', where 8,„ is the maximum scattering angle smaller than
~/2. Some predictions are made for future experimental observations, such as quantum effects associat-
ed with ponderomotive-energy decay.

PACS number(s): 32.80.Fb, 31.15.+q

I. INTRODUCTION

Recently, Bucksbaum, Schumacher, and Bashkansky
[1] performed a multiphoton-ionization experiment using
circularly polarized standing waves. They found an
unusual peak splitting in the photoelectron angular distri-
butions when the two light beams had the same angular
momentum. They interpreted the effect as a Kapitza-
Dirac effect [2] in a strong radiation field. This experi-
mental result has not been well treated or interpreted in
terms of a fundamental theory.

Experiments in multiphoton ionization play a very im-
portant role in studies of interactions between atoms and
strong laser fields. The first experimental evidence [3] of
multiphoton ionization was anticipated by the Keldysh-
model theory [4], which when combined with later devel-
opments [5,6] is now often called Keldysh-Faisal-Reiss
(KFR) theory. Although the KFR theory is controver-
sial [7], it captures some important features of experimen-
tal measurements in multiphoton-ionization processes. It
is therefore frequently used in the analysis of data [8J.
Also, many subsequently developed theories are related
to KFR theory [9—12]. Thus KFR theory still occupies
an important position in theoretical discussions.

A standing wave can be thought of as a two-mode field
of traveling waves. A recent development [13] in station-
ary solutions for an electron interacting with multimode
photon fields has enabled us to extend the KFR theory to
multimode cases [13]. From the general form of the mul-
timode solutions we can write solutions for an electron
interacting with standing waves. Two cases emerge, de-
pending on whether the photon helicity vectors are anti-
parallel or parallel. The first case requires special treat-
ment, while the second can be treated directly. Section II

is devoted to obtaining these solutions for circularly po-
larized standing waves.

In Sec. III we extend the KFR theory to cases of
standing-wave laser fields by applying these solutions as
the final state of the electron while the initial state is the
bound state to obtain a formula for the transition rate. A
theoretical analysis and a numerical calculation using the
extended KFR theory both show that the KFR theory
does not predict the splitting of the angular-distribution
peak found in the experiment of Bucksbaum and co-
workers.

The principal aim of this paper is to show that a
scattering theory for multiphoton ionization developed
by Guo, Aberg, and Crasemann [10] and extended by us
to multimode cases provides an explanation of the peak
splitting in the angular distribution. In this theory, an
extra transition bringing the electron from the inside to
the outside of the radiation field is naturally and inevit-
ably built in. In Sec. IV we present the extension of the
scattering theory to the two-mode standing-wave case.
Both theoretical analysis and numerical calculation pre-
dict the angular-distribution peak splitting when the two
circularly polarized laser beams have the same angular
momentum. Comparisons between the theoretical pre-
dictions and the experimental results of Bucksbaum and
co-workers show good qualitative agreement and some
quantitative agreement.

II. WAVE FUNCTIONS

The Hamiltonian for an electron moving in a
standing-wave photon field can be written as
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The eigenfunctions of this Hamiltonian can be found as
follows.

The elliptical polarization vectors are defined by

and the transformation

p(r) =e'v'p,

the eigenvalue equation for the Hamiltonian (1) becomes
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where k. A&=k A2=0 by transversality. Here, A& and

A2 are coordinate independent and defined by

A =g(e.a +e'a~ ) (j =1,2) .

We now make the following ansatz [13,14]: A real
number ~ can be defined such that k(N, N, ) can be-
replaced by ~k with correction terms that are of order
v/c =(2sA'co/m, c )'~, where s is the number of photons
above threshold. For the experiment of Bucksbaum,
Schumacher, and Bashkansky [1], one has s ~13 and
v/c ~ 0.07. If we now define a vector P such that
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In this paper, we mainly consider two important cases
where the two constituent traveling beams are both circu-
larly polarized.

Case I. Two beams with same angular momentum and
opposite helicity. The easiest way to describe this case
mathematically is to assume the following conditions:

then Eq. (6) is reduced to g, =g,=~/2, e, =e,=o, (12)

P
2me

eAeAeA, .A
P (A+ A2)+ + +

m, ' 2m, 2m, m,
which leads to

+co(N, +N, ) P=8P . (9)
(13)

Equation (9) can be further written as

p2
+H'r+ V'

2m
(10)

and

6 6*= 1, E' 6=E'* E'* =0 . (14)

where Thus, we have
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(15)
gy shift is due to the superposition with the opposite
phase. In a classical picture, the first normal mode corre-
sponds to points with maximum oscillation in the stand-
ing wave, and the second one corresponds to stationary
points.

