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Superpositions of coherent states: Squeezing and dissipation
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In this paper we discuss the nonclassical properties of quantum superpositions of coherent states of
light. Using general expressions for the Wigner functions of superposition states we analyze the conse-
quences of quantum interference between coherent states. We describe in detail nonclassical properties
of a superposition of two coherent states. In particular, we study the oscillatory behavior of the photon
number distribution of the even and odd coherent states. We show under which conditions a superposi-
tion of two coherent states can exhibit second- and fourth-order squeezing or sub-Poissonian photon
statistics. We examine the sensitivity of nonclassical effects such as oscillations in the photon number

distribution or second-order squeezing to dissipation. We demonstrate that quantities such as the pho-

ton number distribution and interferences in phase space are highly sensitive to even a quite small dissi-

pative coupling, because they depend on all moments of the field observables, and higher moments decay

more rapidly than lower moments. Quantities such as quadrature squeezing, on the other hand, are

more robust against dissipation because they involve only lower moments. Finally, we find a remarkable

effect whereby fourth-order squeezing is generated by damping.

PACS number(s): 42.50.Dv

I. INTRODUCTION

The linear superposition principle is one of the most
fundamental features of quantum mechanics [1]. In par-
ticular, the interference of quantum amplitudes results
from this principle. It has been realized recently that the
interference between states of light composing a quantum
superposition state gives rise to various nonclassical
e(sects [2—9]. In particular, it has been shown that
squeezing (i.e., a reduction of quadrature fluctuations
below the level associated with the vacuum [10]),higher-
order squeezing [11], as well as sub-Poissonian photon
statistics [12) and oscillations of the photon number dis-
tribution [9], emerge from a superposition of coherent
states.

There have been several proposals recently for the gen-
eration of optical superposition states in various non-
linear processes [13—16] and in quantum nondemolition
or back-action-evading measurements [17]. It has been
pointed out by Yurke and Stoler [13] that, in the presence
of low dissipation, a nonlinear system may convert a
coherent state (CS), i.e., the state which is associated with
the "most" classical state of light one can imagine in the
framework of quantum theory [18], into a quantum su-

perposition of macroscopically distinguishable states. As
an example of such a nonlinear system, one can imagine a
Kerr-like medium (for instance, an optical fibre} modeled
as an anharmonic oscillator [13,19—23] with the Hamil-
tonian (A= 1)

H=co(a a+ —,')+y(a a)

where a and a are the creation and annihilation opera-
tors of a photon of a single-mode electromagnetic field

([a,a ] = 1}and the coupling constant y is related to the
dispersive part of the third-order nonlinearity of a Kerr
medium. If the light field is initially (t =0) in a coherent
state ~a &.

~a&=b(a)~0&=exp( —lal /2) g —,In &.=o &n!

8(a) =exp(aa —a*&),
(1.2)

n

X g —exp( ident —in yt)~n —
& . (1.3)

, &n!

This state can be identified with a particular realization
of a generalized coherent state introduced by Titulaer
and Glauber [24] and later studied by Stoler [25] and
Bialynicka-Birula [26]. One can find that, at the time
t~ =m. /2y, the state given by Eq. (1.3) in an appropriate
rotating frame takes the following form (apart from an
overall phase factor):

~a &vs= (~a &+e'""~—a &),
1 (1.4)

i.e., the initial coherent state has evolved into a quantum
superposition of two coherent states ~a& and

~

—a&
which are 180' out of phase with respect to each other.
In what follows we will refer to the state (1.4) as to the
Yurke-Stoler (YS) coherent state [13].

Recently Phoenix and Knight [27] have shown that a
single-mode electromagnetic field interacting with a sin-

gle two-level atom described in the framework of the
Jaynes-Cummings model (JCM) [28] evolves into an al-

most pure state at one-half of the revival time tz. Gea-
Banacloche [16,29] has pointed out that, in the JCM, a
single-mode field, which is initially prepared in the
coherent state, can nonunitarily evolve into a quantum

where ~0& is the vacuum state of a harmonic oscillator
and 8(a) is a displacement operator, then at time t it
evolves into the state

~%(t) & =exp( —
~a~ /2)
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la &, = A,'"(la &+ l

—a &),

A, '=2[1+exp( —2lal )],
(1.5)

superposition of two component states (the other example
of the generation of quantum superpositions by nonuni-

tary evolution is that of quantum nondemolition mea-
surements [17]). Depending on the initial photon num-

ber, one can find that at one-half of the revival time of the
atomic inversion the field evolves into an almost pure
state [16,27,29], which can be approximately described ei-

ther as an even coherent state,

tures of two coherent states. In Sec. V, we will analyze
the influence of damping on nonclassical properties of su-
perposition of coherent states.

II. .NOTATIONS AND BASIC DEFINITIONS

A. The density operator, pure states and statistical mixtures

If l%, & is a state vector of a quantum-mechanical sys-
tem (for instance, a harmonic oscillator) and 1& is an arbi-
trary operator, then the expectation value of 4 is given

by

or as an odd coherent state,

la&, = A.'"(la& —
l

—a&),

A, '=2[1—exp( —2lal )] .
(1.6}

or

&Q&=&+, i&le, &

&Q& =Tr[&le, &&@,l] .

(2.1)

(2.2)

The Yurke-Stoler state and the even and odd coherent
states belong to a wider class of quantum superposition
states given by the relation gp;=I, p;&0, (2.3)

If we know that the quantum-mechanical system is in the
state

l 4; & with a probability p, , where

g e' 'la, &

(1.7}
we should thus average (2.1) over that probability distri-
bution:

A '= g e' ' " &a„la, &.
j,k=1

The main purpose of our paper is to clarify the origin of
squeezing and other nonclassical effects in a superposi-
tion of coherent states of light given by Eq. (1.7} and to
study the influence of damping on these effects. For the
most part, we are concerned with small values of a ap-
propriate to the Jaynes-Cummings model rather than to
nonlinear optical interactions.

Recently Schleich et al. [9] have made an extensive
study of the nonclassical state produced from a superpo-
sition of two coherent states; the state they employ is a
special case of Eq. (1.7},

&Q&=y p, Tr[QI+, &&+;I] .

