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Degenerate and nondegenerate two-mode normal squeezing
in a two-level atom and two-mode system
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We investigate the phenomena of degenerate and nondegenerate two-mode squeezing for a generalized
Jaynes-Cummings model with a two-level atom and two modes. The effect of the relative phases between
the atomic superposition state and the coherent field on normal squeezing is studied. Different values for
the parameters of the atomic coherent state are taken. It is found that the nondegenerate two-mode
squeezing is more effective than the one-mode degenerate type, and it recurs at later times.

PACS number(s): 42.50.Dv

Recently, the definition of one-mode squeezing has
been extended so as to investigate squeezing by two-mode
interactions [1,2]. The formalism given in Ref. [1) has
been used to investigate normal squeezing produced by
the interaction of a two-level atom with two modes [3,4].

As for the theoretical work, Alsing and Zubairy [5]
have investigated the collapse and revival of Rabi oscilla-
tion of an effective two-level atom that is in interaction
with a quantized single-mode field through an intermedi-
ate state. A generalized Jaynes-Cummings (JC) model is
investigated where the transitions are mediated by pho-
tons from two different modes [3,1]. In a recent study,
the atom is taken to be prepared initially in a coherent
superposition of its upper and lower levels, and it in-
teracts with a single coherent mode [6,7]. It has been
shown recently that the population inversion and field
spectrum show dramatic changes with the change in the
relative phase between the atomic dipole and the
coherent field [6]. Also, squeezing is effected by atomic
coherence [7].

In the present article, we find the wave function for the

system of two modes in interaction with one atom. Then
we calculate degenerate and nondegenerate two-mode
squeezing for different values of the parameters in the
atomic coherent state le„, (0) & where the modes are in-

itially in coherent states. The effects of the change in the
relative phases on the one-mode and two-mode squeezing
are studied.

The system we consider here is an effective two-level

atom with upper and lower states denoted by le &, and

lg &, respectively. We start now by introducing the total

Hamiltonian for the JC model of a two-level atom and

two modes of the electromagnetic field in an interaction

which is given in the rotating-wave approximation [3,4],

by

2

,'cooS', + g co, a,. a +—k(a,&zS +8,8zS+),
j=1

where QJ (8 ) is annihilation (creation) operator for a

photon of the field jth mode, co1 and co2 are the field fre-
quencies for the two modes, A, is the coupling constant
between the atom and the field, coo is the transition fre-

quency of the atom, and

S, = le &&el
—

lg &&gl,

S- = lg &&e I, S+ = le &&gl .

Let us consider the atom prior to the interaction to be
prepared in a coherent superposition of its excited and
ground states [6,7]

l'It„, (t =0) & =cos(8/2)le &+e '~sin(8/2)lg & .

The initial atom-field state is then a product of the atomic
superposition state and the field in a photon coherent
state or the squeezed field

%l( 0) &= g q „l m, n & l% ... (t =0) &,
m, n

where

(4)

I m—(Ni +N2 )/2 1

qI =e

with aj =+X exp(ig ), a. nd X.=lynx. l (j =1,2) is the
mean number of photons in the coherent state. It must
be emphasized that the first subscript is related to the
first mode and the second is related to the second mode.

At any time t )0 the wave function of the total system
in the interaction picture with the initial condition (4) is
found from the Hamiltonian interaction (2) to be

By considering the case of two-photon resonance
~, +co2=coo, then the Hamiltonian in the interaction pic-
ture is

8;„,=A(&,d2S +8)&2S+) .
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~ql(t) & =exp( i—tP;„, ) ~
%(0) &

=g q „[cos(8/2)[cos(itp +, „+,)~m, n;e& i—sin(ktp +, „+,}~m+1,n+1;g&]
m, n

+e '~sin(8/2)[cos(}(tp „)~m,n;g & i—sin(Atp „)~m —i, n —1;e &]I, (6)

where p „=mn. It must be noted that the state

~
rn, n;e & means that the first mode is in the mth Fock

state, the second mode is in the nth Fock state, while the
third subscript stands for the atomic state. Thus the ex-
pectation values of any operator and its dependence on

time can be obtained through the formula (6)

& g(r) &
=

& +(r) I Q l
+(r) & . (7)

We now study the normal squeezing in the JC model.
We first define the single-mode normal squeezing when
the quadrature operators XJ and YJ given by [1]

(~ ) (b, Y) ~(—'), j=1,2.
A state is normally squeezed in the variables if

(~J) & —,
' or (b, Y )2& —,', j=1,2.