To eliminate the linear terms, we introduce a displace-
ment operator

The general solutions that we obtained previously for
two-mode cases [13] cannot be applied to this case, since
it leads to a vanishing denominator in the general solu-
tions. Thus we have to treat this as a special case as fol-
lows. To solve the Schrodinger equation, Eq. (10), we in-
troduce a transformed photon representation with the
two normal modes
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The commutation relations for the new photon operators
remain the same,

[ci,ci ]=[cz,cz]=1,
[c„cz]=[c,,cz]=[c„cz]=[cz,c", ]=0 .

The vacuum state also remains the same, since

Thus, we find solutions t)} of Eq. (22) with the energy ei-
genvalue 6,
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which removes the energy degeneracy of H' in Eq. (15).
Thus we define

By the transformation, Eq. (17), we have the following re-
lation:

a ]az+a &az (c]c] +c &c& ) —(czcz+czcz)1 f t 1

With the condition of a strong radiation field, we can
take the large-photon-number limit for the above solu-
tions [13,15]. We let n, and nz become large, and g be-

come small, such that gran, ~A and grenz ~A; then,
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and try to solve the equivalent Schrodinger equation
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(22)

where
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The limiting form for the energy eigenvalues is

(29)

From Eq. (21) we see that the interaction in Eq. (22) only
involves the linear terms of c, and c1, and does not de-
pend on the second normal mode. We also see that the
first normal mode with the larger energy shift is due to
the superposition of the two traveling waves with the
same oscillation phase, and the second one without ener-

where

2+2
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m, co
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(31)
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with zoo being the ponderomotive potential for each origi-
nal mode.

To determine the value for ~k =p —P, we assume that
the constituent two traveling waves have the same inten-
sity, and thus the same background-photon number and
ponderomotive potential energy. In the general two-
mode case we have

The energies are

p2
+(n, + —')co+ (n2+ —')co+2zco,

2m 2 2
e

which is the same as Eq. (30) for case I.

III. TRANSITION RATE IN
KELDYSH-FAISAL-REISS THEORY

(42)

where I& and l2 are the background-photon numbers for
the two modes. Under the equal-intensity assumption,
for the case of standing waves we have

p —P=O . (33)

Xg ~n, +j,n2), J ~(g)e
J

(34)

Case II. Two beams with the same helicity and opposite
angular momentum. This case is described by
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Solutions for this case can be treated as special cases of
the general two-mode solutions [13]. According to the
general solutions, the singular term appearing in case I
does not arise in this case because of Eqs. (36) and (37).
Thus the wave functions can be written directly as

Finally, the eigenfunctions for the Hamiltonian under the
assumed conditions are

i[P—k(N —N )] r
q/(r) = V

~C&;(r);I, I ) =4;(r) ~I, I &, (43)

where we assume that the constituent traveling photon
beams have the same intensity, and therefore the same
photon number l.

Case I. Two beams with same angular momentum and
opposite helicity. The final-state wave function is de-
scribed by Eq. (34). The following steps can help to avoid
lengthy calculations. The KFR transition matrix element
can be written as

KFR theory is the most popular nonperturbative
theory for multiphoton ionization. Even though its range
of validity is not well established, it has made an impor-
tant historical contribution to the understanding of the
nonperturbative features of multiphoton ionization. In
KFR theory, the initial state of the electron is an atomic
bound state, while the final state is assumed to be a time-
dependent semiclassical Volkov state in which the elec-
tron is assumed to move in a classical radiation field. The
transition rate for multiphoton ionization in KFR theory
can be derived as the leading term of a two-potential
theory in which the interaction between the electron and
the radiation field is treated nonperturbatively, while the
interaction between the electron and the atomic Coulomb
field is treated perturbatively [4,12], but without adiabat-
ic switching off of the radiation field for the final state. It
has also been proven that KFR theory can be derived by
a fully quantum-mechanical and time-independent for-
malism in which the initial state is assumed to be an
atomic bound state while the final state is a quantum-field
Volkov state —a state for an electron and a group of pho-
tons interacting together [10,15]. By adopting the latter
approach, we can use the exact wave functions derived in
Sec. II as the final states for both the photoelectron and
the standing-wave photon field to derive the transition
rate for multiphoton ionization in a circularly polarized
strong standing-wave laser field.