We can define the density operator p as

p=gp, I+, &&+, I,

so that

&Q&=Tr[p&] .

The density operator p is Hermitian

p'=p

(2.4}

(2.5)

(2.6)

(2.7)

l~&=x (lae'~" &+lac-'~" &)
1

V'2
(1.8)

and its trace is equal to unity:

Trp=1 . (2.8)

with equal angles yj. As we will show, the interference
between the component states is a sensitive function of
the relative phase difference and can generate a number
of novel effects. In addition, we show that interferences
between states of different amplitudes are very sensitive
to dissipation and we show that, for our superpositions
considered here, dissipation very rapidly destroys effects
such as oscillations in the photon number distribution
dependent on these interferences. We show that, in con-
trast, quadrature squeezing is relatively robust against
dissipation. We explain this differential sensitivity in
terms of the various decay rates of moments of observ-
ables on which the relevant physical quantities depend.
Such effects have not, to our knowledge, been dealt with
previously.

This paper is organized as follows: In Sec. II, we
briefly summarize some basic definitions which we use in
the course of the paper. In Sec. III, we develop a general
formalism to describe superpositions of coherent states.
In Sec. IV, we discuss the properties of statistical mix-

and

p=p (2.9)

Trp =1 . (2.10}

When the last condition is satisfied, we say that the
quantum-mechanical system is in a pure state.

For a mixed state (statistical mixture), we do not know
the state of the system precisely, and the state of the sys-
tem is characterized by the p operator (2.5), for which

Trp (1 . (2.11)

To measure the degree of purity of a quantum-
mechanical state, it is often convenient to use the concept

The diagonal matrix elements of p are real and positive in

any representation.
If we know the state of the system precisely, i.e., we

know that the system is in the state l%& (i.e., p;=5; ),
then we have
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N N

X la; & ex; + X exp(i(»; —»J)I a;)(ex;I
i=1 i=1

(2.12)

while the density operator

p= g p, la, &(a, l, g p, =l (2.13)

describes a statistical mixture of coherent states la; ).

B. Characteristic functions and quasiprobability distributions

The state of the quantum-mechanical system is charac-
terized by the set of expectation values of the system
operators. In particular, those of a harmonic oscillator
are described by the mean values (moments) of the boson
operators 8' and & ~. Generally, the moments of the bo-
sonic operators are given in the normally ordered form
((o ) d"), antinormall~ ordered form (I"(d ) ), and
syminetrical form ( j(& ) 8"] ), [30], and can be evalu-
ated with the help of normal, antinormal, and symmetric
characteristic functions [31]:

of the entropy S [27], defined as

S=Tr[plnp] .

For a pure state the entropy is equal to zero, while for a
statistical mixture the entropy is strictly positive. The su-
perposition of coherent states (1.7) is an example of a
pure state with the density matrix

N

p= A g exp[i()p, y,—)] la, )(a, l

l) J —1

C(g, s =1)=C'"'(g),

C(g, s = —1)=C",
C(g, s =0)=C"(g) .

(2.19)

It can be shown that the p matrix may be determined
uniquely from the characteristic functions C(g, s), which
means that the knowledge of the density operator is
equivalent to the knowledge of the complete set of mo-
ments of the system operators and vice versa [33].

The quasiprobability distributions may be defined as
Fourier transforms of the characteristic functions

W(P, s)= f C(g, s)exp(Pg' P'g)d—g .
1

(2.20)

The quasiprobability distribution W((()', s) with s = 1 is the
Glauber-Sudarshan P function, W(P, O) is the Wigner
function [32,34], and W(P, —1)=(alpl a)/n. is the Q
function. The mean values of the s-ordered products
( [(0 ) 8"], ) can be obtained by proper integration with
weight W(P, s) in the complex P plane. For instance, the
symmetric mean value

(j(& ) &"])=([(&) &"],=, )

can be obtained by using the signer function
W(P) =—W(P, O):

( j(& ) d"
J ) =fd PP™P"W(P) . (2.21)

Instead of the three di6'erent characteristic functions
mentioned above, we can use the s-parametrized charac-
teristic function introduced by Cahill and Glauber [31),

C(g, s) =Tr[p exp(g& —g*I+s
l pl /2)], (2.18)

from which we find

g(m +n)
((gt)mgn) C(n)(g)

ag-a( —g')"

g(m +n)
(gn(gt)m) C(a)(g)

Bg ()( —g*)n

g(m +n)
(j(u') a"]&= c"(g)

gym'( g» )n

where

(2.14a)

(2.14b)

(2.14c)

P„=(nlpln) . (2.22)

The quasiprobability distribution functions are unique-
ly defined by the p operator, and in this sense they
characterize the state of the quantum-mechanical system.
That is, they implicitly contain information about all mo-
ments of the system operators.

From the Wigner function (2.20) we can also evaluate
the photon number distribution P„defined as

C'"'(g) =Tr[p exp(g& )exp( —g'& )],
C"(g)=Tr[p exp( —g 8)exp(ga ) ],
C' I(g) =Tr[p exp( g& —g*d ) ]=Tr[p8(g) ] .

The displacement operator D(g) is given by Eq. (1.2) and

(2.15a)

(2.15b)

(2.15c)

Tr[pB(g)]= —fd a(alps(g')la) .1
(2.16)

C '(g) =exp( —
lpl /2)c'"'(g)

=exp( ill'/2)c "(g) . (2.17)

Using the Baker-Hausdorff formula [32] we can show
that the characteristic functions defined by Eqs. (2.15) are
related as follows:

To do so, we note that the p matrix can be expressed as
an inverse Fourier transform of the characteristic func-
tion [31]:

p= — Tr p D ' d

=—f d g C' '(g)D '(g), (2.23)

and therefore implicitly involves all moments of the
relevant field observables; as we shall see later, this has
important consequences for the survival of interferences
and nonclassical properties when dissipation is present.
On the other hand, the characteristic function can be ex-
pressed as an inverse Fourier transform of the Wigner
function:
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C' '(g) = f d a exp(a~) —aP ) W(P) . (2.24)

W (P)= exp( —
2 IPI')&. (4IPI')2( —1)"

(2.26)

and X„(x) is the Laguerre polynomial of order n [35].

