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Mnltiphoton detachment of negative ions in an intense radiation field
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We have applied a momentum-space method to the solution of the three-dimensional time-dependent

Schrodinger equation for electron detachment from a model negative ion, in particular H . We have

studied such phenomena as excess-photon detachment and threshold effects. For selected cases, we ob-
tain excellent agreement with the Floquet calculations. We also present results in regimes of strong in-

terest to experimental efforts.

PACS number(s): 32.80.Fb, 32.80.Wr

I. INTRODUCTION

The negative ion of hydrogen provides an excellent op-
portunity to study intense-field effects at modest intensi-
ties. Since these effects depend more upon the relative
strengths of the binding and laser fields, they manifest
themselves in a weakly bound system as H for an inten-
sity regime beginning at only about 10" W/cm or
0.0017 a.u. of the electric field. The regime abounds with

many new and interesting phenomena. One mechanism
of particular interest is excess-photon detachment (EPD),
the analog of above-threshold ionization (ATI) for neu-
tral atoms. For a laser of frequency co incident upon an
ion, we observe a series of peaks in the electron distribu-
tion that are separated by fico and positioned at and above
the energy corresponding to the minimum number of
photons needed to break the atomic bond. The simplicity
of the H system has attracted much experimental [1—5]
and theoretical [6—24] attention. While no direct obser-
vation of EPD exists for H, the phenomenon has been
seen in F [3], Cl [4], and Au [5]. Not surprisingly,
the earliest applications of the Keldysh-style formula-
tions [6—8] addressed the detachment from H . In addi-
tion, more sophisticated approaches [9—18] have been
employed from scattering-theoretic to Floquet analysis.
To date, the time-independent Floquet method [9—11]
provides the most detailed treatment of this system. We
have applied our time-dependent (TD) momentum-space
formulation [18] to a simple three-dimensional (3D) one-
electron model of the H system and have investigated
the intense-field regime for several frequencies, especially
concentrating on the EPD mechanism and threshold be-
havior. Our results complement the Floquet analysis and
provide a TD picture of the detachment process. Since a
series of excellent comprehensive reviews [19—27] amply
covers all aspects of intense-field interactions with atomic
species, we focus our attention solely on the behavior of
model negative ions in this regime.

which represents a single electron subject to an atomic
potential V, (r) in the presence of an time-varying poten-
tial V, (r~t) with D, given by d/dt and V, the usual La-
placian. Since we seek to examine the interaction of an
electric field with the atom, we invoke the dipole approxi-
mation and write the TD potential in the E r gauge as

V, (r~t)=E(r~t) r,
with the electric field taken in a particularly simple form,

E(r
~
t) =f (t)Eosin(cot )e . (2)

With this choice, the unit vector e represents the orienta-
tion of an oscillating electric field with frequency co and
period T ( =2m/co); the function f (t) allows the field to
depart from purely periodic behavior. We have an
initial-value problem such that at time t =0 the wave
function g(r~O) assumes a known functional form. From
this basic structure of the TD Schrodinger equation, we
turn to a description of its solution.

We construct a total system wave function by expand-
ing in terms of a complete set of basis states in momen-
turn (k) space as

g(r~t)= f a(k~t)P„(r~t)dk . (3)

We select our basis states to solve the Schrodinger equa-
tion

[ ——,
' V + V, (r~t)]gq(r~t) =iD, Q„(r~t), (4)

which resembles Eq. (1) without the atomic interaction.
From our choice of field in Eq. (2), we immediately iden-
tify these solutions as the familiar Volkov states [28],
which obey the normalization condition

nique employed to solve the three-dimensional time-
dependent Schrodinger equation

[ ——,'V + V, (r)+ V, (r~t)]g(r~t) =iD, Q(r~t),

II. FORMULATION f Pz.(r~t)*gz(r~t)dr=5(k' —k) . (5)

Since we have presented a detailed formulation else-
where [18], we give only a brief exposition of the tech-

By substituting Eq. (3) into Eq. (1), multiplying through
by a representative state P&(r~t)*, and integrating over
the spatial coordinates, we convert the Schrodinger equa-
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tion into a set of first-order (FO) coupled temporal equa-
tions of the form