The initial state for the bound electron and the free
photon field in a standing wave is described by
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H =co(E, +Ã, ) (46) we finally obtain the transition-rate formula

and noticing that H~ and V are both pure photon opera-
tors, which are Hermitian, we have
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ming the squares of the transition matrix elements over
all final states yield
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The sum over all final states simplifies since only even
values of n2 contribute. In this case the combinatorial
identity [16]

is the transferred photon number (i.e., the difference be-
tween the initial free photon number 21 and the inter-
mediate background-photon number n, +n z ). The factor
of the inner product in Eq. (47) can be evaluated algebrai-
cally according to

(n, +s, nial, l, l ) =2 '(n!) '(n, +s, n~l, (c, —c~t )'IO, O)

21 —n2 n2

The subscript av on the square of the transition matrix
element and the momentum wave function means the
average value over initial states with the same principle
quantum number and orbital angular quantum number,
but with different magnetic quantum numbers. The aver-
age of the square of the Fourier transform can be
simplified to a pure radial integral [13] with no angular
dependence.

Equation (54) clearly shows that there is no peak split-
ting in the angular distribution. The reason is as follows.
The angular distribution only depends on the Bessel func-
tion part, which is a locally monotonic function of g.
From Eq. (29), one can see that the peak value occurs
when the scattering angle is m/2. The rate formula, Eq.
(54), is exactly the same as that for a single-mode
traveling-wave case with the same total intensity if one
neglects retardation effects on the single-mode traveling
wave. The total ponderomotive potential energies are the
same in the two cases, since the total intensities are the
same and these quantities obey the law of linear superpo-
sition [14].

To compare the theoretical results with experimental
measurements, we choose xenon as the model atom for
calculations. The outermost shell of a Xenon atom is

5@3/2 The radial wave function for the Sp3/2 electron is
obtained by taking the large component of the same or-
bital generated by fitting all energy levels of a relativistic
electron in a Tietz model potential [17] to those of xenon.
Figure 1 shows the calculated angular distribution for
case I. The assumed conditions correspond to 15-photon
ionization with an intensity of 10' W/cm and a wave-

21 —2q 2q
221

1 —
q q

(52)

(0

T, l

~
I

~;
a ''la

p

shows that the factor in the large square brackets in (51)
is equal to 1.

After integrating over the radial part of momentum
space and imposing the energy conservation condition
[13,15]

O

0e
lJJ

I
I'

=w!i

Il

'I,

iI,
IT!)

p2 =jco 2zco Eb
2me

(53)

0 15 30 45 60 75 90 105 120 135 150 165 180

Scattering Angle (deg)

where Eb is the binding energy of the initial bound state,
FIG. 1. Angular distribution for the photoelectron in case I,

calculated from the extended KFR theory.
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length of 1064 nm for each traveling beam. One can see
that there is no peak splitting in the angular distribution.

Case II. Two beams with the same helicity and opposite

angular momentum. The general formalism applies to
this case, so we can write the transition-rate formula
directly from the general two-mode theory of the KFR
type for multiphoton ionization [13j. The transition rate
for an electron absorbing j &

photons from the first mode

and j2 photons from the second mode is

dw

dQ

(2m,'~')'"
(j,+jz —2z ) (j, +j2 —2z Eb /to—) '

(55)

Energy conservation in this case gives

p2 = (ji +J2 )ro 2zto —Eb, —
2me

(56)

dw dw
&

dQ . .~ dQ J J~+'~ '

. J J) J2

(57)

Figure 2 shows the calculated angular distribution for
case II, assuming the same condition as above. One can
see that the angular distribution has a more complicated
shape. Mathematically, the oscillations are due to the
nonmonotonic property of the generalized Bessel func-
tions with respect to the argument g„which is propor-
tional to sin8. The generalized Bessel functions in this
case are combinations of three single Bessel functions.
When gi passes through a point of local maximum value
for the generalized Bessel function before 0 reaches n. /2,
peaks with sidebands occur. It should be emphasized
that this kind of shape has nothing to do with the peak
splitting of Bucksbaum and co-workers observed in case
I. The shapes are a mathematical property of the gen-
eralized Bessel functions, and oscillations may not always
occur as one varies the input parameters in the calcula-
tion.