C. Sub-Poissonian photon statistics

One of the best known nonclassical effects is the gen-
eration of sub-Poisonian photon statistics of the light
field [12]. A coherent field Ia), which can be regarded as
a field with the "most" classical behavior, yields Poissoni-
an photon statistics, i.e., the variance ((ER') ) is equal to
the mean photon number ( 8') =

I
a

I
. If the variance of 8'

is less than (n ), then a state of light has no classical
description via the P function [see definition (2.20) with
s =1]. This because the P function is not a probability
density [12]. Following Mandel [12], we can introduce
the Q parameter

&(&&)'&-&& &

&e&
(2.27)

which characterizes the departure from Poissonian pho-
ton statistics. The state of light is called Poissonian if
Q =0. When Q )0, the state is called super-Poissonian.
If Q has some value between 0 and —1 then the state is
called sub-Poissonian. For the number state of light In ),

= —1

Inserting Eq. (2.24) into the relation (2.23), we obtain for
P„ the following expression:

P„=~fd P W(P}W„(P), (2.25)

where W„(P) is the Wigner function of the number state
In & [31]:

The state for which the equality in Eq. (2.30) holds is
called the minimum uncertainty state (MUS). For in-

stance, the vacuum and the coherent states of light are
examples of MUS. For these states the variances in both
quadratures are equal to —,'. The state is called squeezed if
the variance of the quadrature operator is less than the
vacuum fluctuations (i.e., less than —'). Alternatively, one

can say that the state is squeezed if the normally ordered
variance is less than zero. It is not necessary for the
squeezed state to be a MUS. Nevertheless, the squeezed
vacuum state (see definition below} is a MUS.

The variances of the quadrature operators can be writ-
ten as

((ha ) ) =—'+ —'[(8 &)+Re(it ) —2(Re(8)) ],
(2.32a)

((b,& ) ) =
—,'+ —,'[(& &) —Re(& ) —2(im(tt) } ],

(2.32b)

from which it follows that squeezing can appear only if
the expectation values (8) and/or (8 ) are nonzero (of
course, this is not a sufficient condition for observation of
squeezing). The nonzero values of (& ) and/or (& ) are
associated with the off-diagonal terms of the density ma-
trix in the number-state basis. In other words, they ap-
pear due to the quantum interference between the num-
ber states In —1) and In) and In —2) and In ), respec-
tively (see Refs. [2,8]).

To measure the degree of quadrature squeezing, we can
introduce two squeezing parameters S

&(~e )'& —cS(2)—
1 C

1
1

D. Second-order quadrature squeezing

In order to study light squeezing, we introduce two
quadrature operators 8i and 82 corresponding to the
creation and annihilation operators 8 and 8 of the field
mode under consideration:

and

&(aa }'&—cS(2)—
2 C

=2[(8 8)+Re(& ) —2(Re(8)) ] (2.33a)

8+8'
1

Operators 8 and 8 obey the ordinary bosonic commuta-
tion relation [8,8 ]= 1 (we adopt fi= 1) and, hence,

(2.28)

[&„a2]=2ic, C= —,
' . (2.29)

One of the consequences of the commutation relation
(2.29) is the uncertainty relation for the variances of the
quadrature operators:

((aa, P ) ((sa, }2)~ c'=
—,', , (2.30)

((&&;)')=c+(:(b,a;)':) . (2.31)

where the variance of the operator &; is defined as
((&&;) ) =(&; ) —(8;) and is related to the normally
ordered variance (:(b,&,.):) as follows:

1
2

=2[ & & & ) —Re(8 ) —2(Im& I ) )~] . (2.33b)

The squeezing condition now reads S,-' ' (0, and the max-
imum squeezing corresponds to S,' '= —1 or, equivalent-
ly, &:(~~;)'.&

= —
—,'.

E. Higher-order squeezing

Quadrature squeezing as discussed above is based on
properties of the second-order moments of quadrature
operators which are related to the field fluctuations. As
discussed by Hong and Mandel [ll], the higher-order
moments of the field can exhibit a nonclassical behavior
called higher-order squeezing, that is, when the Nth-
order moment of the quadrature operator ( (b,a, ) ) is
smaller than its value in a completely coherent state of
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( (QQ )N) (CN/2(N 1)1! (2.35)

which means that the squeezing condition can be written
as

l
N/2 —1 N(21)

( .( gg )
N —21. ) & 0

0 l ! 2
(2.36)

In order to measure the degree of Nth-order squeezing,
we introduce the squeezing parameters S

the field. In what follows we shall consider only the mo-
ments of even order because only in those cases will the
state necessarily exhibit nonclassical behavior [11].

The Nth moment of Ml can be written as [11]
I

N/2 —1 N(21)
((&& ) &

= y —
& (&& )" ")

l! 2

+C (N —1)!!, (2.34)

where for even N we use the notation
N'"'=N(N —1) . . (N —r +1). Due to the fact that all
the normally ordered moments (:(5&;):)vanish for a
coherent state, the field is squeezed to order N if

( (gg }N) CN/2(N
S[Ni

C (N —1)!!

N ( 21)
( C / 2 )

I( .( gg )
N —2!.)

i!C"/'(N —1)!!I =0
(2.37)

The Nth-order-squeezing condition is S,' '(0. The max-
imum (100%) Nth-order squeezing corresponds to
s'"'= —r.

1

III. SUPERPOSITIONS OF COHERENT STATES

Let us consider the superposition le) of coherent
states la) given by the relation (1.7), i.e.,

lq &=A'" g e "'la, &, a, =a,'+ia', ,
j=1

where A ' is the normalization constant. The phases y.
are arbitrary and, as we will show later, their values
determine whether the quantum interference among the
coherent states laj ) is constructive or destructive
[36,37], which results in observable effects (e.g., squeezing
or sub-Poissonian photon statistics).