D,a(k'lt)= —i fM(k*, kit)a(kit)dk,

with the matrix elements given by

(6)

where

(y) =(2~) ' exp(im q&), (9)

m is an integer, and the vector k represents the two mo-
menta (a, q) analogous to the cylindrical spatial variables
(z,p). Substituting this expression into Eq. (6), multiply-
ing through by a representative function P (y), and in-

tegrating over the angular coordinate, we obtain a set of
two-dimensional FO temporal equations, block diagonal
in the azimuthal quantum number m. In some cases, we
prefer to employ the polar variables (K, 8) defined as
K=~ +q and tan8=~/q. In practice, we designate a
discrete set of momentum-space k values and convert the
integrals to sums and the temporal equations to the finite
matrix representation

(10)

where [a(t)] =a (t) and [M(t)] ~ =M (t)m ~ in
terms of an index a=(K, 8). The matrix elements
M (t) are defined by Eq. (7); the weights, employed to
make the 2D integral in Eq. (6) discrete, are given by
w; and the superscript "dot" represents a time
differentiation. We have tested several techniques for
propagating this FO temporal matrix equation, including
second-order differences (SOD) [27] and Gear [29] tech-
niques. In addition, we extended the Lanczos reduction
technique of Park and Light [30] to a TD Hamiltonian.
The inost general choice of weights in Eq. (6) yields a
nonsymmetric propagation matrix. We therefore em-

ployed reduction to the upper-Hessenberg rather than to
the tridiagonal form. If we select the weights as positive
definite, then a transformation brings the temporal ma-
trix equations into symmetric representation [18]. We
find that the SOD method functions as well as the others
and requires less storage. For this reason, we have em-

ployed the SOD procedure as our principal propagator
but have assiduously checked its results with the more so-
phisticated schemes.

We must now devise a model to describe the negative

M(k', kit)= fP„(rlt)*V,(r)gk(rlt)dr .

An interesting point arises concerning the choice of
gauge. The matrix elements in Eq. (7) are exactly the
same in the E r and the P. A gauges, since the respective
Volkov solutions differ only in spatial parts independent
of k. We limit our discussion to linearly polarized light
and choose the cylindrical coordinates (z,p, y) as provid-
ing the most convenient representation. For a spherically
symmetric atomic potential, we further simplify by ex-
panding the system wave function in terms of states of
the angular coordinate y as

g(rlt)=gP (y) f az (t)Pz (rlt)dk, (&)

ion of hydrogen. Following Shakeshaft and Tang [9], we
treat H as a one-electron system described by the poten-
tial.

V, (r) = —Voexp( P—r ) /r,
where Vo = 1. 1 and P= 1. The parameters of the Yukawa
potential are selected to give a bound wave function
Po(rlt) in reasonably good agreement with its full two-
electron counterpart. We use this wave function as the
initial condition for our temporal propagation. This po-
tential supports a single bound state at an energy of
c,b

= —0.0275654 hartree (0.75 eV), the correct binding
energy of H . The question immediately arises as to the
degree to which such a model can represent the actual
two-electron system. Estimates of the many-electron
effects indicate that for the intensity and frequency range
under consideration, this simple model gives reasonably
reliable results [10].

Our principal interest rests with the detachment rates
and energy distributions of the freed electron. Since our
model has but one bound level, we define a detachment
rate in terms of the depletion of this state. The probabili-
ty that the system remains in the ground state at time t is
given by the simple projection

2
Pb(t)= fPo(rlt)*g(rlt)dr (12)

We in turn define an effective rate W(t) of depletion of
this state by the relationship

Pb(t) =exp[ —W(t)t] . (13)

We make one final adjustment by employing the projec-
tion function PI (t) defined by

(15)

such that

g fP, (Klt)dK =1 . (16)

This final expression simply implies that the system wave
function must have unit probability of being somewhere
in space —the analog of the spatial integral of the square
modulus of g(rlt) The P, (Klt) coe.fficients, which