(10}

X (t)= —,'(A~+ A ), Y (t)=—(A —A. )
l

(j =1,2),
where A~ =diexp[i(co~t

—
gz )] is a slowly varying opera-

tor, and g is the phase of the field coherent state. These
operators satisfy the commutation relation

[X,Y]=—.l

2

The commutation relation of Eq (9) im. plies the uncer-
tainty

(bZi) =
—,'[(bX, ) +(bX2)

+-,'( & A, A, &+ &
A", A", &

—
& A, & & A, &

—
& At&& A, &+c.c. )], (14)

(EZ2) =
—,'[(b, Y, ) +(hY~)

—
—,'( & A, A",

&
—

&
A" t A", &

—
&

A",
& & A",

&

+& At && A, &+c.c. )],
where the variances in the first mode are given by

(bX) ) =—'[1+2& A IA I &+ & A', &+ & A, ' &

—(& A, &+ & A', &)'],

(a Y, )'=-'[1+2& A ', A, &
—

& A ', &
—

&
A""

, &

+( & A", &
—

&
A"t

& )'],

(16)

(17)

and the variances in the second mode can be obtained by
replacing the subscript 1 with 2 in Eqs. (16) and (17). We
find

0.75

(hX, ) ~(~q), (b Y, ) ~(b, Y2)

By using Eq. (7), we obtain the expectation value in the
general form for the field operators A,+ A ', A 2,

These are the conditions for single-mode normal squeez-
ing.

However, these quantities are generalized for the two-
mode case to [1]

ZI(t)= —( A i+ A i+ A2+ A2)= —(XI+X2),

(12a)

Z~(t)= —(A, —A, + A~ —A ~)= —(Y, + Y~} .
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(b,Z, ) & —,
' or (bZz} & —,

' . (13)

In terms of creation and annihilation operators of first
mode and second mode these become

(12b)

These operators satisfy the commutation relation (9), and
the uncertainty relation (10) holds. By definition, the
two-mode normal squeezing occurs when

0.15

FIG. 1. (a) The time evolution of (hX, ) (degenerate mode)
(solid line) and (EZl) (nondegenerate mode) (dashed line) for
NI =N& =10 and 0=0 (the atom initially in the excited state).
(b) (~, ) +0.30 and (AZ, ) +0.30. The same as in Fig. 1(a)
but for 0=m. (the atom initially in the ground state).



6612 A. M. ABDEL-HAFEZ 45

( A,+"A",A2) = ~a, r"+"ra2~'g p"'p„' ' sin (8/2) cos(s(,tp +„„+,)cos(A.tp +k „)
m, n

sin(A, tp +„„+,)+P 1M„sin(A, t1M +k „)
Pm +kPm +r, n +s

+cos (8/2) cos(ktP +,+ k n+, )cos(ktP +,+„„+,+, )

+Pm + 1+k 1Mm + 1+r, n + 1+s ( ~ Pm+ 1'+ r, n + 1+s }

sin(k. t1M +,+„„+,)
X

Pm+iPn+&

i sin(8) sin(A, tp +k „)+— e'~ p p„cos(A, tp, +„„+,)2 QN1N,
" "'" '

9m+k

—p +„„+,sin(At@ +„„+,)cos(ktp +„„)

——QN, N2sin(8)e ' cos(s(re +1+k „+1)

Sln( krPm + 1+r n + 1+s )
X

Pm +1+r, n +1+s

Pm+1+kCOS(krI m +1+r n+1+s )

sin(Xrp „+„„+,)
X

2
Pm+]Pn+&

(19)

where P,'J'=exp( N )(N'/s!)—, an. d P=P (P, +$2) is-
the relative phase between the atomic state (phase P) and
the field coherent state [phase (g, +gz) ]. It is easy to see
that when we exchange the field modes we have

( A1 A1A2 )~( A z+ A2A', ) with 1~2 . (20)

We will now discuss the temporal behavior of the vari-
ances (~, ) and (b,Z, ), which give information on de-

generate and nondegenerate two-mode squeezing, respec-
tively, when we take N, =%2 = 10 and the different values
of the angle 8 and P. We shall study the effect of the rela-
tive phase P on two different modes of squeezing for the
nonlinear JC model.

Numerical results for Eqs. (14) and (16) are presented
in Figs. 1 —4. Here we plotted the one- and two-mode
squeezing (b,X, ) and (hZ, ), respectively, against A, t in
the interval [0,10] for N, =N2 = 10 and different values of
8 (namely 0, sr/4, n/2, 3n/4, an. d 1r) and also the relative
phase P (namely 0, +m. /2, and —a/2).