The normalization constant A ' can be written as

N

A = N+2 g exp( —
—,'la —akl )cos[(yk lpj)+a—jak]

j,k=1
k&j

(3.1)

CXj(3) CXk =CXJ CXk CXJ Qk (3.2a}

The symmetric product of two two-dimensional vectors,
which we will use later, is defined as

where we have used the notation (3) for the antisymmetric
product of two two-dimensional vectors (aj, a~k) and

where C' '(ga) is the characteristic function for the

coherent state la, ):

c,"(pa, ) = (a, lB(g) la, &

=exp( —
—,'lgl +2ia/8$)

and

CXJ 'CXk =
CXJ CXk +CXJCXk (3.2b) elk '(ga, ,a„)= (a„l8(g)la, )e'

The density matrix p corresponding to the pure state (1.7)
1S

=exp['(% leak })

xexp[ —
—,'lg —(ak —a1) +ial8ak

p=A g la, )(a, l

N

+ y e' ' "'la1&&akl
k, j=1
kWj

(3.3)

+ia„g+ia, g] . (3.6)

The corresponding Wigner function W(p;al, . . . , aN)
[see Eq. (2.20)) can be written in the form

T

N

W(p;a„. . . , aN)= A g W, (p;a,)-
j=l

The characteristic function C' '(g'), given by Eq. (2.15c),
related to the density matrix (3.3) is

N
C' '(g)=A g C' '(g'a )

N

+2 g Wk(P;a, ,a„), (3.7}
j,k=1
j&k

N
+

j,k=1
jWk

(3.4)
W, (P;a )=—exp( —2lP —a l ),=2 (3.8)

where W (p;a) is the Wigner function corresponding to
J

the coherent state la, ):
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—2(a) —P) ~ (a„—P) ]

os[ pk p ak a.

+2(ak —P)8(a —P)] . (3.9a)

After some algebra we can rewrite the function
Wjk(13;aj. ,ak ) in the form

a +ak
Wk(P;aj, ak)= —exp —2 P—

Xcos[y„—tp +2Pak
—2PNa, +a„ga, ] . (3.9b)

The oscillatory behavior of the interference part given
by Eq. (3.9b) of the Wigner function plays a crucial role
in the appearance of nonclassical effects (for details see
Ref. [6]). For comparison purposes we write down the
Wigner function of the statistical mixture described by
the p matrix in Eq. (2.13):

N

W(p;a„. . . , aN)= g pj WJ(p, aj ),
j=1

where W(P;aj) is given by Eq. (3.8). This Wigner func-
tion does not contain a quantum interference term and
therefore does not describe nonclassical effects.

For the photon number distribution (2.25) of the super-
position of the coherent states (1.7), we find the following
expressions:

N

P„=A g P„'J'+2 g P' "'
j=1 j,k=1

j)k
(3.10)

where

and W.k(P;a, ak) is the quasiprobability distribution
emerging from the quantum interference between the
coherent states exp(iq&/)~aj & and exp(iqk)~ak &:

Wk(P;a. ,ak) =—exp[ —
—,
' ~a. —ak ~

=2

photon number distribution reads

N

p —y p p(j)
j=1

(3.14)

As seen from Eq. (3.7), the quantum-interference terms
Wjk(P, aj, ak) in the Wigner function of the superposi-
tion of N coherent states arise due to the interference be-
tween the pairs of coherent states ~aj & and ~a„&. There-
fore, in what follows we will study nonclassical effects
which appear in a superposition of just two coherent
states.

IV. SUPERPOSITION OF A PAIR
OF COHERENT STATES

In the previous section we have derived general expres-
sions for the Wigner functions of superpositions of N
coherent states (1.7). To clarify our analysis, in what fol-
lows we study the nonclassical properties associated with
a superposition of two coherent states

~
a & and

~

—a & (for
simplicity we suppose a to be real):

~%&=[2[1+cosyexp( —2a )]]
X[~a&+e'+~ —a&] . (4.1)

Obviously, if p=0, then Eq. (4.1) describes the even CS
(1.5); when qr =n, then (4.1) is equal to the odd CS; and,
finally, for tp=m/2 the state (4.1) is equal to the Yurke-
Stoler CS (1.4). Here we note that the state (4.1) is an
eigenstate of the square of the annihilation operator, i.e.,

a'~e&=a'~e& . (4.2)

A. Nonclassical properties of even CS

The Wigner function of the even CS (1.5) can be ob-
tained from Eqs. (3.7)—(3.9) and is

W(P)= 1

m[1+exp( —2a )]

X [exp[ —2(x —a) —2y ]

P„'J'=exp( —[a, [') (3.11)
+exp [—2(x +a ) —2y ]

+2exp[ —2x —2y ]cos(4ya)], (4.3)

X cos(y. —y„ny „}, — .

with y k defined as

(3.12)

is the Poissonian distribution corresponding to the
coherent state ~aj &, while P„'J"' arises due to the interfer-
ence between the states ~aj & and ~ak & and takes the form

exp[ —(1/2)(iak i + iaj i )]

where x =ReP, y =IrnP. The last term on the rhs of Eq.
(4.3) arises from quantum interference between the states
~a & and

~

—a & and is responsible for the nonclassical be-
havior of the even CS (for details see also Ref. [6]). This
is clearly seen when we compare the Wigner function
(4.3) of the even CS and the Wigner function of the sta-
tistical mixture of the states ~a & and

~

—a & described by
the density matrix

ajak
tan(tp. „)= a .ak

p= 'f &(aal+ —,') —a-&( —a/,
(3.13) for which we find

(4.4)

The oscillatory behavior of the photon number distribu-
tion emerging from the quantum interference term (3.12)
has no classical analog (see also Sec. IV) and is absent in
the case of the statistical mixture (2.13), for which the

W(P}=—
I exp[ —2(x —a) —2y ]

1

+exp[ —2(x+a) —2y ]] . (4.5)
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2 exp( —faf ) !a!
"

xp( —2 fa f')

P„=O if n =2m + 1

if n =2m (4.6a)

(4.6b)

Both Wigner functions (4.3) and (4.5} are plotted in Fig.
1 . From this figure it follows that the quantum interfer-
ence between states fa ) and

f

—a) leads to an additional
peak of the Wigner function (4.3). Moreover, this Wigner
function can take negative values, while the Wigner func-
tion of the statistical mixture (4.4) is strictly positive.