CO

~~
C

Ll
6$

~~
CO

O

from which we can see that the energy peak position of
the photoelectron depends on j,+j2, not on j, and j2
separately. Thus, for a certain energy peak correspond-
ing to absorbing a total ofj photons, the transition rate is

IV. TRANSITION RATE
FROM SCATTERING THEORY

Guo, Aberg, and Crasemann (GAC) developed a
scattering theory for multiphoton ionization by applying
a formal scattering theory [10]. In the GAC theory, the
leading term of the final state in a perturbation expansion
of the atomic Coulomb potential can be expressed as

ef =y~e„&&,e„~yf, m & (c„=a), (5g)

(59)

where ~Pf, m & is a plane wave for the electron-photon
system with Pf being an electron plane wave and

~
m & a

number state of m free photons. The ~%&& are the time-

independent quantized-field Volkov states having the
same energy eigenvalue 8 as the final plane-wave state

~Pf, m &. The 4'„are the on shell -intermediate states
Since the photoelectrons are collected under conditions
where there are no surrounding external radiation fields,
Eq. (58) should provide a better description of the photo-
electron than KFR theory provides. A complication of
theory is that the final state is defined only when z is an
integer, where z is the number of ponderomotive photons.
This peculiar conclusion should be no problem for cases
of high-intensity fields, where z is a large number, but it is
not adequate when z is only a small and noninteger num-
ber. The difficulty arises from the single-mode assump-
tion for the interaction. In quantum electrodynamics, the
photon field operator includes all possible photon modes.
Even if the initial state were a perfect single-mode photon
state, extra photon modes could still be created through
a scattering process, if energy and momentum conserva-
tion were satisfied. The treatment could be refined by
adding extra modes to the interaction term in the Hamil-
tonian, such that spontaneous emission of those extra
modes would balance four-momentum conservation. In
this treatment, if four-momentum conservation is not
satisfied, there must be some spontaneous emission in-
volved in the actual process. In the case of standing-
wave multiphoton ionization, the situation is better than
in a single-mode case, since four-momentum conservation
can be more easily satisfied between two electron states
and the two photon beams. In this paper, for simplicity,
we will not include the spontaneous-emission modes in
the interaction. Rather, we leave them for a later de-
tailed treatment. Here we extend the GAC theory to the
case of two-mode standing waves. The corresponding
fina1 state is

C0
O
O

LLI tt' 'IÃ tt )~
30 45 60 75 90 105 120 135 160 166 180

Scattering Angle (deg) ~gf, m„m2 &
= V,

' e' '~mi, m2 &, (60)

where ~m„mz & is a free photon state with photon num-
ber m, and mz for each mode and Pf is the electron
plane wave with momentum P, i.e.,

FIG. 2. Angular distribution for the photoelectron in case II,
calculated from the extended KFR theory. while the 4'„are all possible states obtained in Sec. II,
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T~, =g&yf, m„m, le„)T„","", (61)

with the same energy eigenvalue as the plane wave

I Pf, m „m 2 ) . Using Eq. (59) as the final state, the transi-
tion matrix element is

where T„,." is the transition matrix element in KFR
theory.

Case I. Two beams with the same angular momentum
and opposite helicity U. sing the solution, Eq. (34), the
overlap factor in Eq. (61) is

i[P —k(N, —N )] r

&pf, m], m2I+„) =V, '&m„m2le ' 'e " ' ' Q ln]+»n2), J—,(g)e

=(2n ) V, ' g & m „mzln, +s, nz ),J,(g)e "~5(P„—P+(m2 —m, )k) . (62)

Combining the energy conservation equation

P„+(n, + —,
' )co+(n2+ —,

' )co+2zco
2me

p2

2m
+(m, + ')co+(—m2+ —')co,

1 2 2
e

(63)

P„=P—(m2 —m, )k,

we get a quadratic equation for m2 —m,

( m 2
—m ] )

—2( m 2 m] ) IP I
co —'cos8

+2m, co '(2z —j')=0,
where

(64)

(65)

with the momentum conservation expressed by the 5
function in Eq. (62)

If we notice that 2zco is the total ponderomotive energy
of the field, the physical meaning of j' becomes immedi-
ately clear. The integer j' corresponds to the conversion
of ponderomotive potential energy into j' photons of en-

ergy co. When the electron leaves the field, it does not
keep all its ponderomotive potential energy if j'%0, but
returns j' photons to the background field, as shown by
Eq. (66). The maximum ponderomotive decay is at
j'= [2z], the largest integer smaller than 2z. In the j'=0
case, the electron keeps all its ponderomotive potential
energy. The mode-change quantum number gives the
peak splitting in angular distribution. Equation (68)
shows that the peak splitting observed by Bucksbaum,
Schumacher, and Bashkansky (BSB) is due to the pon-
deromotive potential energy gained by the photoelectron.
The largest splitting angle occurs for the j'=0 case.