In Fig. 1(a}we display the results of the JC model with
8=0 (with the atom initially in excited state), and in Fig.
1(b) we have the case for 8=~ (with the atom initially in
the ground state). We observe that the squeezing param-
eter of two-mode case oscillates, and one-mode squeezing
is lost for 8=m. [see Fig. 1(b)], while for 8=0 [see Fig.
1(a)] we note that the two-mode squeezing starts to ap-
pear a little later than the degenerate mode squeezing.

Furthermore, its value is larger than that of one-mode
squeezing. It recurs later on for larger values of kt, in
contrast to the degenerate mode squeezing which is re-
voked.

Hence we find that initially, the amount of degenerate
and nondegenerate two-mode squeezing is greater for the
atom initially in the excited state 8=0; however, it occurs
after a time lapse. It is also apparent from the calcula-
tions that for these special cases, phases do not affect
squeezing. Normal squeezing for the standard JC model
(see Ref. [7]) shows a recurrence of squeezing at a later
time for 8=0, which does not occur for the degenerate
case in the present model. The nondegenerate two-mode
squeezing, however, shows similar behavior, but with
stronger squeezing and more frequencies for both values
of 0=0 and ~.

The characteristics of normal squeezing are shown in
Figs. 2(a) —2(c) at the relative phase P=O, and for the
values of 8 ( =sr/4, m. /2, and 3'/4), respectively. We see
that in Fig. 2(a) the one-mode and two-mode squeezing
occur for 0=a/4 for a short time. But for 0=m/2 and
3~/4, we note that degenerate squeezing disappears all
together in these cases [see Figs. 2(b) and 2(c}]. While in
the nondegenerate case, squeezing recurs later on as time
increases in all the cases under consideration.

The amounts of squeezing are studied through curves
in Fig. 3, when the relative phase P=m. /2, and for all
values of 0 considered before. We notice that for the
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FIG. 2. The time evolution of (~1) (solid line) and (bZ& )

(dashed line) for the one-photon JC model. The relative phase
is P=O, and N, =N, =10. (a) (~, )' and (EZ, )~ for 8=m/4
(b) ( ~& ) +0.30 and (hZ& ) +0.30 for 8=m. /2.
(c) (4X] ) +0.60 and (kZ] ) +0.60 for 8=3m/4.

short time 0&A,t &1 the observed maximum amount
squeezing for degenerate and nondegenerate modes is
enhanced for 8=m/4 [see Fig. 3(a)], and the curve for
nondegenerate two-mode squeezing oscillates for all
values of 8. We also observe that the degenerate and
nondegenerate two-mode squeezing (Fig. 3) (p=m/2) is
larger than those in Figs. 1(b) and 2. Furthermore, we
notice that in the nondegenerate two-mode case squeez-
ing occurs at later times for 2&A,t &4 and 8.5&i,t &9.5.
For the first interval, by increasing 0 we find that the
largest amount of nondegenerate two-mode squeezing in-
creases, while the order is reversed for the latter interval.

From Figs. 4(a) —4(c), at p= —n/2, we note that the
nondegenerate two-mode squeezing parameter oscillates
as 0 increases, and squeezing is attained at the beginning,
in contrast to the degenerate mode squeezing for the
short interval 0 ~ A, t & 1. The degenerate mode squeezing
is lost after that, while the behavior of the nondegenerate
two-mode squeezing is the same as that observed in
Fig. 3.

Thus we conclude that the effect of the relative phases
on normal squeezing is the strongest in the nondegen-
erate two-mode JC model for the different values of 0
when the relative phase P=vr/2 We have sh. own that
when the relative phase (p) is fixed, the amount of
squeezing for both degenerate and nondegenerate cases
increases as the value of 0 decreases for the very short in-
terval 0 ~ A,t & 1. However, for the interval 2 & A, t & 4 the
nondegenerate two-mode squeezing increases as 0 does,
in contrast to the normal degenerate squeezing for the

FIG. 3. Same as in Fig. 2, but with P=+/2.
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FIG. 4. Same as in Fig. 2, but with P= —
m /2.

present model and the standard JC model. Also we no-
tice that the observed amount of nondegenerate two-
mode squeezing is larger than the degenerate mode
squeezing corresponding to the same values of 8. Furth-
ermore, the degenerate mode squeezing is lost after a
short time. Finally, we note that the level of the noise is
lower for the nondegenerate two-mode squeezing.
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