Using Eq. (2.25), we find that the photon number dis-
tribution of the statistical mixture (4.4) is Poissonian, i.e.,
P„=exp( a—)a "In!. On the other hand, the quantum
interference between the states

f a ) and
f

—a ) generates
an oscillatory behavior of the photon number distribution
characteristic of the even CS (see Fig. 2)

and

2

& (~~, )'& = —'+
4 1+exp( —2a }

(4.7a)

1 a exp( —2a )

4 1+exp( —2a )
(4.7b)

from which we find reduction of fluctuations in the &2
quadrature [i.e., the y direction in phase space —see Fig.
1(a) and Ref. [6]). Simultaneously the fluctuations in 8,
are enhanced. The squeezing parameters S ( ' for the
even CS are

distribution, but it also gives rise to quadrature squeez-
ing. We can easily find the variances of the quadrature
operators a,- in the even CS.

The oscillations in P„are very similar to those exhibited
by the squeezed vacuum discussed by Schleich and co-
workers [36].

As it has been shown recently [4,6—9], the oscillatory
behavior of the interference part of the Wigner function
(4.3) not only results in oscillations of the photon number

and

24(x

1+exp( —2a )

&~z~ 4a exp( —2a )

1+exp( —2a )

(4.8a)

(4.8b)

(a)

0:
0

Ch:
0 l

f

hi

e
'I h.

L

. Is. =—

L

(c)

0

~ol

FIG. 1. (a) Wigner functions of the even CS (b) the statistical mixture given by Eq. (4.4), (c) the odd CS, and (d) t
The role of the quantum interference between the coherent states

l
& ) a« I

—a ) is obvious.
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&(48&) &= —,', +—', a +a, &(6&2) &=—', . (4.10)

From the above we can conclude that the fourth-order
moment of 6&& in the case of the statistical mixture is in-
creased compared to its coherent-state value. Generally,
the higher-order variances of the quadrature operator 82
in the statistical mixture (4.4) are equal to their
coherent-state values, while the higher-order variances of
the operator 8& in the statistical mixture (4.4) are larger.

We now evaluate the fourth-order variances for the
even CS which are given by the following relations:

fluctuations in the 8& quadrature are larger than the vac-
uum (or coherent-state) fluctuations, while the fluctua-
tions in &2 quadrature are equal to their vacuum value.
It is interesting to note that the fourth-order moments of
the operators b,&, and b,az in the statistical mixture (4.4)
are, respectively.

FIG. 2. Photon number distribution of the even CS with
a =2 (solid line). The dashed line corresponds to the Poissonian
distribution of the statistical mixture (4.4). From this figure it is
seen that the oscillatory behavior of the interference part of the
Wigner function of the even CS is closely related to oscillations
of the photon number distribution.

and

3 2

&(~~, )'&= ' +
2[1+exp( —2a )]

4a
1+exp( —2a )

(4.11a)

We see that &2 is squeezed for any intensity n of the even
CS, which is related to a through

q 1 —exp( —2a )n=a
1+exp( —2a )

&(&& )4&
3 3a exp( —2a )

2[1+exp( —2a )]

+ a exp( —Za

1+exp( —2a )
(4.11b)

&(~~ )'&=-,'+ ', &(~~, )'&=-,', (4.9)

which means that, for the statistical mixture (4.4), the

From Fig. 3 we find that the maximum squeezing in the
case of the even CS appears for small values of n. For the
statistical mixture (4.4) we obtain the following values for
the variances of the quadrature operators &;:

2
SI4) 16a (,+, )

3[1+exp( —2a )]
(4.12a)

The corresponding squeezing parameters S ' may be
written as

~4~ 16a exp( —2a )
(

3

3[1+exp( —2a )]
(4.12b)

O. 0-

-0.2-

0,4-

-o.e-

-O. 8
0

We can conclude that the even CS is not only second-
order squeezed, but it also exhibits fourth-order squeez-
ing, for weak fields with a (—,'. Moreover, the degree of
fourth-order squeezing is even larger than the degree of
second-order squeezing (see Fig. 3). We should underline
here that, in the case of the even CS, there is a close rela-
tion between the presence of squeezing and the shape of
the Wigner function. As seen from Fig. 1(a), the Wigner
function itself is "squeezed" in phase space in the y-
direction corresponding to the reduction of fluctuations
in the &z quadrature (for details see Ref. [6]).

Finally, we note that the even CS has super-Poissonian
photon statistics for any value of n, that is, the Mandel Q
parameter [see Eq. (2.27)]

FIG. 3. Squeezing parameters S2 ' and S2 ' for the even CS vs
the parameter a. We see that the highest degree of squeezing
can be observed for sma11 intensities of the light field.

4a exp( —2a ) &0
1 —exp( —4a )

is positive for any value of a .

(4.13)
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B. The odd coherent state -0.0

The odd CS differs from the even CS "just*' by a phase
factor e'~ in expression (4.1). For the even CS we have
y=O, while for odd CS, y=n. . This subtle difference
leads to completely different nonclassical properties of
these states.

The Wigner function of the odd CS is equal to the
Wigner function of the even CS apart from the fact that
overall normalization constant is different and the in-
terference term is multiplied by —1:

W(P)= [exp[ —2(x —a) —2y ]
1

[1—.exp( —2a )]
+exp[ —2(x+a) —2y ]

—2exp( —2x —Zy )

-0.2-

-0 4-

CY-0.6-

-0.B-

-&.2
0

Xcos(4ya)] . (4.14)

2a'"exp( —
~
a ~')

if n =2m +1,
[1—exp( —2~a~ )]n!

P„=O if n =2m .