The solutions of Eq. (65) are

j'—:m]+m2 —(n]+n2) (66) mz —m, = IP co 'cos8+[IPI co cos 8

and 8 is the polar angle of P, or the scattering angle for
the photoelectron. The quantity m2 —m, is the photon-
number difference between the two modes in the final

plane wave, which may be called the mode-change quan-
tum number.

To see the physics more clearly, let us try an approxi-
mate solution for m2 —

m& first by solving the following

equation, which is also from Eqs. (63) and (64):

(m2 —m, ) +2(mz —m] )IP„lco 'cos8„

—2m, co '(2z —j') ]
'f (70)

where, from Eq. (63),

IPI =[IP„I +2m, co(2z —j')]'c (p=1,2) . (71)

Unlike the single-mode case where p has only one value

[10], we know from Eq. (65) that ]]c can now have two
values. The P, and P2 are different only in direction.
They have the same norm shown by Eq. (53), which
expresses energy conservation for the KFR transition,

—2m, co '(2z —j')=0, (67) IP„I = [2m, (j co 2zco Eb )]—'c (p—=1,2) . (72)

m2 —m, =+[2m, co '(2z —j')]'~ (68)

which is exact at the peak point of the angular distribu-
tion. Thus we get the constraint for j',

j'=0, 1,2, . . . , ~2z . (69)

where 8„ is the polar angle of P„. The momentum P„
refers to the Volkov-type intermediate states. The transi-
tion amplitude from the initial bound state to the states
of Volkov type is the KFR transition matrix, which pro-
duces a peak at 8„=m/2 in angular distribution (Fig. I).
Thus we can let the middle term of Eq. (67) be zero to ob-
tain the approximate values for m 2

—m,

Here, j is the absorbed-photon number to excite the elec-

tron into a Volkev-type state. Thus we have a direct ex-

pression for IPI,

IPI =[2m, (j co j'co Eb)]'~— — (73)

Figure 3(a) shows the geometric relations between P and

P„(]M=1,2), 3(b) shows the geometric relation when P
has the maximum polar angle, which determines the peak
splitting in the angular distribution. For fixed j and j',
the maximum polar angle smaller than m/2 can be easily
obtained from the geometric relation shown in the graph,
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sine =aE" (78)

yields a =0.947+0.04 eV " and b = —0.47+0.09 in
agreement with a =0.965 eV'~ from Eq. (75) and
b = —

—,
' from Eq. (76). Figure 4 compares the theoretical

curve with the least-squares fit to the data.
We next investigate the detailed structure of the

differential ionization rate. The overlap factor in Eq. (62)
can be further evaluated,

m2 ln f +s, n2 ),
~ )1pyg 21 1/2

m]+m2, nl+n2+S

(b) 71 ) +S 71 2

XQ( —1)'
m2 t (79)

Equations (49), (66), and (79) show that the total photon
number of the final state must be

m, +m2=21 —(j —j') . (80)

FIG. 3. (a) Geometric relation between the momentum of the
on-shell intermediate Volkov states and that of the final plane
wave. (b) Geometric relation in the case of the maximum
scattering angle, which determines the splitting angle.

Combining this relation with Eq. (70), we know that the
pair (m„m2) can only have two values corresponding to
the two values of P„(@=1,2). Thus we see that the in-

dex p indicates different final plane-wave states, rather
than the different on-shell intermediate states. The angu-
lar distribution of the transition rate is obtained by in-
tegrating the square of the transition matrix element over

~
P

~

and summing over p, for fixed j and j',

B,„=arcsin~P,
~
/~P

dw

dQ

(2m, ro )'
(j —2z) (j —j' Es/ro)'—

(2n )

X[~4;(P,)~,„Ff+~4;(P2)~,„F~]J (g)J, (g), (81)

=arcsin[(j —2z E& /ro) /(j ——j' E& /ro)]'~ . —(74)

The half spitting angle u from the geometric relation
reduces to

a:—m/2 —8,„
=arcsin[(2z j') I(j —j' E&

—
/co )]'—(75)

0.5;——

sina ~ 1/&E (76)

Since the above numerator is a fixed number for some
particular j', we have the following inverse square-root
law for sin&a:

8 0 4'I-

I

0.3 [

where

p2
E= =jco—j'co —E

2m
(77)