Of course, the rate at which the bound state is depleted
equals the rate at which the H detaches so that 8'also
represents a detachment rate. In many situations, the
effective rate oscillates in time about a single constant
value. For this circumstance, we also define a time-
averaged rate over a cycle 8'„which unambiguously
characterizes the detachment process after the initial
transient phase. We determine the electron-energy distri-
bution from a projection onto the momentum basis states.
Thus, the probability at time t of finding the electron
with momentum k is given by la&(t)l . Since this quanti-

ty is two dimensional, we seek a more appropriate form
for display by expanding in terms of associate Legendre
polynomials t (8) in the polar angle 8 as

(14)
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represent the probability of finding the detached electron
with a particular energy K /2 with a certain orbital an-

gular momentum I, will give a description of the EPD
structure, both the positions and the angular composition
of its peaks. Finally, by summing over the angular com-
ponents, we obtain a total probability P (K~t), which

would be the most likely feature observed experimentally.
The probabilities discussed above involve projections
onto the Volkov states and therefore represent an elec-
tron free of the atomic potential but remaining in the os-
cillating electric field. However, if we perform the calcu-
lations at an integer multiple of the period T, then the re-

sulting probabilities correspond to projections on a sirn-

ple plane wave, independent of the potential and the radi-
ation field. This situation corresponds to most experi-
mental arrangements in which the detached electrons are
detected outside of the laser pulse. The manner in which
the electron exits the field also characterizes the structure
of the EPD peaks. In an earlier study [18],we investigat-
ed the effects of the temporal and spatial ramping of the
oscillating electric field on the electron-energy distribu-
tion. For all examples in this article, we report EPD
electron spectra for a field that temporally switches off
long before the electron can exit the spatial extent of the
pulse. Our EPD graphs best resemble an experiment
with short pulses and low-energy detached electrons, al-
though other representations can be constructed from the
TD propagated wave function.

We have made several improvements in the original
implementation. We had determined the matrix elements
in Eq. (7) by direct integration. However, we found that
the oscillating integrands encountered in such
momentum-space formulations were difficult to converge
in this manner. We therefore expanded the atomic po-
tential in a set of Boating Gaussian or B spline functions.
The spatial integration over the Gaussians and oscillating
functions could in most cases be performed analytically
with the full integral found by summing over the expan-
sion terms. This procedure has proven to be both more
accurate and more efficient. We also employ the tech-
nique for the representation of the initial wave function
in the projection integrations. Finally, we have found
that the polar representation is generally more compact
than the rectangular and will usually place our
momentum-space meshes in terms of E and 8.

In closing this section, we observe that the method to
date has been applied to short-ranged atomic potentials
and has demonstrated the general behavior of EPD (ATI)
peaks and ionization rates characteristic of many experi-
ments. In addition, the method correctly reproduces the
perturbation limit for low intensities. For the Yukawa
potential, we have obtained excellent agreement with a
Floquet solution [31] of the TD Schrodinger equation in
the Kramers-Henneberger gauge for ionization rates.
The Floquet analysis in turn produces results for H in
very good agreement with other TD theoretical methods,
which have been extensively compared with observed
phenomena. This correlation lends considerable validity
to the basic momentum-space approach as applied to
negative ions. With the basic techniques expounded, we
embark upon a description of the results.

III. RESULTS AND DISCUSSION

We describe the detachment of H for different fre-

quency and intensity environments. Our interest natural-

ly centers on those regimes most open to experimental in-

vestigation. We begin by demonstrating the efficacy of
the technique by reproducing the perturbation limit.
Having ascertained the quality of the method, we explore
detachment processes requiring one and more photons.
Before launching into a detailed discussion, we describe
several common features of the calculations. First, since
the system has only one bound state with symmetry
m =0, we need only consider this one symmetry block in
determining the detachment parameters. This
simplification greatly reduces the computational effort.
Second, we employ the (K, 8) variables to label the expan-
sion coefficients and matrix elements. We divide the E-
space regime into a series of N zones, each with a
prescribed number of points. The nomenclature for this
mesh takes the form [n „nz, . . . , n+/O, K„K2, . . . , K~].
The first entry gives the number of points in each zone n, ,