The Mandel Q parameter (2.27) of the odd CS is

(4.15a)

(4.15b)

This Wigner function is plotted in Fig. 1(c), which reveals
the striking difference between the Wigner functions of
the even CS and odd CS. This difference is also rejected
in the photon number distribution of odd CS, for which
only an odd number of photons have a nonzero probabili-
ty of being observed. As we have shown above, in the
case of the even CS, the probability of finding an odd
number of photons is equal to zero [this is, of course, the
reason for calling the states (1.5) and (1.6) even CS and
odd CS, respectively]. The photon number distribution
of the odd CS can be written as

~2~ 4a exp( —2a )

1 —exp( —2a )
(4.17b)

In spite of the fact that there is no second-order squeez-
ing in the case of the odd CS, fourth-order squeezing can
occur, as we can see from the squeezing parameters S

and

S', '= (a'+ —')16a2

3[1—exp( —2a )]
(4.18a)

FIG. 4. Mandel Q parameter of the odd CS vs the parameter
a. The highest degree of sub-Poissonian photon statistics
(Q~ —1) is obtained for a~0, that is for n ~1

4a exp( —2a )

1 —exp( —4a )
(4.16) ~4~ 16a exp( —2a )

3[1—exp( —2a )]
(4.18b)

from which it follows that the odd CS has sub-Poissonian
photon statistics. It is interesting to note that the odd CS
has the maximum degree of sub-Poissonian statistics at
low intensities n of the field, that is, for small values of
the parameter a:

The fourth-order squeezing in the &2 quadrature appears
for a )—,

' when Sz '(0. Nevertheless, the degree of
fourth-order squeezing in the odd CS is significantly
smaller than that for the even CS.

z 1+exp( —2a )n=a
1 —exp( —2a )

4as',"=,&0
1 —exp( —2a )

(4.17a)

and

In particular, in the limit a ~0 (i.e., n ~1),we find that
Q~ —1 (see Fig. 4).

As we have shown earlier, the even CS has super-
Poissonian photon statistics, but simultaneously it exhib-
its second-order squeezing. The odd CS has sub-
Poissonian photon statistics, but it does not exhibit
second-order squeezing. The (second-order) squeezing
parameters 5 ' for the odd CS are

C. The Yurke-Stoler coherent state

No way to generate the even and odd CS from a
coherent state by a unitary transformation is presently
known (although the nonunitary field reduced matrix in
the Jaynes-Cummings model evolves to such a state
[27,29]). On the other hand, the Yurke-Stoler CS given
by Eq. (1.4) appears as a result of a nonlinear interaction
of coherent light with a Kerr-like medium [13] and is
equal to a unitarily transformed coherent state with the
unitary operator given as the exponential of a polynomial
in the number operator R. Therefore, the photon number
distribution of the Yurke-Stoler (CS) must remain Pois-
sonian (i.e., Q =0).

The Wigner function for the Yurke-Stoler CS is [see
Fig. 1(d)]
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W(P) =—[exp[ —2{x—a)2 —2y ~]1

+exp[ —2(x +a ) —2y ]
—2exp( —2x —2y~)sin(4ya)] . (4.19)

plitudes, studied by Schleich et al. [9], which also
changes the quantum interference.

D. One-dimensional continuous superpositions
of coherent states

S"'=4a',a

S2 '= —4a exp( —4a ),
(4.20a)

(4.20b)

In spite of the fact that the photon number distribution
of the Yurke-Stoler CS is not altered by the quantum in-
terference between the component states ~a ) and

~

—a )
[described by the third term in the rhs of Eq. (4.19)], this
interference results in the appearance of the second- and
fourth-order squeezing of quadrature operators. After
some algebra we find for the squeezing parameters S
the following expressions:

We have shown earlier that the even CS (1.5) exhibits a
large amount of second-order (quadrature) squeezing.
The degree of squeezing can be increased if we add to the
superposition (1.5) another pair of coherent states ~P)
and

~

—P ) (P and a are supposed to be real)

Iq'& = A '"[p.(la&+ I

—a&)+pp(IP&+ I

—P& }],
where p &

are some numerical parameters and A is the
corresponding normalization constant. In fact, it can be
shown [4,6] that a one-dimensional continuous superposi-
tion of the type

ig') =C f F(a, g)dai!a), (4.22a)

S(4) —16a2(a2+ 3 )1 (4.21a) where

S~z '= —",a exp( —4a )[a [4—3 exp( —4a )]——', ] .

(4.21b)

The maximum degree of the second- and fourth-order
squeezing in the Yurke-Stoler CS is smaller than in the
case of the even CS. This can be seen by comparing Figs.
3 and 5. We can conclude that the superposition of two
coherent states ~a) and

~

—a) exhibits difFerent nonclas-
sical effects which depend on the particular choice of the
phase y. In other words, the phase y dictates the charac-
ter of the quantum interference between ~a) and

~

—a).
This dependence on the relative phase in the quantum su-
perposition should be distinguished from the role of the
relative phase P of the coherent states with complex am-

CF = a, F a',

(1—
)F(a, g) =exp — a (4.23)

then the state (4.22a) is equal to the squeezed vacuum
state, that is

lg& =C,f" F(a, g)&(a)lo&da=S(g)10&, (4.24)

where S(g}is the squeeze operator

Xexp[ (a a'—) l2—]dada', (4.22b)

with properly chosen weight functions F(a,g), can exhib-
it a large degree of squeezing. If F(a,g) is taken to be
the Gaussian function [6]

S(g)=exp —(& ) ——8, g=tanhr,
2 2

(4.25)

0.2-,

0.0-

-0.2-

-O. 4-

-O. 6
0

FIG. 5. Squeezing parameters S& ' and S~ ' for the Yurke-
Stoler CS vs the parameter a. We see that the highest degree of
squeezing can be observed for small intensities of the light field.
The highest degree of squeezing in the case of the Yurke-Stoler
CS is smaller compared with the highest degree of squeezing of
the even CS (see Fig. 3).

ln &=A.(lal) f &q e '"'~~ale"),

where the normalization constant A „(~
a

~
) is

A„([a/)=+n!fa/ e

(4.26a)

(4.26b}

In other words, a continuous superposition of coherent
states on the circle can represent the number state ~!n ),
that is, the state with highest degree of sub-Poissonian
statistics Q = —l.

and S(g) ~0) is the squeezed vacuum state.
On the other hand, the odd CS exhibits a large degree

of sub-Poissonian statistics (Q (0). One can construct a
superposition of coherent states ~~a~e '+) with equal am-
plitudes

~
a

~
and suitably chosen distribution of their

phases y in such a way that the degree of sub-Poissonian
statistics can be increased {for details see Ref. [4]). It has
been shown by Gardiner [38] that, in the continuous limit
of coherent states on the circle, one can find the following
relation:
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V. INFLUENCE OF DAMPING
ON QUANTUM INTERFERENCE