0 2
4 5 6 7 8 9 10 11 12 13 14 15 16

Electron Energy (eV)

is the kinetic energy of the photoelectron after the pon-
deromotive potential scattering. This is the true final ki-
netic energy observed by the electron energy spectrome-
ter. In their measurement, BSB obtained ten values for a
at five different photoelectron energies. As shown in Fig.
4, a least-squares fit to a function of the form

FIG. 4. Relation between sin(77. /2 —0,„) and the photoelec-
tron energy E. The dashed curve is the least-squares fit to the
ten measured data points (0). The least-squares fit is propor-
tional to 1/E . . The solid curve corresponds to the predicted
sin(~/2 —0 „)~ 1/E' law. The laser intensity per beam used
in the calculation is 2. 1 X 10' W/cm .
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me co

m, rm2r

ml +m2
(m, +m, —n, )!n, !

' 1/2

(82)

In obtaining Eq. (81), we have applied the relation shown
by Eq. (82). The two factors F, and Fz can be written in
one expression according to the two groups of values of
(m „mz ) obtained by Eqs. (70) and (80),

X g( —I)'

X( —1)

m]+m2 —n2 n2

m2 —t

2I —n2 &2

n 2/2 ~2/2

1/2

(83)
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FIG. 5. Angular distributions for the photoelectron in the (a) 15-, (b) 17-, (c) 19-, (d) 21-, and (e) 23-photon ionization cases calcu-
lated at an intensity of 1 X 10' W/cm per beam and comparisons with the measurements ((&) of Bucksbaum and co-workers. The
theoretical results are marked by vertical lines, with the vertical scale in arbitrary units.
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= 2F= (84)

where

b =m2 —
m& (85)

is the photon-number difference between the two modes

of the final state, i.e., the mode-change quantum number.

which is a pure number, independent of n „j,and j'. In

the large-photon-number limit, the factor F approaches
the simple expression,

x!@;(P,)I,„(ET+Eq)J (g)I~(g) . (86)

From Eq. (77) we can see that j—j' is the total

The proof is given in the Appendix.
The average of the square of the Fourier transforms

only depends on the absolute values of Pi and Pz [13],
which are the same by Eq. (72), so the two terms in Eq.
(81) can be combined. We have the final form

(2,' ')' '
dQ (2~/

(j —») (j j'—E—b/ro)'/
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FIG. 6. Angular distributions for the photoelectron in the (a) 15-, (b) 17-, (c) 19-, (d) 21-, and (e) 23-photon ionization cases calcu-
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absorbed-photon number. For the same photoelectron
kinetic energy, j —j' should be the same, but j and j'
may be different. This reveals that multiphoton ioniza-
tion may go through different channels. Thus the
differential rate for fixed final kinetic energy, i.e., fixed

j —j', is expressed as a sum of the contributions of all
channels,

(2 3 5)1/2
/~)1/2

(2m. )

ch

X(F t+F ~)J~(g)J~(g) .

Figures 5 —7 show the numerical results by using this
theory with intensities of 1X10',2. 1X10', and 4X10'
W/cm per beam, respectively, to predict the angular dis-
tribution and comparisons with experimental results.
The model atom is still xenon and the electron before ion-
ization is in the 5p3/p state. The photoelectron in the cal-
culations has a kinetic energy of 5.4, 7.7, 10.0, 12.3, and
14.7 eV, corresponding to a net absorption of 15, 17, 19,
21, and 23 photons, respectively. In the figures the verti-
cal lines are calculated results from this theory and the
diamond-shaped points are experimental measurements
by Bucksbaum and co-workers. Of the three calculated
results of angular distributions in different laser intensi-
ties, the 2. 1 X 10' W/cm beam intensity has the best fit
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to the experimental data. This agrees with the estimated
beam intensity of (2—4)X 10' W/cm in the experiment
by Bucksbaum [18]. In this theory, the energies of pon-
deromotive decay are always integers measured by the
photon energy. As an electron moves in a 1064-nm
standing-wave laser light with intensity 1X10' W/cm
for each beam, the total ponderomotive potential energy
2z (measured by the photon energy) is 1.81. According to
Eq. (69), there are two channels, j'=0 and 1, for multi-

photon ionization. In the 15- and 23-photon processes
there are two pairs of peaks, as shown by Fig. 5. The
inner pairs correspond to the absorption of 16 and 24
photons, respectively, for ionization and emission of one
photon for ponderomotive decay. The outer pairs corre-
spond to the absorption of 15 and 23 photons directly for
ionization and with no ponderomotive decay. In the
latter case the electron gains the full ponderornotive po-
tential, so the splitting angle is larger. Similar analysis
can be made for the others, but the nonrnonotonic prop-
erty of the functions J'(g) makes the line shapes of the
angular distributions more complicated.