while the second designates the boundaries. For exam-

ple, zone 2 has n2 points and extends from K, to E2.
The total number Nz of mesh points in the E variable is

simply the sum of the individual zone counts. Our angu-
lar mesh spans a single zone from 0 to m with N& points.
Therefore, the order of the matrix that must be temporal-
ly propagated is AN&. For both variables, we usually
select a Gauss-Legendre quadrature to determine the
weights and the distribution of points in the integral eval-
uation in Eq. (6), although Simpson's rule has also been
applied. Third, we have found that a temporal step size
of ht =T/7500 gives accurate wave-packet propagation
in the SOD method. In most cases, we turn the field on
by the simple relation in Eq. (2). However, we have em-

ployed a linear ramp of several periods but have found
little difference with the instantaneous result. With these
special features in mind, we can begin our exposition of
the calculations.

A. One-photon detachment

As an example, we treat the detachment of an electron
from H by the absorption of a single photon (co) eb).
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FIG. 1. Effective detachment rate W(t) as a function of time
for co=0.043 hartree (1.17 eV) and an intensity of I =SX10'
W/cm (ED=0.001 19 a.u.).
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FIG. 4. Same as Fig. 3 but with I = 1=1X10' W/cm (0.00534
a.u. ) and t = 15T.
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FIG. 3. Electron distribution function mi n P (Eit) for m =0 as a
=0 043 hartree, I=5X10" W/cm, andfunction of E for m=

t = 10Twith T =3.53 fs.
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FIG. 6. Effective detachment rate W(t) as a function of time
for co=0.018 hartree (0.49 eV) and an intensity of I=2.5 X 10"
W/cm~ (0.002 673 a.u.).

formula (a.u. )

E„=n co —cb EJ, (17)

where E is the quiver energy Eo /(4co ) and
K„=(2E„)' . Since plots with respect to J give a better
display for the EPD peaks, we shall use this format
throughout. However, the laser frequency co still dictates
the peak separation, as clearly indicated by Eq. (17), and
plots with respect to energy, EC . The lowest EPD peak is
dominated by a p-wave (l =1) contribution, while the
second peak is a combination of s and d waves. This par-
ticular association would be expected from perturbation
theory for excitation by one and two photons, respective-
ly.

A more interesting case arises at twice the previous in-
tensity 1 X 10' W/cm (0.005 34 a.u. ). In Fig. 4, we give
the electron-energy distribution at t =15T, which now
shows evidence of three EPD peaks. The mesh and prop-
agation parameters were similar to the preceding exam-
ple. The system becomes almost totally detached by ten
cycles, and the ratio of the height of the first to the
second EDP peak remains practically constant at a factor
of 2.90. In Fig. 5, we display the partial-wave com-
ponents of the electron distribution as a function of ener-
gy. As in the weaker-field case, the lowest peak is basi-

2.5 3.0 3 5 4.0 4.5 5.0 5.5 6.0

( (10"Wtcm )

6 5 7.0

FIG. 8. Period-averaged rate W, as a function of intensity I
for co=0.018 hartree near the two- to three-photon threshold.
Nomenclature: line and circles, present calculations; crosses,
Ref. [10];and vertical dashed line, threshold.

cally p wave and the second peak a mixture of s and d
waves, with the d wave giving a larger contribution. The
position of the peaks corresponds to Eq. (17) with very
little evidence of any additional shift, although the curves
do not have the detail to yield precise values. Finally, we
present a summary of the rates as a function of intensity
in Table I. These results tend to confirm that an experi-
ment with these parameters might glimpse the EPD
structure of this simple system.