In this section we will study the decay of a field mode
initially prepared in a superposition of coherent states.
To be specific, we shall assume that the density operator
p for the field mode obeys a zero-temperature master
equation in the Born-Markov approximation. This equa-
tion in the interaction picture can be written as (see, for
instance, Ref. [39])

diagonal terms of the density matrix are rapidly dephased
at a rate governed by the separation of the coherent
states. The interference terms in the Wigner function are
proportional to the off-diagonal terms of the p matrix
which means that the Wigner function of the pure quan-
tum superposition state decays very rapidly towards the
Wigner function of the statistical mixture. This is very
noticeable in Fig. 6 in which the Wigner function of the
initial even coherent state is plotted for various values of
p.

c}t 2
=—(2&pa —& &p

—pa a ), (5.1)
A similar sensitivity of the quantum interference terms

where y is the decay constant. Such a model was previ-
ously studied by Walls and Milburn [39] and Savage and
Walls [40]. These authors have shown that the off-
diagonal terms in the field density operator, expressed in
a coherent-state basis, are weighted with a time-
dependent factor which rapidly suppresses these coher-
ences. The effect of the decay on observable quantities
was studied by Phoenix [41] who has shown that mean
values of observable quantities, arising from off-diagonal
coherence, do not decay on a faster time scale than other
terms arising from the diagonal terms. As it will be seen
later, this is the reason why squeezing in the superposi-
tion of coherent states decays on the same time scale as
the mean photon number. On the other hand, we will
show that the photon number distribution P„, which is
related to the diagonal matrix elements in the number-
state basis, is very sensitive to the presence of damping.
The same is also true for that part of the Wigner function
which corresponds to the quantum interference between
coherent states. One of our tasks is therefore to explain
why some quantities seem to be so sensitive to dissipation
whereas others do not show this extraordinary sensitivity.

Following Barnett and Knight [42] we can write the
solution of the master equation (5.1) in the form

p(t) =exp(Et )exp —(1—e ') p(0),
. y

(5.2)
O r

(5.3a)

and

where the two operators I. and J are defined by their ac-
tion on the density operator, i.e.,

Jp=y&p&

(c)

Ip= — (& ap+pa a ) .
2

(5.3b)

Using the formal solution (5.2) for the p matrix, one can
find the time-dependent expression for the density matrix
of the superposition of two coherent states

I p&=~'"[Iran;&+I~, &]

at t & 0 (for details see Refs. [39,41]):

(5.4)

2

pat) = & y & ~; l~, &' "Ip'"~, & &I '"~;I, (5.5)

where p=exp( yt). —
The last expression reflects the fact that the off-

FIG. 6. The Wigner function of the initial even CS influenced

by damping. The transition from the Wigner function of the
even CS [Fig. 1(a)] towards the Wigner function of the mixture
of two coherent states (c) can be observed. The value of u is 2
and (a) yt =0.1, (b) yt =0.3, and (c) yt = 1.0.
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to decay can also be observed in the case of the photon
number distribution. As we noted earlier, the photon
number distribution of the even coherent state exhibits
oscillations (see Fig. 2), while the statistical mixture of
states ~a) and

~

—a) has a Poissonian distribution. The
oscillations of the photon number distribution have their
origin in the quantum interference described by the off-
diagonal terms (in the coherent-state basis) of the density
matrix [see Eq. (2.25)]. From this it follows that the os-
cillations of P„disappear very rapidly and that only the
terms corresponding to the statistical mixture give the
dominant contribution to P„( ese Fig. 7).

From the above we can conclude that both the Wigner

2
((&") a")=A g (a, ~a, )(p' 'a, )"(p' 'a,*) (5.6)

which means that the terms arising from the off-diagonal
coherences in the superposition state (5.4) decay on the
same time scale as those arising from the diagonal ele-
ments [41]. We now understand that the intensity of the

function and the photon number distribution are very
sensitive to the rapid destruction of the off-diagonal
coherences. On the other hand, one can find (see, for in-
stance, Ref. [41]) that normally ordered expectation
values ( (I ) d" ) are given by
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FKJ. 7. The photon number distribution of the initial even
CS (see Fig. 2) influenced by the damping. The initial value is
a=2 and (a) yt=0. 1, (b) yt=0. 3. It is clearly seen that, with
increasing yt, the photon number distribution of the even CS is
transformed into the photon number distribution of the statisti-
cal mixture. Dashed lines describe photon number distributions
of the states obtained from the statistical mixture (4.4) under the
influence of the decay mechanism.

FIG. 8. Squeezing parameters S', ' for (a) the even CS and (b)
the Yurke-Stoler CS vs the parameter a for various values of y t:
yt =0.0 (line 1), yt =0.1 (line 2), yt =0.3 (line 3), yt =1.0 (line
4), and yt =5

~ 0 (line 5). We see that a considerable amount of
squeezing can be observed even for a value for a value y t = 1 ~ 0
(line 4) when the interference term in the Wigner function has
totally disappeared.
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field mode as well as the mean values Re((a )) and
(Re(&)) decay with the same rate, which means that,
for the variances of the quadrature operators, we obtain

( [b&;(t)]'=—,'+p(:[&";(0)]':).

For the squeezing parameter S,' ' we find

g(2)(t) pg(2)(Q)

(5.7)

(5.8)

From which it follows that second-order squeezing is
deteriorated by the presence of damping at the same rate
as the mean photon number [for which we can find that
n(t)=pn(0)]. In Fig. 8(a) we plot the squeezing parame-
ter S ' of the even coherent state for various values of yt.
We can see that squeezing is much more robust with
respect to damping than the oscillations of the photon
number distribution or the interference term in the
Wigner function. For instance, for yt =0.3 one can ob-
serve a considerable degree of quadrature squeezing,
while the Wigner function of the even CS for this value of
yt is almost identical to the Wigner function of the sta-
tistical mixture (see Fig. 6). The same effect can be ob-
served also in the case of the Yurke-Stoler CS [see Fig.
8(b)].