The fraction of ponderomotive energy kept by the pho-
toelectron when it leaves the radiation field has been a
long-standing question. Here, we can see the unique ad-
vantage of this theory, in which we sum the rates over all
possibilities of pondermotive decay, rather than making
an artificial assumption for it. Future experiments may
observe the second pair of peaks and successive pairs of
peaks in cases with a higher ponderomotive potential.
The quantum nature of ponderomotive potential was
mentioned in the GAC paper as a purely mathematical
consequence. The successive pairs of angular-
distribution peaks predicted by the current theory might
be an observable quantum effect associated with the pon-
deromotive energy.

In our theory, the curve of angular-distribution split-
ting is sharp and emission of the photoelectron exactly
between the peaks is forbidden, in contrast to the experi-
rnental measurements where the curves are much
smoother. The reason is that in our theory we assume
that the laser interaction is switched off adiabatically,

(ji —=mi ni j 2=m2 ~2) (88)

Energy conservation is the same as for case I. From Eq.
(63) we have1, P'

P„= —(2z —j')a),
2m, " 2m,

where j' is defined by Eq. (6) and satisfies

J =J&+Jz

(89)

(90)

Momentum conservation from the 5 function in Eq. (88)
1S

p„=p—(j2 —j', )k . (91)

Equations (89) and (91) are exactly the same as Eqs. (63)
and (64), except that m2 —

m& is replaced by j2 —j', . In
the current xenon example,

l
j',

l
and

l j2 l
must be around

500.
The transition-rate formula in case II is

while the actual switching-off process in experiments is
nonadiabatic.

The mode-change quantum number in the current ex-

arnple is of the order 10, which means that the deflected
photoelectron has absorbed about 500 photons from one
mode, and emitted about another 500 photons to the oth-
er mode. The emission is a stimulated emission process.
In this sense, the process observed by BSB is a Kapitza-
Dirac effect —the strong-field Kapitza-Dirac effect. This
kind of photon absorption and emission process is not
due to the usual photon-electron interaction shown by
Eq. (1). Rather, it is a scattering process due to the pon-
deromotive potential.

Case II. Two beams with the same helicity and opposite
angular momentum. Using Eq. (39) to calculate the over-
lap factor in Eq. (61), we obtain

I+„&=(2 ) V, 5(P„ I' (j j )k)

(2m 3 5)1/2
=(j —j' —Eh&~)'"g ', (j~+jz —2z)'I@';(P—(j~ —jz)k)l.', I+, , (g)l'I+. '(g)l'dQ ch

(92)

where j =j,+j2 and the sum is carried out such that

j —j is a fixed number. Here we can see that unlike in
case I, the stimulated emission and absorption of

lj & l
and

l jz l photons are through the photon-electron interaction.
Thus the transition rate in this case is proportional to the
square of the generalized Bessel functions indexed by j&
and j2. The Bessel functions and the generalized Bessel
functions with indices around 500 are very small for
g, —1 —10 and z —1 —10 for the above experimental con-

ditions. So, large-angle deflections of the photoelectron
are present, but the amplitude is too small to be observed.

V. CONCLUSIONS

Comparison between the two theories and experiment
shows that the nonperturbative scattering states provide
a better description of photoelectrons produced in high-
intensity multiphoton-ionization processes than Volkov
states provide. The Keldysh ansatz, which assumes Vol-
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kov states as the final states for the electron in multipho-
ton ionization, is not adequate because the transition
from the Volkov states to free states should be included,
as shown by the scattering theory of GAC and its mul-
tirnode extension. In our scattering theory, the
multiphoton-ionization process partitions naturally into
two subprocesses. The first subprocess is exactly the
KFR process during which the electron is ionized from a
bound state into the radiation field, while the second sub-
process is the process of the photoelectron leaving the ra-
diation field. Energy-momentum conservation in the
second subprocess determines the angular-distribution
splittings. Although the scattering theory of GAC con-
tains the mechanism for the photoelectron leaving the ra-
diation field, the single-mode assumption makes the
theory incomplete. A complete theory should include all
possible spontaneous-emission modes in addition to nona-
diabatic switching, which would smear out the sharp val-
leys in the predicted angular distributions. However,
aside from this, the predicted angular distributions show
good qualitative agreement with the measurements.
Also, the peak splitting in the angular distribution agrees
well with the predicted sin(~/2 —8,„)~ 1/E'~2 law.