B. Multiphoton detachment

With the ability to tune the laser frequency by means
of a relativistic beam [1,2], we can hope to explore other
intense-field regimes. We consider a two-photon process
with a laser frequency of 0.018 a.u. (0.49 eV, T=8.44 fs).
We have employed a E-space mesh (Nx = 130) of the
form (5,30,5,20,20,25, 10,10,5/0, 0.05,0.10,0.18,0.23,0.33,
0.4,0.8,3.0,8.0) and Ne=10. In Fig. 6, we examine a
representative case for the eff'ective rate at an intensity of
2.5X10" W/cm or 0.002673 a.u. of field strength. We
observe the now familiar pattern of an oscillating func-
tion about a constant value giving rise to an unambiguous
definition of a period-averaged rate W, =2.08 X 10 a.u.
or 8.60X10' s '. We display the rich EPD spectrum in

50.0

40. 0

TABLE I. Time-averaged ratees W, for the electron detach-
ment of H as a function of intensity for two laser frequencies.
Numbers in square brackets give power of 10.
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E
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FIG. 7. Electron distribution function P (K~t) for m =0 as a
function of K for the case described in Fig. 6 at t =20T.
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FIG. 10. Same as Fig. 7 but with I=4.25X10" W/cm
(0.003 485 a.u. ) at t =20T.

FIG. 9. Same as Fig. 7 but with I=3.5X10" W/cm
(0.003 162 a.u. ) at t =20T.

Fig. 7, demonstrating the well-established phenomenon
that higher-order photon processes exhibit intense-field
effects at lower intensities.

Scrutiny of Eq. (17) suggests an interesting scenario.
For fixed frequency co and number of photons n, we can
adjust the laser field Eo such that the electron energy is
zero. For higher intensities, the electron detachment en-

ergy becomes negative, indicating that an additional pho-
ton must be absorbed to raise the electron into the con-
tinuum. Therefore, this critical-field demarcates the
threshold between n and n +1 photon absorption. In or-
der to explore this interesting region, we concentrate on
the two- to three-photon threshold, which occurs at an
intensity of 3.83X10" W/cm for a frequency of 0.018
a.u. In Fig. 8 and Table I, we display the rate 8', as a
function of intensity. Circles mark the actual calculated
points, while the solid line serves as a visual aid; the verti-
cal dashed line gives the predicted threshold. We also
show a comparison with the results of a Floquet calcula-
tion [10] for the same model potential. The agreement is

very good, considering the different formulations in-
volved. In this particular case, the Keldysh-style tech-
niques lie within about 30%%uo of the Floquet results [10].
We notice that the rate decreases as a function of intensi-

ty near the threshold. We have left a gap in our curve
very close to the threshold since we find that a single rate
cannot describe the detachment process in this region.
We in effect have a competition between different mecha-
nisms that we cannot cleanly resolve during the length of
our longest temporal propagation (30T). Once we pass
threshold, we can again uniquely define a rate, which
then increases until reaching the next threshold where
similar behavior ensues.

We can understand this behavior in terms of a basic
threshold effect. In the intense-field regime, the photon
absorption must have sufficient energy not only to break
the atomic bound (Eb ), but also to supply the freed elec-
tron with its proper motion within the laser field (E ). .

For a fixed frequency and increasing intensity, we eventu-

ally encounter a situation in which the energy remaining
to the electron after detachment is insufficient to initiate
the quiver motion. In this case, another photon is needed
to promote the electron into the continuum. In order to
examine the behavior near the threshold in more detail,
we present in Figs. 9 and 10 the electron distribution
P (E~t) for intensities of 3.5 X 10" and 4.25X10"
W/cm, respectively. At an intensity well below the
threshold (2.5X10" W/cm ), we observe a rich EPD
spectrum with a dominant initial peak as depicted in Fig.
7. Just below the threshold, we note the suppression of
the first peak. For the higher intensity, this peak has en-

tirely disappeared. Such behavior has been well docu-
mented in both 1D [18—24] and 3D [18] models. We do
not find any evidence of a trapping near the nucleus of
the wave function, as may be seen in more intense fields.
We have verified this behavior through extensive one-
dimensional calculations in which the same basic phe-
nomena occurs.

In this paper, we have explored a variety of processes
associated with the photodetachment of the hydrogen
negative ion in the intense-field regime. We observe such
effects as excess-photon detachment and suppression of
the detachment rate near thresholds. We have employed
a fully time-dependent treatment of the Schrodinger
equation in momentum space to investigate these re-

gimes.
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