In order to understand more clearly why the second-
order squeezing decays at a different rate than the
Wigner function, we rewrite the Wigner function in terms

I

of normally ordered moments of the creation and annihi-
lation operators ((it ) a")=Tr[p(& ) it"]. To do so, we
rewrite the displacement operator D(g) in normally or-
dered form:

D(g) =exp( —
—,
'

lgl )
(g& ) (

—g*fi)"
I! &n!

(5.9)

pm( pn )nc' '(g)= p( —
—,'lgl') g ';, ((& ) &") .

o v'm!n!

(5.10)

The Wigner function (2.20) can now be rewritten as

w(p)= g 8' „(p),&I!n!
7

where the function 8' „(p) is defined as

(5.11)

II,(P)= Jd (exp( —
—,'lgl'+Pg* —P'g)g (

—P)",

(5.12a)

and can be evaluated by partial differentiation over the
parameters v and z from the generating function

from which we obtain the following expression for the
characteristic function C' ':

m n 2

w „(p)=— +t=2 a a
')7 Bv Bz 2 2

v, z =0

a . a l l+i exp —2 x ——v —2 y+ —z
Bv Bz

(5.12b)

with x =Rep, y =Imp. In this way we directly see that the Wigner function depends on all moments of the field observ-
ables. But these higher-order moments depend on powers of the damping factor p (as can be seen by consideration of
the appropriate Heisenberg equations) and this is responsible for the sensitivity to dissipation. The Wigner function
[and P(n)] contains a sum of terms, each one of which decays more rapidly than its predecessor. Low-order expecta-
tion values depend only on the appropriate low-order terms in the Wigner function expansion and are thus insensitive
to the more rapid decay of the higher-order terms.

If we suppose that initially the light field is in a superposition of two coherent states (5.4), then taking into account
the damping process, the Wigner function W(p, t) at time t will take the form

oo an(an )m

W(p, t)=A g g (a Ia;)
' p' +")~ W „(p,t =0),

m, n=O
(5.13)

from which it is clearly seen that the Wigner function always decays faster than the second-order squeezing. This is be-

cause it contains the damping factors p' +"' related to higher-order normally ordered products of creation and an-

nihilation operators. The last expression for the Wigner function W(p, t) can be rewritten in the form:

2

8'(p, t) = 3 g (a. la, )—exp p(a —a;) —Ep(a +a;) exp( 2lpl2+»3)ep+-, ' I2)12)l =o,
i j =1

(5.14)

where g=v +iz and 8/Bg=B/Bv+iB/Bz. We see that
the off-diagonal terms of the Wigner function (i%j) de-
cay faster than the diagonal ones. This is due to the fact
that off-diagonal terms contain an additional damping
factor arising from the term exp[p(a, —a; ) BIB3)],which
is equal to unity for diagonal terms.

Decay of the fourth-order squeezing

Earlier in this section we have shown that second-order
squeezing, which arises due to the quantum interference
between two coherent states, decays linearly with the
variable p [see Eq. (5.8)]. We illustrate this fact in Fig. 8
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where the parameters S&
' are plotted for the even CS and

Yurke-Stoler CS vs a for various values of p. %e see
how the decay leads to deterioration of second-order
squeezing.

The fourth-order squeezing parameters S ' can be
written in terms of normally ordered moments of quadra-
ture operators:

g(4) 16 [ 3 (.(gg )2. ) + (.(gg )4. ) ] (5.15)

0.4.

0.
g, i

As seen from Eq. (5.6), if the light field is initially in the
superposition state (5.4), then in the presence of damping
we find for the squeezing parameter at time t (corre-
sponding to a particular value of p) the expression

S '(t)= —", [ —',)u(:[bd;(0)]:)+p (:[ba;(0)]:], (5.16)

p»

which means that the two parts of the rhs of Eq. (5.16)
decay at different rates, and the fourth-order normally or-
dered variance (:[M,(0)]:) decays faster than the
second-order normally ordered variance. This can lead
to a remarkable result: the decay mechanism itself can
generate fourth-order squeezing. Namely, let us suppose
the light field to be initially in the even CS (1.5). The ini-
tial degree of fourth-order squeezing in this case is given
by Eq. (4.12) from which it is seen that fourth-order
squeezing is absent for a & —,'. If we take into account the
decay mechanism, then we 6nd, for Sz ',

~4~( 16@,a exp( —2a )
(

2 2

3[1+exp( —2a )]
(5.17)

(c)

from which it follows that, at t & 0, fourth-order squeez-
ing occurs for pa & —,', that is, at t &0 the fourth-order
stIueezing can appear for such values of a for which
S,"(r =0)&0.

Fourth-order squeezing parameters S~z '(t) for the odd
CS and Yurke-Stoler CS are, respectively,

I
O+» ~ m m ~ [4P

I
lg

0,4-

and

S(4)(t) 16pa'exp( —2a') („a2 3

3[1—exp( —2a )]

S~& '( t) = —", p,a exp( —4a )

X [pa [4—3 exp( —4a )]——,
'

j .

(5.18)

(5.19)

-0.6
CI

FIG. 9. Squeezing parameters 52 ' for (a) the even CS, (b) the
odd CS, and {c) the Yurke-Stoler CS vs the parameter a for
various values of yt: yt=0. 0 (line 1), yt=0. 1 (line 2), yt=0. 3
(line 3), yt =1.0 (line 4), and yt=5. 0 (line 5). %e see that, in
the case of the even CS and the Yurke-Stoler CS, fourth-order
squeezing can be generated via the damping mechanism.

All these parameters are plotted in Fig. 9 as functions of
a for various values of p. We can conclude that, in spite
of the fact that damping leads to deterioration of second-
order squeezing [see Eq. (5.8)], it can produce consider-
able fourth-order squeezing for particular values of
coherent amplitudes of the coherent states composing the
quantum superposition [see Figs. 9(a) and 9(c)]. The
necessary condition under which one can observe an
enhancement of fourth-order squeezing via damping is
that, at the initial moment of the evolution, the state un-
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der consideration is second-order squeezed. From here it
directly follows that, in the case of the odd CS, the
fourth-order squeezing cannot be enhanced by the damp-
ing mechanism [see Fig. 9(b)]. Finally, we note that the
maximum (global) degree of fourth-order squeezing of the
quantum superposition of coherent states cannot be
enhanced by damping.
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