A quantized-field approach is necessary in two
respects. First, the complete system of interacting atoms
and photons is treated as an isolated system for which the
total energy and momentum from the initial state via the
intermediate states to the final state is well defined. Thus
the evolution of the energy distribution among the elec-
trons and photons due to interactions and energy
transfers is well determined. This provides a useful guide
to the formulation of the relevant energy-momentum
conservation laws that govern, for example, the angular-
distribution splittings. Second, high-intensity radiation
fields are commonly thought of as classical fields, but this
does not mean that there are no quantum effects in the
classical-field regime. Above-threshold-ionization peaks
spaced apart by one-photon energy show a quantum
effect in strong radiation fields. Ponderomotive potential
energy as a classical quantity is continuous, and
significant only in strong radiation fields. Quantum
effects associated with the ponderomotive potential might
be observable in photoelectron angular-distribution peaks
due to different ponderomotive-energy decays. These
produce the fine structure in the angular-distribution
peaks shown in the figures. They may be observable, pro-
vided that the adiabatic condition is sufficiently well
satisfied. It would be interesting to search for them in fu-
ture experiments.

APPENDIX

The factor Fhas an algebraically equivalent form

(m
&
+m2 n—

2 )!n2!
m&+m&

2 ' 'm &!m2!

m&
X g( —1)'

l n2 t

m2

2l —n2 n2

t n2—/2 n2/2

1/2

(Al)

In the sum, n2 runs over all even numbers. The factor in
the middle can be changed by using a combinatorial iden-
tity

m&

m&
=( —1)'g ( —1), (A2)

2p s —p

which can be proven by using a generating function tech-
nique

m& m)+6

$ t

=(1—x ) '[(1+x) +(1—x) i/2
r

m&

2p s —p
2$ (A3)

m&
X g ( —1)t'

2I —n2 n2
X2

n2/2 n2/2

1/2

(A4)

Here we have assumed that 6 is a positive integer. Since
we can always switch the names of the two modes, the as-
sumption does not affect the final conclusion. Now, F is
in a form

(m, +m2 n2)!nz!
' 't'2—

m, +m,'m ~!m2!
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O~s ~h &&m, =l, 0 j —j'&&m] I (AS)

By the first relation of Eq. (AS), we can simplify the mid-
dle factor of Eq. (A4) by applying Stirling's formula. The
result is

In the large-photon-number limit, the mode-change

quantum number 6 as well as the transferred photon
numbers are all much smaller than the background-
photon numbers. Thus we have
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2p —,'n2 —p

m1
g( —I) 2

2 p

n2

2m, —n2

P

The sum can be approximated by an integration. The ac-
curacy of the integral approximation can be checked in
the 5=0 case. By applying Stirling's formula, we have

21—n2 n2
2

—2l ~
I —nz/2 nz/2

m1 n2
V (

—l)t'
—,'n2 2p 21 —n2

P

(A6)

n2&(—I)
21 —n2

P
21

' 6/2

cos(hy),
21 —n 2

where

The sum can be carried out exactly,

(A7)

which is exactly the same as the result of the direct sum-
mation shown by Eq. (52). With this confidence, we write
Eq. (A10) in the integral form

' 1/2
GX 1 —xF=m cos icos

~ (I x)'"x—'" 1

(A12)

21 —n2
p =arccos

21

' 1/2

(A8)
After rescaling and changing the variable, the above in-

tegral can be simplified without any further approxima-
tion. Thus we have

By Eq. (A5), we can combine the first factor of Eq. (A4)
with the first factor of the right-hand side of Eq. (A6),

'
(m, +mz nz )—!nz!

' '~

—'n2n2

1 if 6=0
77/2F=2m. ' cos(hy)dy = 0 if b, =even

0
+2/m. h if 6 =odd .

(A13)

2
—l

21 —n2 n2

l nz/2 n—z/2

The factor F simplifies to
r

21 n&
—

n&

F=2 '~ I n /2 —n /2n2 n2

1/2 ' b, /2
21 —n2

21

(A9)

(A10)

The first case corresponds to the KFR case, where there
is no mode-change quantum number. In the second case,
there is no transition. The only possible case is the third
case, where b, is obtained by solving Eq. (70). Indeed, one
can take an odd number for 6, which is closest to the ex-
act value. The sign in front of the third case removes the
sign assumption made in the proof. Thus the limiting
form of F is proven.
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